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ABSTRACT: Imaging mass spectrometry (IMS) has become a
prime tool for studying the distribution of biomolecules in tissue.
Although IMS data sets can become very large, computational
methods have made it practically feasible to search these
experiments for relevant findings. However, these methods lack
access to an important source of information that many human
interpretations rely upon: anatomical insight. In this work, we
address this need by (1) integrating a curated anatomical data
source with an empirically acquired IMS data source, establishing
an algorithm-accessible link between them and (2) demonstrating
the potential of such an IMS-anatomical atlas link by applying it toward automated anatomical interpretation of ion distributions
in tissue. The concept is demonstrated in mouse brain tissue, using the Allen Mouse Brain Atlas as the curated anatomical data
source that is linked to MALDI-based IMS experiments. We first develop a method to spatially map the anatomical atlas to the
IMS data sets using nonrigid registration techniques. Once a mapping is established, a second computational method, called
correlation-based querying, gives an elementary demonstration of the link by delivering basic insight into relationships between
ion images and anatomical structures. Finally, a third algorithm moves further beyond both registration and correlation by
providing automated anatomical interpretation of ion images. This task is approached as an optimization problem that
deconstructs ion distributions as combinations of known anatomical structures. We demonstrate that establishing a link between
an IMS experiment and an anatomical atlas enables automated anatomical annotation, which can serve as an important
accelerator both for human and machine-guided exploration of IMS experiments.

Understanding the spatial context in which molecular
interactions take place is becoming increasingly important

in the study of biological and pathological processes in living
organisms. The spatial distribution of biomolecules and the
localization of biochemical interactions throughout tissue often
hold crucial clues toward determining the biological functions
of these biomolecules. Imaging mass spectrometry (IMS)1,2 is a
molecular imaging technology that can deliver such spatial
information with high chemical specificity for various classes of
biomolecules, including metabolites, lipids, peptides, and
proteins. IMS has been gaining considerable momentum in
recent years, primarily in the field of tissue biomarkers3,4 and
drug delivery,5,6 and has been successfully applied to tissues of
various origin, including insect,7 mammalian,8 and human
tissue.9−11 IMS makes it possible to monitor many hundreds of
biomolecules simultaneously, making it a prime technology for

exploratory studies. However, this exploratory advantage is
hampered by the large amount of data that a single IMS
experiment can deliver, making interpretation and analysis
difficult.
Previous work has employed both supervised and un-

supervised computational methods,12−15 such as hierarchical
clustering, principal component analysis,16,17 and probabilistic
latent semantic analysis,18 to perform comprehensive analysis of
these large data sets. While these methods aid human
interpretation by reducing the data size and complexity, they
often operate in a blind fashion in the sense that they lack
access to an important source of information that many human
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interpretations rely upon: anatomical information on the tissue
in question. This information is available in textbooks and
through publically accessible anatomical atlases for various
organ types and organisms. However, the use of such
information in IMS studies remains largely restricted to manual
comparison,19−21 which poses a practical challenge for larger
multiexperiment studies and brings with it a risk of introducing
human bias into the analysis. In order to fully utilize this body
of anatomical insight for the interpretation of ion distributions
in IMS data, a computer-traversable bridge between IMS and
curated anatomical info is essential. Recent work by
Abdelmoula et al.22 has taken a first step toward this integration
by developing a workflow that performs automated spatial
registration of IMS data to anatomical information through
microscopy. We extend this line of research further by focusing
on the applications that become possible once a registration is
available. In order to do so, we first (1) establish and
demonstrate our own algorithm-accessible link between curated
anatomical data and empirically acquired IMS data and then
(2) move beyond registration by applying the established IMS-
anatomical atlas link toward automated anatomical interpreta-
tion of the ion images obtained through IMS.
Since a substantial amount of IMS research focuses on the

rodent brain,23 our case studies use MALDI-TOF IMS data
from mouse brain tissue as the empirical data source and the
Allen Mouse Brain Atlas24 as the curated anatomical data
source. Both data types have been used in studies of
neurodegenerative diseases such as Alzheimer’s, Parkinson’s,
and healthy mouse brain.25,26 However, the methods developed
in this paper are not specific to these case studies, a particular
species, disease model, or atlas. They can be readily applied to
any IMS-atlas combination that makes sense within the context
of a particular study.
Methods introduces the two data sources and describes the

three computational methods that implement the anatomy-
aware analysis approach we developed: (i) registration, (ii)
correlation-based querying, and (iii) automated anatomical
interpretation. Results & Discussion applies the developed
methods to both a protein-focused and a lipid-focused case
study, with complementary details in the Supporting
Information.

