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Integrating variant functional 
annotation scores have varied 
abilities to improve power 
of genome‑wide association 
studies
Jianhui Gao1, Osvaldo Espin‑Garcia1,2, Andrew D. Paterson1,3 & Lei Sun1,4*

Functional annotations have the potential to increase power of genome‑wide association studies 
(GWAS) by prioritizing variants according to their biological function, but this potential has not been 
well studied. We comprehensively evaluated all 1132 traits in the UK Biobank whose SNP‑heritability 
estimates were given “medium” or “high” labels by Neale’s lab. For each trait, we integrated GWAS 
summary statistics of close to 8 million common variants (minor allele frequency > 1% ) with either 
their 75 individual functional scores or their meta‑scores, using three different data‑integration 
methods. Overall, the number of new genome‑wide significant findings after data‑integration 
increases as a trait SNP‑heritability estimate increases. However, there is a trade‑off between new 
findings and loss of baseline GWAS findings, resulting in similar total numbers of significant findings 
between using GWAS alone and integrating GWAS with functional scores, across all 1132 traits 
analyzed and all three data‑integration methods considered. Our findings suggest that, even with the 
current biobank‑level sample size, more informative functional scores and/or new data‑integration 
methods are needed to further improve the power of GWAS of common variants. For example, 
studying variants in coding sequence and obtaining cell‑type‑specific scores are potential future 
directions.

In the last decade, genome-wide association studies (GWAS) have enabled the discovery and identification of 
thousands of genetic loci across a wide range of  phenotypes1. However, despite their increasingly large sample 
sizes (e.g. n > 100,000 ) there is a need to improve the often modest power of GWAS, as effect sizes of causal 
variants are believed to be small for most complex human  traits2.

The standard GWAS approaches are designed for discovering common variants with relatively large effects 
(i.e. low polygenicity), and so they are not optimized for analyzing the large number of small effects in highly 
polygenic  traits3. To increase the power of GWAS, earlier work have leveraged linkage  results4,5 or summary 
statistics from independent GWAS of the same or related  traits6–9. To integrate information across sources, 
meta-analysis10 and Fisher’s  method11 are two standard and powerful approaches. For example, meta-analysis 
of summary statistics has been shown to be as powerful as mega-analysis of individual-level data, when there 
is no heterogeneity between the  studies12,13. On the other hand, Fisher’s method is more robust to differential 
directions of effect by combining p values from different studies.

Recently, it has been shown that variant functional annotations can prioritize according to their biological 
 relevance14–18. To overcome limitations such as incomparable metrics of measurement and differential ascertain-
ment biases across different annotations, several authors have proposed methods to integrate multiple annota-
tions into one single measure: a meta-score19–23. For instance, Kircher, M. et al.22 combined more than 60 genomic 
features into one combined annotation dependent depletion (CADD) meta-score to provide a measure of the 
relative deleteriousness for each variant, while Ionita-laza, I. et al.23 developed Eigen, a functional meta-score of 
similar nature using an unsupervised spectral approach.
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Despite the popularity of using these meta-scores for genomic  studies24–26, their potential for improving power 
of GWAS has not been well studied or understood. To integrate GWAS summary statistics with meta-scores, in 
addition to meta-analysis and Fisher’s method, we also consider the weighted p value  approach27 and the strati-
fied false discovery rate (sFDR) control  method28, which extended the traditional FDR control  methodology29. 
Both weighted p value and sFDR have been used to leverage linkage  evidence5,30, gene-expression  data31,32 and 
 pleiotropy33 to increase power of GWAS. Here we use these data-integration methods to integrate CADD or 
Eigen functional meta-scores with GWAS summary statistics of 1132 phenotypes from the UK Biobank  data34.

Integrating functional annotation scores with GWAS summary statistics has been previously studied. Recently, 
Kichaev, G. et al.35 proposed a modified weighted p value-based method called FINDOR to leverage polygenic 
functional enrichment to improve power of GWAS. To achieve this, FINDOR uses a stratified linkage disequi-
librium (LD) score regression  method36 to compute the expected χ2

1  statistic for each GWAS SNP, by regressing 
the observed GWAS χ2

1  statistics of the tagging SNPs against their 75 functional annotation  scores37. FINDOR 
then stratifies the GWAS SNPs into 100 equally-sized bins based on their expected GWAS χ2

1  values and applies 
bin-specific weights to the corresponding GWAS p values. An application of FINDOR by Kichaev, G. et al.35 to 
27 traits, selected from the UK Biobank  data34, showed that the method was able to improve power of GWAS 
by identifying additional associated variants. Based on  FINDOR35, these 27 traits were constructed from “a set 
of 27 (roughly) independent and heritable traits, retaining only traits that exhibited a phenotypic correlation 
r2 < 0.1 ” and “to ensure adequate power to estimate functional enrichment, we also required that the traits have 
a heritability Z-score > 6 in the 145K dataset to be included in our analysis”.

To answer the question of whether prioritizing variants according to their biological function could improve 
power of GWAS, our study here is different from the FINDOR evaluation of Kichaev, G. et al.35 in several ways. 
First, unlike FINDOR, we use methods that prioritize GWAS findings based on external information alone to 
minimize concern of over-fitting. That is, the weighting factor and stratification are determined based on the 
annotations alone, independent of the observed GWAS summary statistics. Second, we utilize existing meta-
scores that are already calibrated and easier to implement in practice, instead of using many individual functional 
scores. Third, we focus on evaluating methods’ robustness to the possibility of uninformative or even misleading 
functional annotations, because our understanding of the functionality of a genetic variant is incomplete and 
evolving. Finally, we comprehensively examine all 1132 UK Biobank traits for which the confidence for their 
SNP-heritability estimates were considered medium to high by Benjamin Neale’s lab from the Broad Institute 
(hereafter referred to as Nealelab; Web Resources). For each trait, we integrated GWAS summary statistics of 
close to 8 million common variants with their functional scores using three different data-integration methods: 
FINDOR with 75 individual functional scores, and weighted p value and stratified false discovery control meth-
ods with CADD (or Eigen) meta-scores.

In addition to the large-scale UK Biobank application, we also conducted a large-scale simulation study using 
different study designs, from leveraging the observed genomic data combined with simulated genetic data or 
vice versa to using only simulated data. We also considered different and complementary performance measures, 
from the traditional family-wise error rate (FWER) to false discovery rate (FDR), power, recall, precision, and 
relative efficiency. Finally, we sought to evaluate the functional annotation similarity between variants in linkage 
disequilibrium (LD), which has not been previously studied but an important consideration when integrating 
functional scores with GWAS.

Results
Method overview. Focusing on integrating functional scores with GWAS summary statistics to improve 
power of GWAS, we considered five data-integration methods, namely meta-analysis10, Fisher’s  method11, 
weighted p  value27,  sFDR28, and  FINDOR35. The meta-analysis and Fisher’s method were only included in some 
of the simulation studies to demonstrate that, although commonly used in many other scientific settings, they 
are not suitable for integrating GWAS with genomic functional scores.

