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ABSTRACT

Microarrays represent a powerful technology that
provides the ability to simultaneously measure the
expression of thousands of genes. However, it is a
multi-step process with numerous potential sources
of variation that can compromise data analysis and
interpretation if left uncontrolled, necessitating the
development of quality control protocols to ensure
assay consistency and high-quality data. In response
toemerging standards, such as the minimum informa-
tion about a microarray experiment standard, tools
are required to ascertain the quality and reproducib-
ility of results within and across studies. To this end,
an intralaboratory quality control protocol for two
color, spotted microarrays was developed using
cDNA microarrays from in vivo and in vitro dose-
response and time-course studies. The protocol
combines: (i) diagnostic plots monitoring the degree
of feature saturation, global feature and background
intensities, and feature misalignments with (ii) plots
monitoring the intensity distributions within arrays
with (iii) a support vector machine (SVM) model.
The protocol is applicable to any laboratory with
sufficient datasets to establish historical high- and
low-quality data.

INTRODUCTION

Microarray technology provides the ability to simultaneously
measure the expression of thousands of genes in a cell, tissue
or model of interest. However, numerous potential sources of
experimental variation (1,2) have raised concerns regarding

assay consistency, and data quality which confounds the
ability to compare datasets between independent investigators
and undermines the utility of intralaboratory (i.e. local), inter-
laboratory (i.e. collaborative center) or global scale (i.e. public
repository) data sharing and exchange efforts (3,4). Con-
sequently, quality assurance and control protocols that assess
the reproducibility of data by identifying deviations or abnor-
mal trends in assay performance and data quality are required.

A quality assurance plan (QAP) is a standard operating
procedure (SOP) that describes the necessary steps to ensure
the process of array production, hybridization and analysis are
of high quality. QAPs include control methods which are used
to test and monitor the quality of the entire process. Whereas
quality control methods seek to identify low quality products,
QAPs integrate information to determine why low quality
products were produced, and to establish best practices to
prevent future low quality events. The success of a QAP
should be measured in terms of the ability to identify low
quality products, and to improve the production process to
lower the rate of low quality occurrences. However, these
are inherently functions of the production processes, and
thus subject to human error.

Although several quality assurance and control methods
have been proposed, criteria for differentiating high- from
low-quality microarrays is lacking, leaving assessment open
to interpretation. Many methods attempt to address this
impediment through a variance-based statistical method,
however they suffer from a lack of training, as the method
solely tests the hypothesis of deviation from the rest of the
population, and fail to judge data based on prior knowledge.
Therefore, arrays that are technically of low quality (i.e. high
background, low feature signal intensity, misaligned features
or inappropriately distributed feature intensity values) can still
be labeled as high quality, if they belong to a larger population
of low-quality arrays.
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In lieu of these more complicated quality assurance and
control methods, data quality has been reported in terms of
sample clustering by assessing whether biological replicates
cluster together (5). Although this methodology determines
whether or not biological replicates exhibit similar behavior,
it provides minimal insight into the technical quality of the
assay (i.e. these are microarrays of high quality). For example,
similarly treated biological replicates may cluster together, or
yield similar patterns, in light of poor technical quality (e.g.
high background and narrow dynamic range). Moreover, this
method may yield false-negative results in a background of
extensive biological variation.

In addition, quality assessments can be stratified to the
feature (6,7), subgrid or block (8) or microarray (9,10) level.
Although examination of each stratum is crucial, a compre-
hensive analysis strategy based on all strata would be
advantageous. Thus, the most robust, comprehensive quality
assurance and control protocol would incorporate aspects of
training by using historical datasets (HDS) of known quality,
provide analysis at all microarray quality strata, and diagnose
possible sources of poor quality data that could be correc-
ted and addressed to minimize future problems (i.e. quality
assurance).

In this report, a three step intralaboratory quality control
protocol is proposed to assess spotted microarray data quality
as a first step towards ensuring publicly accessible data is
of high quality. Global feature and background signal intens-
ities as well as signal-to-noise ratios (SNRs) are first assessed
to identify problems with raw microarray data quality
(Division 1). The feature identification process, commonly
referred to as gridding, is then computationally examined to
identify potentially misaligned features, which can be correc-
ted to minimize potential downstream errors in normalization
and functional assignment (Division 2). Finally, a more
in-depth assessment of raw and normalized data distributions
is utilized to ensure that a sufficient dynamic range has been
achieved for subsequent analyses (Division 3). A total of 388
time-course and dose-response two color cDNA microarray
datasets are used to establish high- and low-quality HDS and to
demonstrate the utility of the protocol.