■ METHODS
The first objective, the integration of the two data sources,
entails development of two computational methods. The first
method spatially registers the IMS data to the anatomical atlas.
Registration is a necessary step that precedes anatomical
interpretation and makes direct mapping of findings across data
sources possible by establishing a common coordinate
system.27−29 Since the methods that follow are independent
of how this spatial mapping is established and are quite robust
against registration errors, we provide a relatively basic
registration implementation. A more advanced and automated
registration procedure is available in Abdelmoula et al.22 Since
the registration needs to account for cutting artifacts, tissue
deformations due to extraction and freezing of the brain, and
other spatial perturbations, nonrigid registration techniques27,28

play a central role here. The second method utilizes the
established link to interrogate the combined data sources for
correlations. Correlation-based queries deliver insight into the
spatial correlations between ion images in IMS and anatomical
areas in the atlas. In previous studies the authors, as well as
several other groups, have successfully demonstrated the

potential of correlation-based approaches to guide the user
toward relevant findings.22,30−34 When the integration objective
is complete, anatomical regions are implicitly annotated with
biochemical findings from mass spectrometry, and biomolecular
distributions are inherently mapped to a set of anatomical
definitions.
The second objective moves beyond registration and simple

correlation and uses the established IMS-anatomical atlas link
to develop an automated anatomical interpretation method for
IMS data. We define the anatomical interpretation of an ion
image as decomposing the ion distribution into a combination
of known anatomical areas that are tentatively tied to that
specific ion. Anatomical interpretation becomes possible once a
registration of IMS data to an atlas is available. Since it is
independent of the particular method that was utilized to attain
such registration, and it is assumed that registration errors are
always present to some extent, automated anatomical
interpretation methods can be developed largely orthogonal
to but still benefit from any registration advancements. The
interpretation method we develop can therefore be used in any
setting where IMS is coupled to an atlas. Although the
correlation-based queries demonstrate the functioning of the
IMS-to-atlas mapping and provide a first step toward
exploration of the combined data, they are insufficient to
power automated anatomical interpretation of ion images. The
main reason is their inadequate handling of ions that are
present in several anatomical areas simultaneously. An
automated anatomical interpretation of ion images therefore
needs to be able to handle membership of an ion to multiple
anatomical structures and preferably should include a measure
of abundance. To this end, the third computational method of
this work develops an algorithm that uses the IMS-atlas link to
automatically interpret any ion image in the IMS data set as a
combination of atlas-provided anatomical structures, without
the need for human intervention.

Anatomy Data. The publicly accessible Allen Mouse Brain
Atlas (AMBA) is used as the anatomical data source. This atlas
is based on the brain of a 56-day-old C57BL/6J mouse, and has
a user base that exceeds 10000 users per month.25 The brain is
dissected into 528 coronal tissue sections at 25 μm separation,
which are Nissl-stained, registered to each other, and assembled
into a reconstructed brain volume. A low resolution (25 μm
voxel width) gray scale version of this reconstructed brain
volume is accessible through the application programming
interface provided by the AMBA Web site35 and is imported
into MATLAB 2012b (The Mathworks Inc., Natick, MA) to
establish a local copy for further computation (Figure 1).
Of the 528 coronal tissue sections, 132 are hand annotated

and combined to create a three-dimensional (3D) anatomical
reference atlas (Figure 1). This atlas is registered to the brain
volume constructed from the Nissl stains and contains over 800
anatomical structures. It can be consulted using Brain Explorer
2 (AMBA Web site).

