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Induction of apoptosis in myeloid leukaemic cells by
ribozymes targeted against AML1/MTG8

H Matsushita 1, M Kizaki 1, H Kobayashi 2, A Muto 1 and Y Ikeda 1

1Division of Haematology, Keio University School of Medicine, Tokyo; and 2Department of Laboratory Medicine, National Defense Medical College, Saitama,
Japan

Summary The translocation (8;21)(q22;q22) is a karyotypic abnormality detected in acute myeloid leukaemia (AML) M2 and results in the
formation of the chimeric fusion gene AML1/MTG8. We previously reported that two hammerhead ribozymes against AML1/MTG8 cleave this
fusion transcript and also inhibit the proliferation of myeloid leukaemia cell line Kasumi-1 which possesses t(8;21)(q22;q22). In this study, we
investigated the mechanisms of inhibition of proliferation in myeloid leukaemic cells with t(8;21)(q22;q22) by ribozymes. These ribozymes
specifically inhibited the growth of Kasumi-1 cells, but did not affect the leukaemic cells without t(8;21)(q22;q22). We observed the
morphological changes including chromatin condensation, fragmentation and the formation of apoptotic bodies in Kasumi-1 cells incubated
with ribozymes for 7 days. In addition, DNA ladder formation was also detected after incubation with ribozymes which suggested the induction
of apoptosis in Kasumi-1 cells by the AML1/MTG8 ribozymes. However, the ribozymes did not induce the expression of CD11b and CD14
antigens in Kasumi-1 cells. The above data suggest that these ribozymes therefore inhibit the growth of myeloid leukaemic cells with
t(8;21)(q22;q22) by the induction of apoptosis, but not differentiation. We conclude therefore that the ribozymes targeted against AML1/MTG8
may have therapeutic potential for patients with AML carrying t(8;21)(q22;q22) while, in addition, the product of the chimeric gene is
responsible for the pathogenesis of myeloid leukaemia.
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The t(8;21)(q22;q22) translocation is one of the specific chro
some translocations which exists in 7–17% of the cases with 
myeloid leukaemia (AML) and is usually classified as AML M
according to the French–American–British (FAB) classificat
criteria (Koeffler, 1987; Schiffer et al, 1989; Tashiro et al, 199
This translocation results in the formation of the AML1/MTG8
chimeric fusion gene, which has a 5′ portion of the AML1 gene on
chromosome 21 which is fused almost to the entire MTG8 gene,
also called ETO gene, on chromosome 8 (Erickson et al, 19
Miyoshi et al, 1993).

The AML1 is a member of transcriptional factors which cont
a region of homology to the Drosophila pair-rule gene, runt
(Miyoshi et al, 1993). The runt homology domain is respons
for heterodimerization with core binding factor β (CBFβ) (Lenny
et al, 1995) and specific binding to the sequence TGT/cG
which is the enhancer core motif (Meyers et al, 1993). Sev
target genes for AML1 have been identified such as neutro
elastase, myeloperoxidase, GM-CSF, IL-3, M-CSF receptor
TCRβ enhancer (Cameron et al, 1994; Nuchprayoon et al, 1
Zhang et al, 1994, 1996; Frank et al, 1995; Meyers et al, 1
Takahashi et al, 1995). AML1 has been found to transactivat
regulatory segments of each of these genes. Three represe
forms of proteins, AML1a, AML1b and AML1c, are produc
from the AML1 gene by alternative splicing (Miyoshi et al, 199
AML1a and AML1b are thought to regulate haematopoi
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myeloid cell differentiation and transcriptional activation anta
nistically (Tanaka et al, 1995). The function of the AML1 prot
is regulated by extracellular signal-regulated kinase (ERK
member of the mitogen-activated protein kinases through p
phorylation (Tanaka et al, 1996). An in vivo study revealed 
mice lacking AML1 are embryonically lethal without myeloid o
erythroid progenitors originating from definitive haematopoie
(Okuda et al, 1996; Wang et al, 1996). These data indicate
AML1 is one of the essential transcriptional factors for the de
tive haematopoiesis of all types of cell lineage.