Prior to the large-scale UK Biobank application using methods for which we understand their performance 
properties, we conducted a large-scale simulation study using three complementary study designs: (i) leverag-
ing the observed functional annotations and integrating them with simulated GWAS, (ii) simulating functional 
annotations and combining them with observed GWAS, and (iii) using only simulated data. For an unbiased 
method evaluation, we also considered different performance measures, ranging from the traditional FWER to 
false discover control, and from the traditional power to recall, precision and relative efficiency.

In simulation study design I, we evaluated the type I error rate of all five methods. Overall, all methods 
showed reasonable type I error control in this setting. In simulation study designs II and III, we only evaluated 
four methods (meta-analysis, Fisher, weighted p value, and sFDR) because it was unclear if FINDOR remained 
valid when the LD structure between SNPs was not preserved. Based on the results from simulation study 
designs II and III, we found that meta-analysis and Fisher’s method had severe robustness issues to partially 
informative, uninformative or misleading additional information. Thus, we decided to exclude them from real 
data application. Finally, in the UK Biobank data application, we compared the recently proposed FINDOR 
method with weighted p value and sFDR, the two robust methods found through the earlier simulation studies. 
Figure 1 provides a visual summary of this process of evaluating different methods across the simulation and 
application study settings.

Results of simulation design I, leveraging the observed genomic data. Here, simulated GWAS 
summary statistics, generated under the null of no association, were integrated with real functional annotations. 
The empirical FWER were estimated from 50,000 simulated replicates.
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For the baseline analysis, using the null GWAS summary statistics alone, the empirical FWER is 0.0496 
(Table S1). For the five different data-integration methods, the empirical rates are 0.0477, 0.0366, 0.0501, 0.0474, 
and 0.0537, respectively, for meta-analysis, Fisher’s method, weight p value, sFDR, and FINDOR, where FIN-
DOR is the only method with slightly increased type I error rate. Although a method with an empirical FWER 
estimate outside [0.047, 0.053] can be considered inaccurate, overall all methods have reasonable type I error 
control in this setting.

Table S1 also provides a detailed account of the numbers of replicates, out of a total of 50,000 replicates, with 
at least one, two or three false findings for each of the methods; no method had more than three false findings 
per GWAS.

Results of simulation design II, leveraging the observed genetic data. Here, real UK Biobank 
GWAS summary statistics of the 1132 traits were integrated with permuted CADD (or Eigen) meta-scores. We 
were unable to evaluate FINDOR in this setting, because FINDOR implements LD score regression (LDSC)38 
and the validity of using LDSC for permuted annotation is unclear. The performance measures used here are 
Recallt = TPt/m1,t and Precisiont = 1− FDRt = TPt/Pt , where m1,t is the number of genome-wide significant 
GWAS findings prior to data-integration for trait t, and Pt and TPt are, respectively, the numbers of total positives 
and true positives after data-integration.

The Recall results shown in Fig. 2 confirm that meta-analysis and Fisher’s method are not suitable for inte-
grating functional annotations with GWAS summary statistics. Across the 723 GWAS with at least one signifi-
cant finding prior to data integration ( m1,t > 0 ), the [Q1, median, Q3] Recall rates are [50%, 66.67%, 73.34%] 
for meta-analysis and [70%, 84.23%, 92.15%] for Fisher’s method after integrating permuted CADD scores. In 
contrast, these values are [95.87%, 100%, 100%] for the weight p value method and [100%, 100%, 100%] for the 
sFDR control. The Precision results in Fig. 2 corroborate the findings based on Recall.

The results here consistently show the sensitivity issue of meta-analysis and Fisher’s methods, and they 
confirm that sFDR is more robust than the weighted p value approach, which was demonstrated by Yoo, Y.J. 
et al.5 when integrating linkage results with GWAS. Results stratified by the four types of traits analyzed, nonsig, 
nominal, z4, and z7 (Figure S1), counting significant SNPs instead of loci (Figure S2), or using permuted Eigen 
scores (Figure S3) led to the same conclusion.

Permuting the meta-scores provides random functional annotations, independent of the GWAS summary 
statistics, for type I error evaluation. However, as noted earlier, it is of value to examine annotation similarities 
between SNPs in linkage disequilibrium. A similarity measure, s2i,j , was introduced to be compared with the LD 
measure, r2i,j . Results in Figure S4 show that there is no clear concordance between the two measures. A closer 
examination of s2i,j and r2i,j for two randomly selected regions is shown in Figure S5, and the contrast between 
variant-specific CADD meta-score and LD score across the genome is shown Figure S6. Both figures led to the 
same conclusion that functional scores of SNPs in strong LD are not necessarily similar.

Results of simulation design III, varying the informativeness of genomic information. Here, 
both the GWAS summary statistics and the additional information available for data-integration were simulated, 
with varying degree of informativeness, including uninformative or possibly misleading annotation scores. The 
performance measures here are power and relative efficiency (RE), where RE was defined as one minus (the 
average ranks of the truly associated SNP after data-integration) divided by (their average baseline ranks using 
GWAS data alone).

The RE results in Fig. 3 are consistent with those from simulation study design II. While meta-analysis and 
Fisher’s method work well when the additional information is completely informative (i.e. the two data resources 
are homogeneous with each other), they are not suitable data-integration methods for this study setting.

The the RE results were consistent with the power results in Figure S8, across different rejection rules includ-
ing controlling FWER at 5%, rejecting top 100 ranked SNPs, and controlling FDR at 5% or 20%. In addition, in 
Category II (partially informative), the RE of the different methods were compared as µadd varied from 0.1 to 4 
(Figure S9). As expected, all methods achieved higher RE as the informativeness of additional information (i.e. 
µadd ) increased, with the weighted p value and sFDR methods being the most robust, when µadd was relatively 
small. In Figure S10, we examined the impact of the number overlapping truly associated SNPs between the two 

Figure 1.  A visual summary of evaluating different methods across the simulation and application study 
settings.



4

Vol:.(1234567890)

Scientific Reports |        (2022) 12:10720  | https://doi.org/10.1038/s41598-022-14924-1

www.nature.com/scientificreports/

sources under Category III (partial informative/misleading). We observed that both meta-analysis and Fisher’s 
method were unable to gain efficiency if the overlap is less than 80%. Consistent results were also observed when 
µ1 was varied from 0.1 to 4 to represent different power scenarios of a GWAS (Figures S11 to S18). Thus, meta-
analysis and Fisher’s method were excluded from the application study.

Results from integrating functional annotations to improve power of UK Biobank GWAS. The 
UK Biobank GWAS summary statistics from Nealelab (between each of the 7,895,174 common SNPs and each 
of the 1132 UK Biobank traits) were integrated with variant’s functional annotation scores using three data-inte-
gration methods, where FINDOR used 75 individual annotation scores, and weighted p value and sFDR used 
CADD (or Eigen) meta-scores as described earlier. The total number of independent, significant loci detected at 
the 5× 10−8 level, as well as Recall and New Discoveries were calculated.

No striking improvements across the 1132 traits. Figure 4 shows the distributions of the total number of inde-
pendent, significant loci identified by using GWAS alone (as a baseline, the first box-plot within each sub-figure) 
or after applying FINDOR, weight p value and sFDR data-integration methods, stratified by the four types of 
traits analyzed (nonsig, nominal, z4, and z7).