IMS Data. Coronal tissue sections of a 12 μm thickness were
acquired from a healthy adult mouse brain that had been frozen
in liquid nitrogen. Two neighboring sections from this brain
were selected for IMS measurement and mounted on ITO-
coated glass slides. A third neighboring section was mounted on
a glass slide and Nissl-stained for matching against the Nissl
stains of the AMBA. We give an overview of the staining and
IMS measurements below and refer to the Supporting
Information for full details. One IMS measurement focuses
on protein imaging, acquiring ions between m/z 3000 and
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22000. The other IMS measurement focuses on lipids with a
m/z range from 400 to 1000. The tissue sections were
sublimated with sinapinic acid (protein-oriented) and 1,5-
diaminonaphthalene (lipid-oriented). The measurements were
acquired on a Bruker Autoflex Speed MALDI-TOF mass
spectrometer in the positive linear mode with a laser spot size
of 80 μm on target and at a pitch of 100 μm (protein-oriented)
and in the negative reflector mode with a laser spot size of 30
μm on target and at a pitch of 80 μm (lipid-oriented), using
FlexControl 3.3. Approximately 100 shots/spot were acquired
at a 1 kHz repetition rate using a Smartbeam II Nd:YAG laser.
Image acquisition was carried out using FlexImaging 2.1, and
further processing took place in MATLAB. The spectra were
normalized on the basis of their common ion current,
disregarding differential peaks.36 They were baseline-corrected
using a spline approximation of the baseline at the 10%-quantile
of ion intensities and employing window sizes of 500 and 50
and step sizes of 250 and 25 for the protein and lipid-focused
spectra, respectively. The spectra were also optimally aligned
along the m/z axis to reduce peak drift, allowing a maximum
m/z shift of 12 and 0.5 for protein and lipid-focused spectra,
respectively. Both steps were performed using the Bioinfor-
matics Toolbox of MATLAB (The Mathworks Inc., Natick,
MA).
Registration of Data Sources. Coupling IMS data to the

atlas requires the two data sources to be registered to each
other, thus transforming them to a common coordinate system,
in which their pixel locations describe the same space and can
be directly compared.27,28 The IMS-atlas registration process
requires multiple steps and uses both rigid and nonrigid
registration to handle the complexities that are commonly
encountered in tissue (e.g., deformation during extraction and
freezing of the brain, differences between individual mouse
brains, cutting artifacts, etc.). To deal with these complex
deformation cases, nonrigid registration techniques37,38 are
essential.
The IMS data is registered to the anatomical atlas via a

modality common to both data sources: stained microscopy
(Figure 2). The registration process entails: (1) rigid
registration of IMS data to the experiment histology, (2)
rigid registration of atlas data to the reference histology, and
(3) nonrigid registration of the experiment histology to the
reference histology. Although it is technically possible to
register IMS data directly to the atlas, it is preferable to go
through histology since the IMS data and the atlas data are of a

substantially different nature with very differing spatial
resolutions (80−100 and 0.3 μm, respectively). Using
microscopy as an intermediate offers several advantages: (i)
registration is more straightforward within a single modality,
certainly given the complexity involved in nonrigid registration,
(ii) the resolutions are high and comparable, and (iii)
histological microscopy is readily available in most state-of-
the-art IMS experiments.
Details of the registration process can be found in the

Supporting Information. To summarize, (1) the rigid
registration between IMS data and experiment histology is
performed in MATLAB through manual selection of fiducial
markers, (2) the rigid registration from atlas to reference
histology is provided by the AMBA, and (3) the nonrigid
registration between experiment histology and reference
histology is performed using the Medical Image Registration
Toolbox (MIRT) by Myronenko,29,39 making use of a free form
deformation (FFD) model.