AML1/MTG8 chimeric protein shares structural features w
these genes and also demonstrates the runt homology do
(Miyoshi et al, 1993). AML1/MTG8 is thought to interfere with
AML1b-dependent transcriptional activation as a dominant n
tive protein (Meyers et al, 1993, 1995). The antisense o
nucleotide targeted against AML1/MTG8 fusion transcript
inhibited the growth of the AML cell lines with t(8;21)(q22;q2
(Sakakura et al, 1994). Therefore, AML1/MTG8 chimeric fus
protein is considered to play an important role in the leukaem
nesis of acute myeloid leukaemia with t(8;21)(q22;q22).

Hammerhead ribozymes are one of the useful tools for
specific inhibition of gene expression (Haseloff and Gerlach, 19
They are oligoribonucleotides with sequence-specific cleav
activity of target RNA and can be designed to cleave any tripl
NUX (N = any nucleotide, X = A, C or U) (Koizumi et al, 1988
One molecule of ribozyme can cleave a plural number of ta
RNAs by repeating the catalytic cycle. Therefore ribozymes
thought to be more effective than antisense oligonucleotide
suppress the expression of the target genes (Homann et al, 19

We have designed two hammerhead ribozymes ag
1325
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Figure 1 Structures of two hammerhead ribozymes Rz1 and Rz2 targeted against AML1/MTG8, and unrelated scramble ribozyme (ScRz). These
hammerhead ribozymes were designed based on the model of Haseloff and Gerlach (1988). Rz1 cleaves the CUC sequence located three bases upstream
from the break point and Rz2 cleaves the AUC sequence located three bases downstream from the breakpoint. These two hammerhead ribozymes specifically
cleaved the AML1/MTG8 substrate in a cell-free system, as expected (Matsushita et al, 1995). ScRz has random nucleotides in 3′- and 5′-complementary arms,
and thus it was not able to cleave the AML1/MTG8 substrate. ‘N’ means any nucleotides
AML1/MTG8 which specifically cleaved the AML1/MTG8
substrate in a cell-free system and also inhibited the growt
Kasumi-1 cells, an AML cell line with t(8;21)(q22;q22
(Matsushita et al, 1995). The purpose of this report is to disc
the mechanism of growth inhibition of AML cells wit
t(8;21)(q22;q22) by these ribozymes. We herein demonstrat
the first time that ribozymes can inhibit the proliferation 
myeloid leukaemic cells by the induction of apoptosis, but 
differentiation.
 and

British Journal of Cancer (1999) 79(9/10), 1325–1331
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MATERIALS AND METHODS

Cells and chemicals

The myeloid leukaemic cell line Kasumi-1 established from
patient with AML M2 carrying t(8;21)(q22;q22) was a genero
gift of Dr N Kamada (Hiroshima University, Horoshima, Jap
(Asou et al, 1991). The other human myeloid leukaemic cell l
used in this study were HL-60, KG-1, NB4 (a gift from Dr 
Lanotte, Hôpital St. Louis, Paris, France) (Lanotte et al, 1991)
© Cancer Research Campaign 1999
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Kasumi-1