Overall, integrating the existing functional annotations with the UK Biobank GWAS association statistics 
did not lead to striking improvements, irrespective of the data-integration method. Results of using Eigen (Fig-
ure S19) or counting SNPs instead of independent loci (Figure S19) are characteristically similar.

The overall limited improvement is also evident from Table 1. For example, among the 1132 traits, prior to 
data-integration 772 have at least one genome-significant, independent loci. After data-integration these num-
bers are 738, 746 and 717 by, respectively, FINDOR, weighted p value and sFDR; the counts stratified by the 
four trait categories are also provided in Table 1. Similarly, 337 traits have more than ten significant loci prior to 
data-integration, and the numbers are 353, 346 and 337 post-data-integration by the three method.

Further, the intersection of significant loci between methods displayed in Figure S21 shows that out of a 
total of 59,764 significant loci identified in the z7 category, 46,631 (78%) were common across the three data-
integration methods and the baseline GWAS alone. Additionally, Figure S22 shows that the total numbers of 
significant loci after data-integration are similar to those based on GWAS alone, for all three data-integration 
methods and across all 1132 traits.

New Discoveries for the 182 traits in the nonsig category. Although the ground-truth is unknown in application 
studies, the New Discoveries for traits in the nonsig category may be considered as false positives, as their SNP-
heritablity testing p values were > 0.05 and the inferences were given “medium” or “high” confidence by Neale-
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Figure 2.  The Recall and Precision rates obtained from simulation study design II, integrating the 1132 
UK Biobank GWAS summary statistics with permuted CADD functional meta-scores, using meta-analysis, 
Fisher’s method, the weighted p value approach, and the stratified FDR control. Recallt = TPt/m1,t and 
Precisiont = 1− FDRt = TPt/Pt , where m1,t is the number of genome-wide significant independent loci 
prior to data-integration for trait t, and Pt and TPt are the numbers of positives and true positives after data-
integration; see Table S2 for additional results. Independent loci were defined using PLINK’s LDclumping 
algorithm with a 1 Mb window and an r2 threshold of 0.1.
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lab; traits in this category include, for example, “Fizzy drink intake”, “Apple intake”, “Time spent doing moderate 
physical activity”, and “Work hours”.

Among the 182 traits in the nonsig category, 20, 15 and 0 traits had at least one New Discoveries after data-
integration using, respectively, FINDOR, and weighted p value and sFDR when using CADD (Table 1 and 
Fig. 5). Weighted p value and sFDR using Eigen led to 9 and 1 traits with at least one New Discoveries (Table S2). 
Reassuringly, no data-integration methods led to more than five New Discoveries for any of the 182 traits in the 
nonsig category.

New Discoveries for the 438 traits in the z7 category. The number of New Discoveries increases as a trait’s SNP-
heritability estimate increases (Fig. 5b), and there are increased numbers of New Discoveries for the 438 traits in 
the z7 category (Table 1). This is consistent with the results by Kiachaev et al.35 who studied 27 highly heritable 
traits in the UK Biobank, which we replicated here. However, among the 27 supposedly uncorrelated traits stud-
ied by Kiachaev et al.35, we note that traits with data field 30050 (mean corpuscular hemoglobin) and 30010 (red 
blood cell (RBC) count) have phenotypic correlation of − 0.51 and genetic correlation of − 0.66, using Nealab 
co-heritability browser (see Web Resources).

Among the 438 traits in the z7 category, 380, 343 and 77 traits had at least one New Discoveries after data-
integration using, respectively, FINDOR, and weighted p value and sFDR when using CADD (Table 1 and Fig. 5). 
Weighted p value and sFDR using Eigen led to characteristically similar results (Table S2 and Figure S23).

Additionally, FINDOR and weighted p value led to more than ten New Discoveries for, respectively, 153 and 
130 traits in the z7 category. However, the two methods also led to loss of significant loci that were present in 
the baseline GWAS, resulting in similar total numbers of significant loci before and after data-integration (Fig-
ure S24).In general, FINDOR and weighted p value methods yielded similar performance, which is somewhat 
expected as FINDOR applies the weighted p value principle. Both methods have noticeably more findings than 
sFDR. This is also expected given the trade-off between power and robustness, which we explore further.

Trade‑off between New Discoveries and Recall. Figure 6a shows the Recall for the 337 traits with more than ten 
GWAS signals prior to data-integration ( m1t > 10 ), as the stability of a Recall estimate depends on m1t . For the 
795 traits with m1t ≤ 10 , instead of showing Pt/m1t , Fig. 6b contrasts Pt with m1t ; see Figure S25(A) for Recall 
of all traits and Figure S25(B) for Recall versus SNP-heritablity estimates.
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Figure 3.  The relative efficiency (RE) obtained from simulation study design III, integrating simulated GWAS 
summary statistics with simulated additional information with varying degrees of informativeness, using meta-
analysis, Fisher’s method, the weighted p value approach, and the stratified FDR control. There were 10,000 
independent SNPs, among which 100 were truly associated whose summary statistics were drawn from N(3, 1); 
the rest from N(0, 1). For the additional information available for data integration, the details of the eight 
simulation scenarios are provided in the text and illustrated in Figure S7. RE is one minus (the average ranks 
of the truly associated SNP after data-integration) divided (by their average base-line ranks using GWAS data 
alone), averaged across 1000 simulation replicates.
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It is clear that sFDR has better Recall than either FINDOR or weighted p value for the traits in the nominal, 
z4 and z7 categories. For example, for the 280 traits in the z7 category with at least one significant finding prior 
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Figure 4.  The total numbers of genome-wide significant independent loci of the UK Biobank GWAS 
application study, before and after data-integration with functional annotations, stratified by the four phenotype 
categories. In each figure, the total number of significant loci identified based on the UK Biobank GWAS data 
alone serves as a baseline. The GWAS baseline box-plot is followed by the box-plots for the total numbers of 
significant loci after integrating the UK Biobank GWAS summary statistics with functional annotations using 
FINDOR (using 75 individual annotation scores), and the weighted p value and stratified FDR control methods 
(each using the CADD meta-score), analyzing 7,895,174 variants for each of the 1132 UK Biobank traits. The 
1132 traits were rated by Nealelab as having medium to high confidence for their heritability estimates, and they 
fall into four categories: nonsig (182 traits; heritability testing p value p > 0.05 ), nominal (277 traits; p < 0.05 ), 
z4 (235 traits; p < 3.17× 10−5 ), and z7 (438 traits; p < 1.28× 10−12 ). Independent loci were defined using 
PLINK’s LDclumping algorithm with a 1 Mb window and an r2 threshold of 0.1.



7

Vol.:(0123456789)

Scientific Reports |        (2022) 12:10720  | https://doi.org/10.1038/s41598-022-14924-1

www.nature.com/scientificreports/

to data-integration, the median Recall is 97.6%, 96.8% and 100%, respectively, for the FINDOR, weighted p value 
and sFDR methods (Table S2).

The trade-off between power and robustness is also supported by results in Figure S26 (Recall of the 402 traits 
with m1,t > 5 ), and other supplementary figures including Figures S27 ( Pt versus m1t for traits with m1,t ≤ 50 ), 
Figure S28 (traits with m1,t ≤ 10 ) and Figure S22 (for all traits), as well as Figure S29 (Recall of weighted p value 
and sFDR using Eigen, instead of CADD). It is also clear that, Recall increases as a trait SNP-heritability estimate 
increases (Figure S25(B)), which was also observed for New Discoveries (Fig. 5b).