Correlation-Based Querying. Once registration is com-
plete, it becomes possible to find out which anatomical
structures correlate with a measured ion distribution or which
ions correlate with a certain anatomical zone of interest. To
enable this simple form of correlation-based querying, we create
an anatomical structure image for each individual anatomical
structure that is present in the tissue slice. Such an anatomical
structure image (caudoputamen example in Figure 4A, top)
represents the spatial location of a single anatomical annotation
and contains ones in locations where the anatomical structure is
present, and zeros elsewhere. To soften the binary assignments
somewhat at the edges of the structure, we apply a Gaussian
filter, which eliminates crisp borders.
Next, the spatial correlation between an ion image and an

anatomical structure image is obtained by calculating the
Pearson correlation coefficient between the intensities of both
images over all IMS measurement locations. To prevent bias,
only pixels for which both types of data are available are part of
the correlation analysis. The analysis is performed by reshaping
both 2D images to 1D vectors, removing any rows for which
only one type of information is available, and then calculating

Figure 1. Registered microscopy and anatomy in the Allen Mouse
Brain Atlas. The microscopy volume contains 528 coronal Nissl-
stained tissue sections (left). These data are imported into and
visualized using MATLAB, color-coding intensity from red to yellow.
The 3D anatomical reference atlas contains over 800 anatomical
structures (right). These data are visualized using Brain Explorer 2.

Figure 2. Workflow of the registration process. Spatially registering
IMS data to anatomical data consists of 3 individual registration steps:
(1) rigid registration of IMS data to experiment histology, (2) rigid
registration of anatomical data to reference histology, and (3) nonrigid
registration of experiment histology to reference histology.
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the correlations between the resulting vectors. The correlation
coefficient for each possible anatomical structure/ion image
combination is calculated and collected into a correlation table
for easy visualization and querying.
Automated Anatomical Interpretation. The goal of the

anatomical interpretation method is to examine the pattern in
an ion image, and, without human intervention, determine
which anatomical structures are involved and what their ion
intensity contribution is. In other words, once an ion image is
mapped to the atlas (using the proposed registration pipeline or
an automated variant thereof22), the interpretation method
takes that ion distribution pattern as an input and then
automatically decomposes it into a combination of atlas-
provided anatomical structures.
At its core, anatomical interpretation is a problem of

approximating the spatial pattern of an ion with a combination
of patterns selected from a provided vocabulary of anatomical
patterns. The model we employ in our algorithm considers an
ion image to be a sum of products, each product multiplying a
pattern from the finite set of anatomical patterns with its
contribution coefficient. Since we know both the ion image and
the anatomical patterns and their relationship is established by
the model, the search for the optimal anatomical contribution
coefficients (and thus the optimal anatomical interpretation)
can be approached as a multivariate optimization problem. The
mathematical details of this approach are provided in the
Supporting Information.
Our implementation uses CVX, a package for specifying and

solving convex programs,40,41 to solve the optimization

problem for each ion image we want interpreted. The
anatomical patterns are used as building blocks to construct
an approximation of each ion image, and the coefficients specify
how each anatomical structure contributes to the overall
approximation. A nice feature of the method is that an
anatomical contribution coefficient tends to be proportional to
the ion intensity in that anatomical structure, inherently
assigning a notion of importance or weight to each anatomical
zone involved. Anatomical images, and thus structures,
corresponding to high absolute coefficients are important for
approximating the ion distribution of interest and are therefore
considered part of the anatomical interpretation of that ion
image. Also, note that in our examples the coefficients are not
constrained to positive values. This allows the anatomical
interpretation to say things like “the ion seems to be present in
zone A plus zone B minus zone C.”

■ RESULTS AND DISCUSSION

We demonstrate the developed methods both in a protein-
focused and a lipid-focused case study of coronal mouse brain
sections, illustrating the potential of incorporating anatomical
information into IMS analysis.