HL-60

KG-1

NB4

U937

UF-1

0 20 40 60 80 100 120 140

OD570mm/OD570mm control × 100 (%)

control

Rz1

Rz2

Figure 2 Inhibitory effect on myeloid leukaemia cell lines by Rz1 and Rz2.
Cells (2 × 104) were incubated with 4 µg of ribozymes (Rz1 or Rz2), 0.75 µg
of DOTAP and 40 U of rRNasin in 100 µl of Opti-MEM I Reduced Serum
medium. After 12 h, 100 µl of RPMI 1640 medium containing 20% FBS were
added to the culture medium. Then 100 µl of supernatant was replaced by an
equal amount of RPMI 1640 medium containing 10% FBS, 4 µg of
ribozymes, 0.375 µg of DOTAP and 20 U of rRNasin each day. Cell growth
was evaluated with an MTT assay after a 5-day incubation. The results are
expressed as the percentage of OD570 nm in various cell lines treated with
ribozymes compared with control cultured with only DOTAP in each cell line
UF-1 (established in our laboratory) (Kizaki et al, 1996) cells. 
cells were all maintained in RPMI 1640 medium (GIBCO-BR
Gaithersburg, MD) with 10% fetal bovine serum (FB
(Cytosystems, New South Wales, Australia), 100 U ml–1 penicillin
and 100µg ml–1 streptomycin in a humidified atmosphere w
5% CO2. All- trans-retinoic acid (RA) was purchased from t
Sigma Chemical Co. (St. Louis, MO), and dissolved in 10
ethanol to stock concentration of 1 mM, stored at –20°C and
protected from light.

Production of ribozyme

The designs of ribozymes targeted against AML1/MTG8, Rz1 and
Rz2, are illustrated in Figure 1. We also designed scra
ribozyme (ScRz) which has random ribonucleotides in 3′- and
5′-complementary arms (Figure 1). Rz1, Rz2 and ScRz 
produced by in vitro transcription as described previo
(Matsushita et al, 1995). Briefly, the template cDNA for Rz1 is′-
GAG AAC CTT TCG ACC TCA CGG TCT CAT CAG GAA ATC
GTA CCC TAT AGT GAG TCG TAT TAC ATG-3′, that for Rz2 is
5′-CCT CGA AAT TTC GTC CTC ACG GAC TCA TCA GGT
ACT GAG CCC TAT AGT GAG TCG TAT TAC ATG-3′ and that
for ScRz is 5′-NNN NNN NNT TTC GTC CTC ACG GAC TCA
TCA GNN NNN NNN CCC TAT AGT GAG TCG TAT TAC ATG-
3′. They were mixed with the other oligodeoxynucleotide, 5′-CAT
GTA ATA CGA CTC ACT ATA GGG-3′, to form a hemiduplex
and then they were incubated at 37°C for 4 h in a 200-µl volume
containing 6 mM MgCl2, 2 mM each of ATP, GTP, CTP and UT
(Boehringer Mannheim, Indianapolis, IN), 240 U of rRNa
(Promega, Madison, WI, USA), 1000 U of T7 RNA polymer
and buffer for T7 RNA polymerase (New England Biola
Beverly, MI, USA). After incubation with 20 U of RQ1 RNase-fr
DNase (Promega) at 37°C for 15 min, phenol–chloroform extra
tion and ethanol precipitation was performed. The produ
ribozyme was resuspended in DEPC-treated water and the
concentration was checked with a spectrophotometer.
© Cancer Research Campaign 1999
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Ribozyme transfection into various leukaemic cells
with lipofection

Ribozymes were transfected into various myeloid leukaemia
lines with DOTAP (Boehringer Mannheim) for 5 days as descri
(Matsushita et al, 1995).

Assays for cellular proliferation

The cells were incubated for 5 days with and without ribozy
(Rz1, Rz2 and ScRz) in a 96-well plate (Flow Laboratories, Irv
CA, USA). Twenty microlitres of MTT (5µg ml–1) were added to
each well. The reaction was stopped after 4 h of incubation by ad
100µl of 0.04 N HCl in propranol and then the OD570was measured