Discussion
There has been much discussion about the value of integrating functional annotations into genetic association 
 studies39–41, but theoretical evaluation and large-scale application to test this hypothesis has been  limited35. In 
addition to conducting comprehensive simulation studies, we performed a large-scale application study of all 
1132 traits in the UK Biobank, for which the SNP-heritability estimates were given “medium” or “high” labels 
by Nealelab. For each trait, we integrated GWAS summary statistics of close to 8 million common variants with 
their functional scores using three different data-integration methods: FINDOR with 75 individual functional 
scores, and weighted p value and stratified false discovery control methods with CADD (or Eigen) meta-scores.

We observed that, although the numbers of new genome-wide significant findings after data-integration 
increase as trait SNP- heritability estimates increase, there is a trade-off between new findings and loss of the 
original GWAS findings. This resulted in similar total numbers of significant findings between using GWAS 
alone and integrating GWAS with functional scores, across all 1132 traits analyzed and all three data-integration 
methods considered. A closer examination of method performance and trait heritability revealed that all methods 
performed better (more New Discoveries and higher Recall) for traits with higher estimates of SNP-heritability 
(Figs. 5B and S25(B)).

Our study used CADD and Eigen as the functional meta-score available for data-integration using weighted 
p value and sFDR. To the best our knowledge, CADD was the first meta-score in the literature and Eigen was 

Table 1.  Results of the UK Biobank application study, before and after data-integration with functional 
annotations, stratified by the four phenotype categories. The three data-integration methods integrated the 
UK Biobank GWAS summary statistics with functional annotations using FINDOR (using 75 individual 
annotation scores), and the weighted p value andstratified FDR control methods (each using the Eigen 
meta-score), analyzing 7,895,174 variants for each of the 1132 UK Biobank traits. The 1132 traits were 
rated by Nealelab having medium to high confidence for their heritability estimates, and they fall into four 
categories: nonsig (182 traits; heritability testing p > 0.05 ), nominal (277 traits; p < 0.05 ), z4 (235 traits; 
p < 3.17× 10−5 ), and z7 (438 traits; p < 1.28× 10−12 ). See Table S1 for additional results.

GWAS alone

After data-integration with functional annotation scores

75 individual scores CADD meta-score

FINDOR Weighted p value Stratified FDR

# of traits with > 0; 5; 10 significant loci

All traits 772;  402;  337 738;  420;  353 746;  408;  346 717;  403;  337

Nonsig 36;  5;  4 39;  5;  5 40;  5;  4 36;  5;  4

Nominal 110;  18,11 102;  21;  11 113;  21;  11 109;  18;  11

z4 160;  55;  42 169;  59;  45 172;  56;  43 157;  56;  42

z7 416;  324;  280 428;  335;  292 421;  326;  288 415;  324;  280

[Q1, Median, Q3] of # of significant loci across traits

All traits [0, 2, 18] [0, 2, 21] [0, 2, 20] [0, 2, 18]

Nonsig [0, 0, 0] [0, 0, 0] [0, 0, 0] [0, 0, 0]

Nominal [0, 0, 1] [0, 0, 1] [0, 0, 1] [0, 0, 1]

z4 [0, 1, 5] [0, 2, 6] [0, 1, 5] [0, 1, 5]

z7 [5, 27, 246] [6, 32, 255] [5, 27, 255] [5, 27, 246]

# of traits with > 0; 5; 10 New Discoveries

All traits NA 553;  227;  165 472;  180;  139 89;  0;  0

Nonsig NA 20;  0;  0 15;  0;  0 0;  0;  0

Nominal NA 50;  3;  1 37;  1;  0 3;  0;  0

z4 NA 103;  22;  11 77;  16;  10 9;  0;  0

z7 NA 380;  202;  153 343;  163;  130 77;  0;  0

[Q1, Median, Q3] of # of New Discoveries across traits

All traits NA [0, 0, 3] [0, 0, 2] [0, 0, 0]

Nonsig NA [0, 0, 0] [0, 0, 0] [0, 0, 0]

Nominal NA [0, 0, 0] [0, 0, 0] [0, 0, 0]

z4 NA [0, 0, 1] [0, 0, 1] [0, 0, 0]

z7 NA [1, 4, 19] [1, 3, 14] [0, 0, 0]
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Figure 5.  The total numbers of genome-wide significant independent loci of the UK Biobank GWAS application study, 
before and after data-integration with functional annotations, stratified by the four phenotype categories. In each figure, 
the total number of significant loci identified based on the UK Biobank GWAS data alone serves as a baseline. The 
GWAS baseline box-plot is followed by the box-plots for the total numbers of significant loci after integrating the UK 
Biobank GWAS summary statistics with functional annotations using FINDOR (using 75 individual annotation scores), 
and the weighted p value and stratified FDR control methods (each using the CADD meta-score), analyzing 7,895,174 
variants for each of the 1132 UK Biobank traits. The 1132 traits were rated by Nealelab as having medium to high 
confidence for their heritability estimates, and they fall into four categories: nonsig (182 traits; heritability testing p value 
p > 0.05 ), nominal (277 traits; p < 0.05 ), z4 (235 traits; p < 3.17× 10−5 ), and z7 (438 traits; p < 1.28× 10−12 ). 
Independent loci were defined using PLINK’s LDclumping algorithm with a 1 Mb window and an r2 threshold of 0.1.
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the first to use unsupervised learning approach, and both meta-scores have been shown to be superior to other 
scores in some genomic  studies22,23. However, the recent work by Li, X. et al.24 has proposed annotation-PCs, an 
alternative that warrants further investigation.

In one of our simulation studies, we permuted CADD (and Eigen) to provide a set of meta-scores that are 
independent of the GWAS summary statistics of the UK Biobank data. Although this approach is valid for exam-
ining type I error control, we were intrigued by the question of whether meta-scores of SNPs in strong LD are 
similar. To answer this question, we defined s2i,j = 1− |CADDi − CADDj|/(CADDi + CADDj) as the functional 
similarity measure between SNPs i and j. Interestingly, there was no clear concordance between s2i,j and r2 , the 
LD measure for genotype similarity (Figures S4 and S5). Additionally, there was no relationship between CADD 
and LD score (Figure S6).

Throughout this paper, we have used the default tuning parameter values, β = 2 for the weighted p value 
approach and k = 2 for the sFDR method. We did not tune the parameters to select values that lead to the ‘best’ 
results, for which valid result interpretation requires adjustment for the inherent data-dredging or selective infer-
ence. The choice of different β and k values, however, has an effect on method performance. Figure S30 shows the 
results of the full analysis of the UK Biobank application study. For the weighted p value approach, the default 
β = 2 led to the highest number of New Discoveries , but at the same time it resulted in the lowest Recall rate. For 
the sFDR method, k = 10 or 20 lead to an increased number of New Discoveries as compared with the default 
k = 2 , at the cost of slightly reduced Recall rates. Thus, unlike the previous linkage and GWAS integration setting, 
the default value of k = 2 for sFDR appears to be sub-optimal for integrating functional meta-score with GWAS.