Results on Registration of the Data Sources. A nonrigid
registration algorithm is used to register the experiment
histology (Figure 3A.a) to the atlas reference histology (Figure
3A.d). Although the experiment histology is strongly deformed
compared to the reference histology, the registration results
(Figure 3A.c) demonstrate that the nonrigid registration can
deal well with these soft-tissue deformations. The FFD (free

Figure 3. Overview of registration results. (A) Nonrigid registration of the experiment histology onto the reference histology from the atlas. (a)
Despite the large initial deformation of the experiment histology, (b) the nonrigid transformation successfully compensates and (c) registers onto the
(d) reference histology. (B) The nonrigid registration enables traversal from the coordinate system of one data source to the other: the acquired ion
image can be projected onto the reference histology for direct comparison to the anatomical annotations. Inversely, the anatomical annotations,
provided by the atlas, can be projected onto the experiment histology, to provide anatomical guidance within the sectioned tissue.
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form deformation) mesh of control points (Figure 3A.b) that
constitutes the transformation between the two images shows
how the experiment histology image is “warped” to register to
the atlas histology. By using a FFD transformation mesh, we
ensure that neighboring IMS pixels remain neighbors and
prevent excessive distortion of the original data.
Figure 3B shows how the transformation established by the

nonrigid registration process is used to transform and project
data from one data source to the other and vice versa. The
nonrigid transformation is reversible (up to a rounding error),
and there is a one-to-one relationship between locations in
“IMS space” and locations in “atlas space”. This means that we
are able to project IMS data onto the reference histology
(Figure 3B, top right). Such a projection effectively brings
empirical MS measurements acquired from imperfectly
sectioned or deformed tissue into the reference shape of the
mouse brain, and it directly links these observations to
reference atlas annotations. Similarly, we can project the atlas
annotations onto the experiment histology (Figure 3B lower
left). This direction of projection draws annotations that are
typically defined in an ideally shaped version of the mouse brain
into the practical tissue sample that was sectioned. Casting the
anatomy information to the experiment histology also enables
quick visual verification of the correctness of the projection

since the neighborhood structure of the different subareas
should be retained regardless of tissue deformation.

Results on Querying the Correlation between
Anatomy and Ions. Once registration of the two data
sources is complete, we construct a correlation table by
calculating the spatial correlation between the anatomical
structure images and the ion images of the peak-picked IMS
protein data. The correlation table (available in the Supporting
Information) allows two types of queries: anatomical queries
and ion queries.

Anatomical Query. The anatomical query provides an
answer to the question “Which ions are specific to anatomical
region X?”. To demonstrate, we use the caudoputamen as an
example anatomical structure. Figure 4A shows the input, the
anatomical structure image of the caudoputamen, and displays
the part of the correlation table that pertains to this structure,
highlighting its spatial correlation to the various ion images.
Ions m/z 12650 (ρ = 0.77) and m/z 21832 (ρ = 0.70) are two
examples of ion images that exhibit high positive correlation in
this case. These ions show a clear spatial overlap with the
anatomical structure image of the caudoputamen and are
almost exclusively located therein.

Ion Query. The ion query provides an answer to the
question “In which anatomical regions is ion Y located?”. To

Figure 4. (A) Example of an anatomical query, finding ions specific to the caudoputamen. The anatomical structure image of the caudoputamen is
given as an input and the correlation table returns the spatial correlation to this structure for each ion image. Two examples of ion images that
positively correlate with the target anatomical structure are displayed. (B) Example of an ion query, finding anatomical regions in which m/z 7841 is
highly expressed. The ion image of m/z 7841 is given as an input, and the correlation table returns the spatial correlation to this ion image for all the
anatomical regions. Two examples of anatomical structure images that positively correlate with the target ion image are displayed.
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demonstrate this query, we use the ion image for m/z 7841 as
an example. Figure 4B shows the ion image as input and,
analogous to the anatomical query, it displays the part of the
correlation table that pertains to this ion. The isocortex (ρ =
0.40) and the somatosensory areas (ρ = 0.36), which are
substructures of the isocortex, are two examples of anatomical
structures that exhibit high positive correlation with m/z 7841.
Additional examples are provided in the Supporting Informa-
tion.
Correlation-based queries can deliver fast insight into

relationships between ions and anatomical structures but have
several disadvantages. First, it is difficult to define a generic
threshold to determine when these correlations become
significant. Second, since several thousands of correlations are
being calculated in parallel, the multiple testing problem needs
to be considered when drawing conclusions from these results.