Detection of target RNA cleavage by ribozymes

This quantification of cleavage activity by ribozymes was base
the modified method by Leopold et al (1995). Briefly, UF-1 ce
(1 × 106) which carry t(15;17) were added to various amou
(0–5 × 103) of Kasumi-1 cells carrying t(8;21). Two hundred mic
grams of ribozymes with 37.5µg of DOTAP and 2000 U o
rRNasin in 5 ml of Opti-MEM I Reduced Serum Medium (GIBC
BRL) were added and incubated at 37°C for 12 h, and then 5 ml o
RPMI 1640 medium with 20% FBS was added and incubate
37°C for a further 12 h. The cells were then harvested, and the
RNA was isolated with Isogen (Nippongene, Toyama, Japan)
1 µg of RNA was then applied to the reverse transcription-p
merase chain reaction (RT-PCR). RT was performed 
Superscript II (GIBCO-BRL) and random primers; pd(N)6 (Tak
Shuzo, Shiga, Japan) at 37°C for 60 min. PCR was performed wit
Taq Polymerase (Perkin-Elmer Cetus, Norwalk, CT, USA). 
thermal condition of PCR was as follows: precycle at 94°C for 5
min followed by 40 cycles at 94°C for 1 min, 60°C for 1 min and
72°C for 1 min. The primers for the amplification of AML1/MTG8
were 4S [5′-GAC CAT CAC TGT CTT CAC AA-3′, residue 2022
to 2041 in AML1 (Miyoshi et al, 1993)] and 5R [5′-GTC TTC ACA
TCC ACA GGT GA-3′, residue 2143 to 2162 in MTG8 (Miyoshi et
al, 1993)] which was used in our previous study (Muto et al, 19
The β-actin gene was amplified with Human β-Actin Control
Amplimer Set (Clontech, Palo Alto, CA, USA) as an inter
control. The PCR products were electrophoresed in 3% agaro
and subsequent Southern blot analysis was performed with the
3′-oligolabelling and detection systems (Amersham, UK). T
probe sequence for the AML1/MTG8 junction site was 8P (Muto e
al, 1996) [5′-CGA GAA CCT CGA AAT CGT ACT GAG A-3′,
residue 2098 in AML1 to 2122 in MTG8 (Miyoshi et al, 1993)]. The
density of the signals on the autoradiographs were analysed
Digital Densitorol DM-303 (Advantec Toyo, Tokyo, Japan).

Detection of DNA ladder formation in Kasumi-1 cells by
ribozymes

After incubation with ribozymes for 7 days, Kasumi-1 cells w
washed with PBS twice and then DNA was extracted by in
bating with 100µl of buffer which includes 10 mM Tris-HCl
(pH 7.4), 0.5M EDTA (pH 8.0) and 0.5% Triton X-100 at 4°C for
10 min. After centrifugation, the supernatant was transferred in
new tube and incubated at 37°C for 1 h with 40µg of RNase A
(Sigma), and for a further hour with 40µg of Proteinase K
(Sigma). Ethanol precipitation was performed and resuspe
British Journal of Cancer (1999) 79(9/10), 1325–1331
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Figure 3 Decreased expression of AML1/MTG8 mRNA in ribozyme-treated
Kasumi-1 cells. Kasumi-1 cells (0–5 × 103) were mixed with UF-1 cells
(1 × 106), a myeloid leukaemia cell line without t(8;21), in 5 ml of Opti-MEM I
Reduced Serum medium. The cells were transfected with 200 µg of
ribozymes, 37.5 µg of DOTAP and 2000 U of rRNasin. After 12 h incubation
at 37°C, 5 ml of RPMI 1640 medium with 20% FBS was added to the
medium and incubated for more 12 h. Thereafter, 1 µg of RNA was applied to
RT-PCR performed with Superscript II and random primers, and a
subsequent Southern blot analysis were performed. Expression of
AML1/MTG8 transcript relative to β-actin in each corresponding lane was
determined by densitometer

Control ScRz Rz 1

Kasumi-1

HL-60

NB4

U937

Figure 4 Morphological changes of ribozyme-treated Kasumi-1, HL-60,
NB4 and U937 cells. Cells were incubated with ribozymes (Rz1 and Rz2)
and scramble ribozyme (ScRz) as a control for 7 days. Giemsa staining was
performed after cytospin (original magnification, × 1000)