Among the five data-integration methods, despite meta-analysis and Fisher’s method being applicable in many 
scientific settings, their applications to genetic association studies are typically restricted to combining evidence 
from multiple GWAS of the same phenotype and from the same population. This is because the statistical power 
of meta-analysis (and Fisher’s method) relies on the assumption of homogeneity beyond direction of  effect42. In 
practice, given two families of multiple tests, the underlying compositions of the null and alternative hypoth-
eses may differ, unless the two studies used the same study design including phenotype definition, genotyping 
platform, environmental exposure, and study  population43. When the truly associated SNPs do not completely 
overlap between the different studies, using random-effect (instead of fixed-effect meta-analysis) does not guar-
antee improved power, because it violates the assumption that the effect sizes come from the same distribution.

The use of meta-analysis and Fisher’s method is also questionable when zi and zi,add from the two studies offer 
different types of information. In essence, the use of weights 

√
1/vi and 

√

1/vi,add  notwithstanding, meta-analysis 
and Fisher’s method implicitly assume zi and zi,add carry ‘exchangeable’ information. For our study, however, zi is 
the genetic association summary statistic, while zi,add is the genomic annotation meta-score. Thus, meta-analysis 
and Fisher’s method are likely to be sub-optimal for the purpose of this study. However, for completeness we 
include the two classical data-integration methods in our initial method evaluation.

Compared to meta-analysis and Fisher’s method, weighted p value and sFDR are more natural choices when 
only integrating one piece of additional information (e.g. functional annotation meta scores), while FINDOR 
is more suitable when integrating a set of functional annotations. All of these integration methods only require 
summary statistics, and once functional annotations are prepared in appropriate format, all methods can compute 
millions of SNPs within a few minutes. Possible limitations of weighted p value include the difficulty of handling 
categorical additional information. This is also true for FINDOR, but can be easily handled using sFDR. The 
performances of all methods, however, are likely to be affected by different, subjective choices of groups and 
weighting schemes, and gold standard stratification and weight do not yet exist in this setting. Overall, FINDOR 
and weighted p value were similar to each other, and they led to more new discoveries for traits considered 
heritable as compared with sFDR (the traits in the nominal, z4 and z7 categories; Fig. 5), but at the cost of lower 
Recall rates (Fig. 6).

Conclusions
The classical meta-analysis and Fisher’s method are not suitable for integrating functional annotations with 
GWAS summary statistics, as calibrating evidence between the two data sources is difficult. When the functional 
annotations are truly informative, FINDOR and weighted p value methods are more powerful than sFDR, but 
sFDR is more robust to uninformative or even misleading added information. In the application to the UK 
Biobank data, none of the methods led to striking improvements. This suggests the need for more informative 
functional scores and/or new data integration methods to further improve the power of GWAS through lever-
aging variant functional annotations. It is important to note that this conclusion applies to bi-allelic common 
autosomal variants with MAF greater than 1%, which may not be generalizable to rare variants.

Potential future work include (1) leveraging cell-type-specific annotations as complex traits often exhibit 
cell-type-specific functional  enrichments44; (2) obtaining GWAS summary statistics for previously understudied 
variants e.g. in coding sequence, which tend to have higher functional effects than the variants currently studied 
as they came from the exome sequencing data of the UK  Biobank45.

Methods
The integration methods: meta‑analysis, Fisher’s method, weighted p value, and stratified 
false discovery rate (sFDR) control. Notation and set‑up. Let zi and pi be the association test statistic 
and its corresponding p value for SNP i, i = 1, ...m , from a genome-wide association study, the primary data of 
interest. Without loss of generality, we assume zi follows N(0, 1), the standard normal distribution, under the null 
hypothesis of no association between the SNP and the GWAS trait under the study.

Let zi,add and pi,add be additional information available for the SNP, based on data independent of zi and pi 
from the GWAS. Note that zi,add may or may not be normally distributed depending on the application setting, 
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e.g. zi,add can be the  CADD22 or  Eigen23 functional meta-score available for SNP i, which will be the focus of 
this study.

Meta‑analysis and Fisher’s method. For the meta-analysis approach, we first assume the best-case scenario 
where zi,add is normally distributed. We then use the inverse variance  approach46 to integrate zi and zi,add , 
Zmeta
i = (

√
1/vi zi +

√

1/vi,add zi,add)/
√

1/vi + 1/vi,add  , where the weights depend on vi and vi,add , the vari-
ance estimates associated with, respectively, the GWAS and the additional study available for data integration. 
Under the null hypothesis of no association and assuming the functional meta-score is uninformative, Zmeta

i  is 
N(0, 1) distributed.

Fisher’s method combines p values instead of the test statistics, ZFisher
i = −2(log(pi)+ log(pi,add)) . Fisher’s 

method is omnibus to directions of effect, and as a result it can be more powerful than meta-analysis when signs 
of zi and zi,add differ. Under the null that both pi and pi,add are independently Unif(0, 1) distributed, ZFisher

i  is 
χ2
df=4 distributed.

Although meta-analysis and Fisher’s method are applicable in many scientific settings, their applications 
to genetic association studies are typically restricted to combining evidence from multiple GWAS of the same 
phenotype and from the same population. This is because the statistical power of meta-analysis (and Fisher’s 
method) relies on the assumption of homogeneity beyond direction of  effect42. In practice, given two families 
of multiple tests, the underlying compositions of the null and alternative hypotheses may differ, unless the two 
studies used the same study design including phenotype definition, genotyping platform, environmental expo-
sure, and study  population43. When the truly associated SNPs do not completely overlap between the different 
studies, using random-effect (instead of fixed-effect meta-analysis) does not guarantee improved power, because 
it violates the assumption that the effect sizes come from the same distribution. However, for completeness we 
include the two classical data-integration methods in our initial method evaluation.

For a practical implementation of meta-analysis when zi,add is the CADD or Eigen meta-score, we used equal 
weights as the sample size of a functional study is not suitable. Further, we used the inverse normal transforma-
tion to re-scale zi,add while keeping the sign of the re-scaled zi,add to be the same as zi , creating the best-case 
scenario for the meta-analysis. Similarly, for a practical implementation of Fisher’s method, we use a rank-based 
transformation and let pi,add = (rank of zi,add/m ), which is also related the phred-scaled CADD and Eigen scores 
which we discuss later.

The weighted p value approach. Unlike meta-analysis and Fisher’s method, which assume zi and zi,add carry 
similar information, the weighted p value  approach27 treats zi and zi,add differently. That is, the method consid-
ers zi and pi as the primary data of interest, and it transforms zi,add to wi , a weight to be applied to pi . Thus, the 
weighted p value approach is an attractive method for this study setting, where the primary data are GWAS sum-
mary statistics, and the additional information available are genomic functional scores derived independently 
from the GWAS of interest.

For a valid weighted p value implementation, the wi ’s must satisfy two conditions: wi ≥ 0 and 
w̄ =

∑

wi/m = 127. To transform zi,add to wi
30, studied two possible weighting schemes: exponential, 

wi = m(exp(β × zi,add)/
∑

i exp(β × zi,add)) , and cumulative,

where � is the cumulative distribution function of the standard normal. In either case,

Here we choose the cumulative weighting scheme, with the recommended default value of β = 230. This is because 
the exponential weighting scheme is highly sensitive to large values of zi,add , which is the case here; functional 
meta-scores can be as large as  8022.