However, the most important roadblock for using correlation
toward automated anatomical interpretation is the concept of
“multimembership”. Correlation considers only the relationship
between a single anatomical structure and a single ion. An ion
that appears in several anatomical structures simultaneously will
exhibit a relatively low correlation to each of the individual
anatomical structures that it is a member of. Such an ion will
not give a strong signal in the correlation table and could go
undetected as a result. In these multimembership situations,
which are quite common in most biological tissue types,
correlation-based querying falls short and is not capable of
dealing with the complexities of the biology. In fact, in such
complex cases, any univariate querying strategy will provide
skewed results.

Results on Automated Anatomical Interpretation.
Since the membership of an ion to multiple anatomical

Figure 5. Examples of automated anatomical interpretation. When an ion image is given as input (left), the interpretation method provides an
optimal anatomical explanation for the observed ion pattern (right), using the library of provided anatomical structures. Specifically, the ion intensity
pattern is decomposed without user intervention into an optimal combination of contributing anatomical structures from the atlas. The
interpretation method provides (i) the closest approximation of the measured ion image using atlas structures (right, middle) and (ii) an overview of
the contributing anatomical structures, specifying name, reference location, and contributing intensity or weight in the interpretation (right, outer
ring). This visualization delivers quick insight into the major anatomical zones associated with an ion image, while also providing a notion of the
relative contributions of each underlying structure involved. Negative weights indicate a relative decrease of the ion in those areas. (A) Ion m/z
742.57 is highly expressed in the somatosensory areas, the fiber tracts, and the pallidum. (B) Ion m/z 723.53 shows a decrease specifically in the
somatosensory areas, as indicated by the negative weight. The empirical ion distributions show good congruence with the boundaries of the
anatomical structures defined in the atlas, indicating good spatial mapping between the data sources and strong biological signals in the IMS
measurements.
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structures cannot be clearly captured by a univariate strategy,
the use of correlation to drive automated anatomical
interpretation of ion images is limited. Instead, a more
advanced approach, using multivariate models to account for
multimembership, is necessary. Methods introduces a linear
model, capable of capturing the multimembership aspect
effectively, to tie ion image patterns to anatomical structure
patterns. By applying convex optimization to this model and
the given ion and anatomy patterns, it is possible to obtain an
optimal anatomical explanation for each ion image. Figure 5
shows the automated anatomical interpretation of several ion
images from the lipid case study, using our method. Each ion
image gets interpreted, automatically and without user-
intervention, as an optimal combination of anatomical zones
from the AMBA. The interpretation is optimal in the sense that
it selects the combination of atlas patterns that gives the closest
approximation of the measured ion image. If there are multiple
combinations that come equally close, the combination with
the least amount of anatomical structures (and thus the
simplest explanation) is selected. In short, the automated
anatomical interpretation method provides (i) the closest
approximation of the measured ion image using atlas structures
(Figure 5, right, middle) and (ii) an overview of the
contributing anatomical structures, specifying name, reference
location, and contributing intensity or weight in the
interpretation (Figure 5, right, outer ring). This visualization
delivers quick insight into the major anatomical zones
associated with an ion image, while also providing a notion
of the relative contributions of each underlying structure
involved.
The example in panel A shows a clearly defined expression of

the ion m/z 742.57 in the fiber tracts and ventricles (more
specifically the corpus callosum, which is not annotated as a
separate region in the AMBA), the pallidum, and the
somatosensory areas. Using negative contribution coefficients,
the algorithm also reports areas where the ion exhibits reduced
presence, such as in the striatum. Panel B shows the ion m/z
723.53, which is specifically absent from the somatosensory
areas. The strong congruence between empirically observed
patterns in the ion distributions and anatomical structures
extracted from the atlas indicate good spatial mapping between
these data sources and strong biological signals in the IMS
measurements. Additional examples of the in total 1405 ion
images that we applied the automated anatomical interpretation
methodology to are provided in the Supporting Information.
It should be noted that the heads-up-display type visual-