Figure 5 Effects of ribozymes against AML1/MTG8 chimeric transcript and
ScRz on apoptosis in Kasumi-1 cells. Kasumi-1 cells were treated with
ribozymes (Rz1 and Rz2), ScRz or DOTAP alone (control) up to 7 days. The
percentage of cells exhibiting morphological characteristics of apoptosis was
determined on cytospin slides stained with Giemsa
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with TE buffer. Purified DNA was labelled with 32P-dCTP and
labelled DNA was then electrophoresed in 1.8% agarose gel (
1992). The gel was then dried on 3MM Whatman paper and th
after autoradiography was performed.

Assays for cellular differentiation by ribozymes

After incubation for 5 days with ribozymes, the cells were in
bated for 30 min with human AB serum, and then were stain
with PE-conjugated mouse anti-human CD11b antibodies and
FITC-conjugated mouse anti-human CD14 antibodies (Be
Dickinson, San Jose, CA). Control studies were performed 
a nonbinding control mouse IgG isotype antibody (Bec
Dickinson). A flow cytometric analysis was performed with Ort
Cytoron Absolute (Ortho Diagnostic systems, Tokyo, Japan).

RESULTS

Cell-specific inhibition by ribozymes against
AML1/MTG8

To confirm the cell-specific inhibition by ribozymes again
AML1/MTG8 , we transfected these ribozymes into vario
myeloid leukaemia cell lines, including Kasumi-1, HL-60, KG
U937, NB4 and UF-1 cells. Incubation with myeloid leukaem
cells and ribozymes for 5 days and then cellular proliferation 
evaluated by an MTT assay. Both ribozymes only inhibited th
proliferation of Kasumi-1 cells, but not the other myelo
leukaemia cell lines. Rz2 was slightly more potent than Rz
decreasing the absorbance of the MTT assay (Figure 2). T
results suggest that Rz1 and Rz2 specifically inhibit the grow
myeloid leukaemia cells carrying t(8;21)(q22;q22).

Cleavage activity of ribozymes in cells

To address the specific cleavage activity of ribozymes ag
AML1/MTG8 in vitro, we next transfected Rz2 into Kasumi-1 ce
diluted with UF-1 cells. UF-1 cells were used for dilution beca
they do not have t(8;21)(q22;q22), and were not inhibited by 
and Rz2 while they also demonstrated a long doubling time (72 h)
British Journal of Cancer (1999) 79(9/10), 1325–1331
se
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(Leopold et al, 1995) (Figure 2 and data not shown). 
decreased the detectable level of AML1/MTG8 mRNA at all corre-
sponding lanes (Figure 3). The signal intensity was decreas
41.1% by Rz2 in the presence of 5 × 103 Kasumi-1 cells (Figure 3)
These results suggest that the growth inhibition of mye
leukaemia cells with t(8;21)(q22;q22) by ribozymes are 
thought to be due to the reduction of AML1/MTG8 mRNA.

Detection of apoptosis in Kasumi-1 cells by ribozymes

After 7 days of culture in Rz1-, Rz2- and ScRz-transduced Kas
1, HL-60, NB4 and U937 cells by lipofection, morphologi
© Cancer Research Campaign 1999
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HL-
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Rz 1 Rz 2

Figure 6 Detection of DNA ladder formation in Kasumi-1 cells by
ribozymes. Kasumi-1 cells were incubated with ribozymes for 5 days, after
harvesting the cells. DNA was extracted and labelled with 32P-dCTP.
Thereafter, it was electrophoresed in 1.8% agarose gel and then
autoradiography was performed. DNA ladder formation was detected in the
Kasumi-1 cells treated with ribozymes. DNA from the Kasumi-1 cells
incubated without ribozymes was used as a negative control. DNA from
HL-60 cells treated with all-trans retinoic acid was used as a positive control