Stratified false discovery rate (sFDR) control. Unlike the weighted p value approach that up- or down-weights 
each SNP according to its external information zi,add , the sFDR method separates the GWAS SNPs into different 
groups based on zi,add , which can be categorical or  continuous28. When zi,add is continuous, it has been shown 

(1)wi = m
�(zi,add − β)

∑

i �(zi,add − β)
,

(2)pi,weighted = min

{

pi

wi
, 1

}

.

Figure 6.  Results of the UK Biobank GWAS application study, before and after data-integration with functional 
annotations, stratified by the four phenotype categories. (a) Recallt = TPt/m1,t , where m1,t is the number 
of genome-wide significant independent loci prior to data-integration for trait t, and TPt is the number of 
true positives after data-integration. Recall estimation is not stable when m1,t is small so for m1,t ≤ 10 , (b) 
contrasts the number of significant loci preserved after data-integration with m1,t . The three data-integration 
methods integrated the UK Biobank GWAS summary statistics with functional annotations using FINDOR 
(using 75 individual annotation scores), and the weighted p value andstratified FDR control methods (each 
using the CADD meta-score), analyzing 7,895,174 variants for each of the 1132 UK Biobank traits. The 1132 
traits were rated by Nealelab having medium to high confidence for their heritability estimates, and they fall 
into four categories: nonsig (182 traits; heritability testing p > 0.05 ), nominal (277 traits; p < 0.05 ), z4 (235 
traits; p < 3.17× 10−5 ), and z7 (438 traits; p < 1.28× 10−12 ). Independent loci were defined using PLINK’s 
LDclumping algorithm with a 1 Mb window and an r2 threshold of 0.1.

▸
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that categorizing zi,add does not necessarily result in loss of power, as the additional information available are 
unlikely to be precisely  informative5. In addition, sFDR is robust to the situation when zi,add is uninformative 
(i.e. random) or possibly misleading.

To implement sFDR in our setting where zi,add is the continuous functional meta-score, without loss of 
generality, we first stratify GWAS SNPs into two groups based on whether their meta-scores are among the top 
five percent or not, irrespective of zi and pi , the GWAS summary statistics. (The choice of the number of groups 
and thresholds, however, is subjective, similar to choosing the weighting scheme and β value for the weighted p 
value approach above.) As a result, there are two groups of GWAS SNPs, where group 1 contains 5% of the GWAS 
SNPs with the highest functional meta-scores and group 2 contains the remaining SNPs. It is worth emphasizing 
that group 1 is only presumed to be the high-priority group, as the stratification is based on genomic zi,add alone, 
independent of the GWAS zi or pi.

We then apply FDR control, separately, to the two groups of GWAS p values, but using the same pre-specified 
FDR γ % level. Following the sFDR method of Sun, L. et al.28, for each group of SNPs we first transform their 
GWAS p values, pi’s, to q-values, qi’s47, and we then reject the SNPs with qi < γ %; this sFDR procedure controls 
the overall FDR at the γ % level. Although sFDR does not explicitly use weights, group-specific weights can be 
 derived5.

Let mk be the number of SNPs in group k, and let π(k)
0  be the proportion of null SNPs in the group. Within 

each group, we obtain q-values  recursively47, qi = min{π̂ (k)
0 m(k)p(i)/i, qi+1}, where p(1) ≤ · · · ≤ p(i) ≤ · · · ≤ p(m) 

are the ordered GWAS p values, and the procedure starts from q(m) = π̂0p(m) . To obtain π̂0 , we choose the com-
monly used conservative  estimate48, π̂0 = {the number of SNPs with pi > 0.5}/{0.5m(k)}.

After rejecting SNPs with qi < γ % separately for each group of SNPs, let α(k) be the maximum GWAS p values 
among the rejected SNPs for group k, the group-specific weight is,

We can then obtain sFDR weighted p values,

If group 1 has no rejections at the pre-specified FDR γ % level, we set w(1) = 0 and w(2) = m/m(2) . Similarly, if 
group 2 has no rejections, w(1) = m/m(1) and w(2) = 0 . If both groups have no rejections at the γ % level, then 
w(1) = w(2) = 1 . That is, the study is reduced to the unweighted case.

The sFDR group-specific weights, w(k)’s, satisfy the constraints imposed by the weighted p value  approach27, 
and they have been shown to be a robust version of the SNP-specific wi’s5. If the additional information is truly 
informative, w(1) > 1 while w(2) < 1 , and they can be considered as dichotomized wi ’s of the weighted p value 
approach. In that case, the weighted p value approach is more powerful than sFDR. On the other hand, if the 
information is just random noise, w(1) ≈ w(2) ≈ 1 for sFDR, while the weighted p value method still up- or 
down-weights the GWAS p values according to the SNP-specific wi’s, which are proportional to the observed 
zi,add’s. In the event of misleading information, w(1) < 1 while w(2) > 1 even though group 1 was presumed to be 
the high-priority group. Thus, sFDR is robust to uninformative or even misleading added information.

The UK Biobank GWAS summary statistics for 1132 complex traits. We obtained the UK Biobank 
GWAS round 2 summary statistics from Nealelab (Web Resources). Nealelab performed association studies 
for 4236 complex traits using regression model with additively coded genotype, as well as age, sex and the first 
20 principal components as covariates. For each of these traits, Nealelab also applied the LD-score regression 
 method38 to estimate the SNP-heritability, which ranges from 0 to 48%.

In addition to testing if the SNP-heritability is 0%, Nealelab also provided a confidence level (“low”, “medium” 
or “high”) to the heritability inference for each trait. Thus, we restricted our analysis to the 1132 traits denoted 
with “medium” or “high” confidence labels, which were primarily based on the effective sample sizes > 20,000 . 
Of the 1132 traits analyzed, 531 are continuous and 601 are binary traits. For a binary trait, the effective sample 
size depends on the number of cases or controls; see Figure S31 for a histogram of the case rates for the 601 
binary traits. Nealelab then classified these 1132 traits into four categories: nonsig (182 traits with SNP-herit-
ability testing p value p > 0.05 ), nominal (277 traits; p < 0.05 ), z4 (235 traits; p < 3.17× 10−5 ), and z7 (438 
traits; p < 1.28× 10−12 ), where the nonsig category can serve a negative control for the purpose of this study. 
Figure S32 contrasts the heritability h2g estimates of the 1132 traits with their SNP-heritability testing z-values.

The UK Biobank GWAS results of Nealelab were derived from n = 361,194 individuals of white-British 
ancestry and 10.9 million variants that passed a set of quality control (QC) steps; see Web Resources for the 
detailed QC steps performed by Nealelab. Our data-integration analysis focused on m = 7,895,174 common 
bi-allelic autosomal SNPs. We excluded indel variants because their functional meta-scores are unavailable. We 
additionally excluded X-chromosomal variants because their functional annotations are not always available and 
the association testing may not be  optimal49. Lastly, we excluded SNPs with minor allele frequency (MAF) less 
than 1%, as joint analysis of multiple rare variants  simultaneously50 is beyond the scope of our study.