ization of Figure 5 is meant for human consumption and is but
one of many possible representations of the interpretation
results. In essence, the interpretation algorithm provides for
each ion image a set of contribution coefficients, one for each
structure in the atlas. Each contribution coefficient can be
considered to report a degree of membership of an ion to a
particular structure. Custom visualizations of these coefficients
can be developed as demanded by the application. In the case
of a machine-based follow-up, no visualization will be necessary
at all and the anatomical membership coefficients for each ion
image in an IMS experiment can be passed on directly to the
next computational step in the analysis.
The automated breakdown of an ion image into contributing

anatomical structures is a powerful tool, particularly for the
histological nonexpert. It supplies the researcher directly with
the relationships between an ion and the anatomical structures
in which it is expressed. The interpretation algorithm can

substantially aid in unraveling the function of biomolecular
ions. It can incorporate the body of pathological research that is
currently publicly available into the analysis of an individual
IMS experiment and this without much additional effort.
Essentially, the results of the analysis constitute a table of
anatomical membership coefficients, linking each ion image to
each anatomical structure. This table can be queried in the
same way as the correlation table from the correlation-based
queries but does away with the disadvantages of a univariate
approach. Most importantly, the multimembership of ions to
different anatomical zones is now taken into account, providing
the user with a much more complete and reliable list of
anatomical-structure-to-ion relationships.
The greatest benefit of an automated anatomical interpreta-

tion method is the potential for parallelization. A computational
interpretation method can deliver anatomical interpretations
for every ion image in an experiment, even if the number of ion
images runs into the hundreds or thousands. It can provide
these interpretations concurrently, without human intervention,
and in a single calculation. This avoids the labor and time-
intensive step of having a histological expert manually interpret
hundreds of ion images and the potential risk for human bias
that comes with it. It also enables the researcher to pursue
broad exploratory measurements, after which the focus can be
narrowed to only the most promising ions that have
demonstrated a relationship to a particular anatomical structure
of interest.
A possible downside to using an anatomical atlas for the

interpretation of IMS data is that zones that have not been
previously discovered in pathological and anatomical research
and thus are not present in the atlas cannot be found in the ion
images and cannot be part of their interpretation. However,
examining those ions that cannot be adequately approximated
with an atlas could provide a route to the automated discovery
of new physiological or chemical subdivisions within tissue
areas that are considered to be homogeneous by anatomy. We
elaborate on this in the Supporting Information.

■ CONCLUSIONS
Establishing a link between an IMS experiment and an
anatomical atlas can serve as an important accelerator both
for human and machine-guided exploration of IMS experi-
ments.
As the number and complexity of IMS experiments increases

and studies aim to compare a growing number of IMS
experiments to each other, the importance of automated
approaches to filter the massive data sets for patterns of interest
will become increasingly important. The automated anatomical
interpretation of ion images can serve as a formidable catalyst
for IMS analysis, due to its speed and ability to interpret
thousands of ion images concurrently without human super-
vision.
On a less application-specific scale, a mapping between

curated anatomy and IMS data can make a body of anatomical
research available to any IMS-related computational method, to
integrate into its analysis and improve its performance. In the
case of multiple IMS experiments and multiple mappings to the
same atlas, one can compare the anatomical interpretations of
multiple experiments to each other by using a common
reference (atlas) space. This would allow, for example, the
automated detection of differences in activities of anatomical
structures between healthy versus diseased tissues. Mapping
multiple IMS data sets to a common reference coordinate
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system would also enable the creation of an IMS-based
chemical reference atlas for lipidomics, proteomics, and
metabolomics. In the specific case of the Allen Mouse Brain
Atlas, this offers several promising perspectives for the future,
since IMS-based data could then even be combined with non-
IMS data sources, such as gene expression and neuron
connectivity measurements, which are currently being linked
to the Allen Brain Atlas by other research initiatives. The
combination of these data sources can serve as a valuable
multimodal resource for systems biology research, bringing
together insights from many different technologies and fields.
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