Figure 7 Expression of CD11b and CD14 antigens by a FACS analysis.
NB4 and Kasumi-1 cells were treated with all-trans RA (10–7 M) for 4 days.
Kasumi-1 cells were also incubated with liposome alone and ribozymes
against AML1/MTG8 (Rz1 and Rz2) for 5 days. The cells were incubated for
30 min with human AB serum to block Fc receptors and then were stained
with direct immunofluorescence using FITC-conjugated mouse antihuman
CD14 and PE-conjugated mouse antihuman CD11b antibodies. Control
studies were performed with non-binding control mouse IgG1 and IgG2a
isotype antibodies
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changes of apoptosis in only Kasumi-1 cells occurred with c
matin condensation, fragmentation, and the formation of apop
bodies (Figure 4). However, neither Rz1 or Rz2 induced apop
of myeloid leukaemic cells without t(8;21). In addition, ScRz,
unrelated ribozyme, did not respond to Kasumi-1 cells (Figure 

The time course of the appearance of apoptotic cells du
Kasumi-1 culture for 7 days was determined (Figure 5). In R
and Rz2-treated Kasumi-1 cells, the percentage of apoptotic 
began to increase after day 3, and became maximal at day 5
with Rz1 and 32% with Rz2). In contrast, apoptosis was 
induced by the treatment of ScRz and DOTAP alone (contro
Kasumi-1 cells over a 7-day period (Figure 5). Apoptosis was 
confirmed by DNA electrophoresis which showed a pattern
DNA fragments that results from the activation of endogene
endonuclease (Figure 6). Taken together, these results indicat
the ribozymes against AML1/MTG8 chimeric transcript specifi-
cally inhibited the proliferation of Kasumi-1 cells through t
apoptotic pathway.
© Cancer Research Campaign 1999
-
lls
%
t
n
o
f
s
hat

Investigation of differentiation in Kasumi-1 cells by
ribozymes

Induction of differention of Kasumi-1 cells into mature granu
cytes or monocytes by Rz1 and Rz2 was assumed by the ex
sion of CD11b and CD14 antigens. NB4 cells were treated 
all-trans RA (10–7 M) for 4 days and a cell surface marker analy
was performed as a positive control. All-trans RA induced differ-
entiation of NB4 cells to mature granulocytes and increased
expression of CD11b antigen by six-fold as compared with
control cells (Figure 7 and data not shown). However, all-trans RA
as well as Rz1 and Rz2 did not individually alter the expressio
British Journal of Cancer (1999) 79(9/10), 1325–1331



. In
tia

4).

sis
wa
ins

a e
kae
8
nan

ai
tha
 by
96
a e
ffe
i-

nt

ku

ain
rg
 th
 al
t a

ain
lls
 we
ce
ge
the
uce
uc
 in

t th

hic

 th
l-2
n 
 a
s w
rth
s 

tid
d
g
 an
me
nu
D1
ge
e-

d on
 level
uc-
 that
fec-
the

nd
eric
A

ML.
cific

mia
 et al,
 may
esis in

of
t-in-
in a

r

ujillo
ute

by

tion

y

u

tant

lf-

g of

om

1330 H Matsushita et al
both antigens in Kasumi-1 cells by a flow cytometric analysis
addition, no morphological changes accompanied with differen
tion were observed in the Rz1-treated Kasumi-1 cells (Figure 