CADD and Eigen functional meta‑scores. We obtained the CADD meta-scores (v1.6), using the CADD 
 tool51, and the Eigen meta-scores (v1.0), using the ANNOVAR  tool52, for all the 7,895,174 common, bi-allelic 
autosomal SNPs.

(3)w(k) = m
α(k)

∑

k α
(k)m(k)

.

(4)pi,sFDR = min{ pi

w(k)
, 1}.
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In addition to the raw CADD meta-scores, the CADD tool also made available rank-based scores called 
phred scores,

the phred-scaled scores are positive and have better interpretation compared to the raw scores. For example, a 
phred score of 10 or greater indicates that the SNP is predicted to be among the top 10% most deleterious variants 
of the human genome, while a phred score 20 or greater implies top 1% most deleterious.

For consistency between CADD and Eigen, we similarly obtained phred-scaled Eigen scores. Figure S33 in 
Supplementary Information shows the histograms of CADD and Eigen phred-scaled scores; each is expected 
to be 2.17χ2

2  distributed, because the ranks of the raw scores/the total number SNPs are Unif(0,1) distributed, 
and −2 log(Unif(0,1)) is χ2

2  distributed; hereafter scores mean phred-scaled scores unless specified otherwise.
Because Eigen scores were calculated using an unsupervised learning approach, in contrast to CADD scores 

inferred using labeled data, we also compared these two scores genome-wide (Figure S34) and across four dif-
ferent consequence categories (Figure S35): missense, non-coding, synonymous, and protein truncating variants 
(PTV). Variants in in the missense and PTV categories tend to have higher CADD than Eigen scores, while 
variants in the non-coding and synonymous categories tned to have higher Eigen than CADD scores. However, 
overall the two meta-scores are consistent and led to qualitatively comparable data-integration results, which 
we discuss next.

Simulation study design I, leveraging the observed genomic data. Here we used the real CADD 
and Eigen functional meta-scores, combined with simulated GWAS summary statistics, to evaluate type I error 
control of the data-integration methods examined.

Simulated GWAS summary statistics under the null of no association combined with real functional annotation 
scores. To simulate GWAS summary statistics that contain realistic LD patterns, we utilized the publicly avail-
able genotype data of the 1000 Genomes  Project53. Independent of the observed genotype data, we simulated 
trait values, from N(0, 1), for 1756 individuals from the 1000 Genomes Project who are unrelated to each  other54. 
We examined 422,923 autosomal, bi-allelic and common ( MAF > 5% ) SNPs that (a) passed the quality control 
conducted by Rosilin, N.M. et al.54, (b) have CADD and Eigen meta-scores available, and (c) have the 75 annota-
tions used by FINDOR.

We then obtained GWAS summary statistics for the 422,923 SNPs by regressing the trait values of the 1,756 
individuals on their additively coded genotypes. Because the trait values were randomly generated, independent 
of the genotypes and populations, the resulting GWAS zi ’s are N(0, 1) distributed and pi ’s Unif(0,1) distributed, 
as expected under the null of no association; the histograms of zi ’s and pi ’s from one randomly selected simula-
tion run are shown in Figure S36.

Finally, we integrated the GWAS summary statistics with their corresponding CADD (or Eigen) meta-scores 
using the four methods, meta-analysis, Fisher’s method, weighted p value, and sFDR control as described above. 
Although Kichaev, G. et al.35 showed that FINDOR calibrates well when a GWAS consists of a mixture of null 
and associated SNPs, we also examined the performance of FINDOR in this setting when all GWAS SNPs are 
under the null hypothesis of no association. We applied the FINDOR tool using the same set of LDscores and 
the 75  annotations37 that were used by Kichaev, G et al.35 for their study; see Web Resources.

Method evaluation: family‑wise error rate (FWER). For each simulation replicate (i.e. a GWAS simulated under 
the null of no association combined with real functional scores), we obtained the number of false positives using 
the conservative Bonferroni corrected significance level, α = 0.05/422923 = 1.2× 10−7 . We repeated the simu-
lation, independently, 50,000 times, and calculated the FWER as the proportion of the number of replicates with 
at least one significant finding. Assuming the true FWER is 0.05, we expect the FWER estimate obtained from 
the 50,000 independent simulation replicates to have a standard error of 

√
0.05× 0.95/50000 ≈ 0.001 . Thus, a 

method with an empirical FWER outside [0.047, 0.053] can be considered inaccurate.

Simulation study design II, leveraging the observed genetic data. Here we combined the 
observed UK Biobank GWAS summary statistics with permuted CADD (or Eigen) scores to evaluate robustness 
of a method to random annotation scores. Prior to the permutation, we examined the similarity of functional 
annotations between SNPs in linkage disequilibrium.

Permuted functional annotation scores combined with real GWAS summary statistics. Permutation does not 
preserve the potential correlation between functional scores of nearby SNPs. However, for the purpose of evalu-
ating type I error control, it provides a valid set of annotation scores that are independent of the GWAS summary 
statistics. Nevertheless, we examined if SNPs in strong LD have similar annotation scores, as this has not been 
previously studied.

Using CADD as an example, let CADDi and CADDj be the annotation scores of SNPs i and j, respectively. We 
first defined a pair-wise similarity measure as s2i,j = 1− |CADDi − CADDj|/(CADDi + CADDj) . The measure s2i,j 
is bounded between 0 and 1, where 1 means two scores are identical whereas a value close to 0 suggests a lack of 
similarity. We then contrasted s2i,j with r2i,j , the traditional LD measure of genotype similarity between two SNPs.

After we permuted the functional scores of the 7,895,174 common, bi-allelic autosomal SNPs, for each of the 
1132 traits of the UK Biobank data, we integrated the GWAS summary statistics with the permuted annotation 
scores, using meta-analysis, Fisher’s method, weighted p value, and sFDR control. We were not able to evaluate 

−10 log10(ranks of the raw scores/the total number SNPs);
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FINDOR here, because FINDOR implements the LD SCoring (LDSC)  tool38 and the validity of using LDSC for 
permuted annotation is not clear.

Method evaluation: Recall, Precision and FDR. Before data integration, we first used α = 5× 10−855 to identify 
genome-wide significance findings, m1,t , for each trait t, t = 1, . . . , 1132 , based on the UK Biobank summary 
statistics alone. For the purpose of this simulation study, we treated m1,t as the total number of truly associated 
SNPs to be discovered after data-integration for trait t. In addition to counting the number of significant SNPs 
per GWAS, we also counted the number of independent, significant loci. We first defined independent loci using 
the LDclumping algorithm of PLINK (v1.07)56, with a sliding window of 1 Mb and a LD r2 threshold of 0.1 as 
per standard practice. We then considered a locus significant if it contained at least one genome-wide significant 
SNP.

After integrating the UK Biobank GWAS summary statistics with permuted functional scores for each 
trait t, we used the same α = 5× 10−8 to identify genome-wide significance findings (SNPs or loci as defined 
above), denoted as Pt . Among the Pt positives, we defined false positives, FPt , as the new findings that were not 
part of m1,t , because the information used here for data integration were random noise. Similarly, we defined 
TPt = Pt − FPt as the number of true positives for trait t.