DISCUSSION

AML1/MTG8 is thought to play a key role in leukaemogene
because the growth of leukaemic cells with t(8;21)(q22;q22) 
inhibited by antisense oligonucleotides or ribozymes aga
AML1/MTG8 fusion transcript (Sakakura et al, 1994 ;Matsushit
al, 1995; Kozu et al, 1996). The molecular mechanism of leu
mogenesis by AML1/MTG8 has been studied, and AML1/MTG
has been shown to block AML1b transcription as the domi
negative protein which is mediated by the runt homology dom
(Meyers et al, 1993, 1995). More recently, it has reported 
AML1 is essential for definitive haematopoiesis of all lineages
using AML1 knockout mice (Okuda et al, 1995; Wang et al, 19
and AML1/MTG8 knock-in analyses (Yergeau et al, 1997; Okud
al, 1998). On the other hand, few studies about the biological e
of AML1/MTG8 have been reported which suggest that Kasum
cells were induced to differentiate to monocytic lineage by a
sense oligonucleotide complementary to the AML1/MTG8 tran-
script, however, only 12% of the cells treated with 10 mM

antisense oligonucleotide were positive for NSE staining (Saka
et al, 1994).

We constructed two hammerhead ribozymes targeted ag
AML1/MTG8, and proved that these ribozymes cleaved the ta
substrate specifically in a cell-free system and also inhibited
growth of leukaemic cells with t(8;21)(q22;q22) (Matsushita et
1995). Another group has also reported similar results (Kozu e
1996), however, the mechanisms of the ribozymes ag
AML1/MTG8 on the growth inhibition of myeloid leukaemic ce
have yet to be elucidated. The ribozyme-induced apoptotic cells
identified based on morphology. The percentage of apoptotic 
was increased in a time-dependent manner by ribozymes tar
against AML1/MTG8. In contrast, apoptosis was not induced by 
treatment of unrelated ribozyme. Therefore, the ribozyme-ind
growth inhibition of Kasumi-1 cells was associated with the ind
tion of apoptosis. We could also detect DNA ladder formation
ribozyme-treated Kasumi-1 cells. These findings suggest tha
decrease in the expression of AML1/MTG8 by ribozymes may thus
induce leukaemic cells to apoptosis, and this is the first report w
suggests that blocking the expression of AML1/MTG8 by ribozymes
induces apoptosis of leukaemic cells. A previous report showed
AML1/MTG8 fusion protein activates the transcription of Bc
(Klampfer et al, 1996). We therefore examined the expressio
Bcl-2, Bcl-Xs/L and Bax in ribozyme-treated Kasumi-1 cells by
Western blot analysis, however, the expression of these protein
equal to those in the nontreated cells (data not shown). Fu
studies are thus needed to clarify the molecular mechanism
apoptosis in ribozyme-treated leukaemic cells.

A previous study reported that the antisense oligonucleo
complementary to AML1/MTG8 inhibited the growth and induce
differentiation of the cell lines derived from AML containin
t(8;21) (Sakakura et al, 1994). However, we could not observe
apparent morphological differentiation changes in the ribozy
treated Kasumi-1 cells, or any apparent increase in the gra
cytic lineage marker CD11b and monocytic lineage marker C
in these cells by a flow cytometric analysis. These data sug
that the induction of differentiation did not occur in the ribozym
mediated growth inhibition of Kasumi-1 cells.
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The transduction efficiency was evaluated by methods base
those of Leopold et al (1995) and the ribozyme decreased the
of target RNA with liposome by one-log in their study. The red
tion of target RNA in our case was thus the same level as
reported in their study (Figure 3). It is possible that a more ef
tive induction of apoptosis might also occur by improving 
transduction method.

In summary, we observed both specific growth inhibition a
the induction of apoptosis by inhibiting the expression of chim
RNA by ribozymes in Kasumi-1 cells. Therefore, chimeric RN
may be useful as therapeutic targets in patients with A
Ribozymes are thus expected to be potentially useful as spe
gene modifiers for various malignancies including leukae
(Lange et al, 1993; Shore et al, 1993; Snyder et al, 1993; Pace
1994; Pachuk et al, 1994). We thus conclude that ribozymes
be useful as a new therapy based on the molecular pathogen
the treatment of AML with t(8;21).
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