Finally, we defined and calculated recall, precision and false discovery rate by

Recall is conceptually the same as Power, defined later for our simulation studies where the ground truth is known 
and m1,t SNPs were simulated as truly associated SNPs. We calculated Recallt only when m1,t > 0 . That is, for the 
409 out 1132 traits with no GWAS significant findings before data-integration (i.e. m1,t = 0 ) we did not calculate 
Recallt . Regardless of whether m1,t = 0 or not, for traits with no significant findings after data-integration (i.e. 
Pt = 0 ) we conservatively defined Precisiont = 1 and FDRt = 0.

Simulation study design III, varying the informativeness of genomic information. To further 
investigate method performance in the presence of completely informative, partially informative, uninformative, 
or even misleading added information, we performed an additional set of simulation studies. Although LD is an 
important aspect of GWAS, given the simulation study designs I and II and our findings in the results section, 
the simulation studies here focused on independent SNPs to delineate other potentially influencing factors.

Without loss of generality, we assumed the total number of SNPs m = 10,000 , among which the first m1 = 100 
SNPs are truly associated. The corresponding summary statistics zi ’s were drawn, independently, from N(µ1, 1) 
for the m1 associated SNPs, and from N(0, 1) for the remaining null SNPs. The top left plot in Figure S7 shows 
the Manhattan plot for one simulated GWAS replicate with µ1 = 3 ; we also varied µ1 from 0.1 to 4 to represent 
different power scenarios of a GWAS.

We then assumed zi,add ’s as the additional information available, which were drawn, independently, from 
N(µadd , 1) for the madd SNPs and from N(0, 1) for the remaining SNPs. Importantly, the locations of the madd 
SNPs may differ from those of the m1 associated SNPs. That is, the additional information available for a truly 
associated SNP may be random noise. On the other hand, for a null SNP with no association (i.e. zi drawn from 
N(µ1, 1) ), its zi,add could be drawn from N(µadd , 1) , representing misleading information. We also varied µadd , 
which may or may not be the same as µ1.

Using m1 = 100 and µ1 = 3 as an example for the GWAS component, we considered the following eight 
scenarios for the additional information available for data integration (Figure S7), which fall into four categories.

• Category I is completely informative (homogeneity): (1) madd = 100 , µadd = 3 , and locations of the madd 
SNPs perfectly match those of m1 GWAS truly associated SNPs.

• Category II is partially informative: (2) madd = 100 and µadd = 1.5 ; (3) madd = 50 and µadd = 3 ; (4) 
madd = 50 , µadd = 1.5 , and all madd SNPs coincide with (some of) the m1 SNPs.

• Category III is (partially or completely) misleading: (5) madd = 100 and µadd = 3 ; (6) madd = 100 and 
µadd = 1.5 , but in both scenarios only 50 out of the madd SNPs coincide with 50 of the m1 SNPs. And (7) 
madd = 100 and µadd = 3 , but none of the madd SNPs coincide with the m1 SNPs.

• Category IV is uninformative: (8) madd = 0 and µadd = 0 . That is, the additional information available is 
white noise.

For each of the eight scenarios, we simulated 1000 data replicates, independently of each other. For each replicate, 
we applied the four data-integration methods that are suitable for this simulation study, namely meta-analysis, 
Fisher’s method, weighted p value, and sFDR control. Finally, we evaluated the methods using various perfor-
mance measures, which we describe below.

Method evaluation: power and relative efficiency (RE). We first used the Bonferroni corrected threshold to 
declare significance, p value < 0.05/10000 = 5× 10−6 . Let Prept be the number of positives for each of the 1000 
simulation replicates after data-integration, we defined power as

Recallt =
TPt

m1,t
, Precisiont =

TPt

Pt
and FDRt = 1− Precisiont =

FPt

Pt
.

Powerrept =
Prept
m1

,
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the proportion of the truly associated GWAS SNPs that were found after data-integration, which is similar to 
Recallt defined earlier in simulation study design I.

As the Bonferroni approach can be conservative, we explored two alternative decision rules: fixed-region 
and fixed-FDR rejections. The fixed-region rule rejected the top k SNPs (e.g. k = 100 ), while the fixed-FDR rule 
rejected SNPs by controlling FDR at γ% level (e.g. γ% = 5% ). For each rejection rule, we then calculated power 
of a method as described above.

Finally, we considered ranked-based relative efficiency as a performance measure. To this end, we first ranked 
all the truly associated m1 SNPs based on the GWAS summary statistics alone, denoted as Rbaseline . After data-
integration, we use Rmethod to denote the ranks of the m1 SNPs based on their Zmeta , ZFisher , pweighted , and psFDR 
values. Finally, after averaging Rbaseline and Rmethod across the m1 SNPs and across the 1000 simulated replicates, 
we defined relative efficiency as

A positive REmethod value means the truly associated m1 SNPs are ranked higher, on average, after data-integration 
using the method; a REmethod value of zero means that the date-integration method did not improve performance; 
and a negative REmethod value suggests that the data-integration effort was counter-productive.

Integrating UK Biobank GWAS summary statistics with functional annotations. We studied 
all 1132 UK Biobank traits for which the confidence for their heritability inference was considered “medium” 
or “high” by Nealelab. For each trait, we analyzed the 7,895,174 autosomal SNPs that are bi-allelic and common 
(MAF > 5% ), integrating their GWAS summary statistics with the CADD (or Eigen) meta-scores using the 
weighted p value and sFDR methods. We excluded meta-analysis and Fisher’s method from the analysis here, 
because severe robustness issues (to partially informative, uninformative, or misleading zi,add ) were found in 
simulation studies; see results for details. For comparison, we also applied FINDOR using the set of 75 publicly 
available annotations recommended by the authors; see Web Resources.

To summarize the application results, we first counted the numbers of independent, significant loci (at the 
5× 10−8 level) identified before and after data-integration for each of the 1132 traits, stratified by the four trait 
categories (nonsig, nomimal, z4, and z7). We then calculated Recall, the proportion of the initial GWAS findings 
that were retained after data-integration, as previously defined for the simulation studies. Finally, we used New 
Discoveries to represent the number of new genome-wide significant findings at the 5× 10−8 level.

Data availibility
All codes used for data analyses and simulation studies are open-resource at https:// github. com/ jianh uig/ Integ 
rate- gwas//# readme. Data used in this work are GWAS summary statistics and functional annotation scores, 
which are all publicly available: UK Biobank GWAS summary statistics from Nealelab, http:// www. neale lab. is/ 
uk- bioba nk. UK Biobank SNP-heritbability estimates from Nealelab, https:// neale lab. github. io/ UKBB_ ldsc/. 
The 1000 Genome Projects, http:// tcag. ca/ tools/ 1000g enomes. html. CADD(v1.6) , https:// cadd. gs. washi ngton. 
edu. Eigen (v1.0) through ANNOVAR software, http:// annov ar. openb ioinf ormat ics. org/ en/ latest/ user- guide/ 
filte r/# eigen- score- annot ations. FINDOR, https:// github. com/ gkich aev/ FINDOR. Nealab co-heritability browse, 
https:// ukbb- rg. hail. is/ rg_ brows er/.
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