MATERIALS AND METHODS
Creation of the HDS, test and validation sets

A 388 datasets, derived from in vivo and in vitro dose-response
and time-course experiments using sequence verified cDNA
microarrays were used to create both high- and low-quality
HDS. Further details on microarray assay procedures are avail-
able at http://dbzach.fst.msu.edu/. Microarrays were scanned
using an Affymetrix 428 scanner, and images were quantified
using GenePix v5.0 or v5.1.
Global statistics are calculated as:

1 n
Xq = — E Xdi
"

where d represents the dye (Cy3 or Cy5), n represents the
number of features on the array, and x,; represents the median
feature intensity (either feature signal or background from the
image analysis software) for the dth dye and the ith feature.
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The HDS consists of 155 microarrays that were further
classified as high- (87 microarrays) or low- (68 microarrays)
quality based on corroboration by quantitative real-time PCR
(QRT-PCR) (P < 0.05 for the correlation of the gene expres-
sion pattern of selected genes), low feature background intens-
ity, congruent distributions of data points and detection of
comparable numbers of features. The background feature
intensity does not have a threshold per se, rather it is based
on visual inspection for high overall signal and anomalies such
as smears, waves and excessive dust, the ratio of signal to
background being >20, the number of identified features,
where at least 95% of the features are detectable, and the
distribution of intensity values must be comparable across
the experiment. Examples of high and low quality images
for each criteria are provided as Supplementary Data to further
assist in defining the thresholds we initially used to establish
our historical training set (HDS). Arrays not found to have the
desired characteristics were categorized as low quality. Qual-
ity assignments are not a weighted vote approach, but rather an
all or nothing voting scheme, where high-quality arrays must
meet all of the qualifications listed, and are specific to our
HDS. The training set was derived from a random sampling of
both high- and low-quality datasets to form a high- (44
microarrays) and low- (40 microarrays) quality training sets.

The validation dataset consisted of the 233 arrays not
included in the HDS. The quality of these arrays was assessed
in the same manner as the HDS, resulting in 174 high- and 59
low-quality arrays (Figure 1).

Division 1 analysis

Predictive variables include any parameter of interest to the
investigator that may be indicative of quality. For example,
these variables may include (i) the mean feature intensity
across the array for each dye, (ii) the mean background intens-
ity across the array for each dye, (iii) the mean ratio of the
feature and background intensities, (iv) atmospheric ozone
concentration, (v) laser intensity, (vi) the interquartile range
(see Division 3), (vii) percent saturated features and
(viii) percent undetected features.

To automate microarray quality classification, a support
vector machine (SVM) model is trained on a set of data
(i.e. the training set), and this model is validated against a
larger, independent set of data (i.e. the validation set). To find
the most optimum set of features, or variables, for the SVM, an
expected cost of misclassification function (ECM) was cre-
ated. The best SVM model is determined to be the one that
minimizes the ECM function,

ECM = ¢(HQ|LQ)P(HQ|LQ)p(LQ)
+ ¢(LQHQ)P(LQHQ)p(HQ)

where ¢(HQILQ) is the cost of classifying a low-quality (LQ)
array as high-quality (HQ), P(HQILQ) is the probability of
classifying a LQ array as HQ, p(LQ) is the a priori probability
of being LQ, ¢(LQIHQ) is the cost of classifying a HQ array as
LQ, P(LQIHQ) is the probability of classifying a HQ array as
LQ, p(HQ) is the a priori probability of being HQ, and given
the constraint that p(LQ) + p(HQ) = 1. The cost function rep-
resents a real cost, of misclassification, and will be specific to
each laboratory. For example, in our laboratory we estimate
that the c(LQIHQ) is ~$100, the estimated cost of repeating a
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Figure 1. Historical, training and validation datasets. The complete dataset of 388 microarrays was divided into two sets, the HDS (n = 155) and the validation set
(n = 233). Both of these datasets were further subdivided into high- and low-quality datasets. The high- and low-quality HDS were further subdivided into their
respective training sets by random sampling. The SVM models (SVM and logistic regression + SVM) were trained on the same training set data, and validated against
the same validation datasets. The results of the validations are summarized in Table 1.

microarray within our laboratory, whereas the c(HQILQ) is
~$500, the estimated cost of verifying the expression of false
positive genes through QRT-PCR, and following false leads.
The P(HQILQ) and P(LQIHQ) are functions of the SVM
model, while the a priori probabilities are qualities of the
laboratory. In our laboratory, the a priori probability of an
array being HQ is ~0.80.

The SVM model that minimizes the ECM is used for all
future classification purposes. As microarray data becomes
available (i.e. scanned and quantified) the resultant SVM
model was used to classify microarrays as either high or
low quality. High-quality microarrays continue through the
protocol, while low-quality microarrays were flagged for
repeat experiments. All data was stored for future inclusion
into the HDS.

The SVM training and analysis were performed using the
el071 package in R v1.8.1 using a radial basis kernel. Details
of SVM implementation are given in its documentation.

Division 2 analysis

Feature alignment was assessed using a loess non-parametric
regression procedure that was originally developed as a nor-
malization method to estimate bias on a per array, print-tip or
subgrid, and channel basis, and is visualized by MA-plots.
Feature alignment is analyzed using a variant of the standard
MA-plot (11), referred to as a modified MA-plot (12). With
respect to the modified MA-plot the true signal intensity for
the ith feature is either estimated as the average signal intensity
across all arrays, dyes and treatments ([i,) or as the signal

intensity across all arrays and dyes for each of the j treatment
groups separately (;1,7) for a particular experiment. The choice
between using WL, versus [L; is discussed in detail in (12).
Thus, the estimated true signal intensity is a substitute for
the A-term in the modified MA-plot. The M-term estimates
the bias associated with using [i; or ]ftl-j to estimate the true
signal intensity such that M is equal to the difference between
each signal intensity with its corresponding estimated true
signal intensity. After computing the estimated true signal
intensity and the bias, a modified MA-plot is constructed sep-
arately for every array and a non-parametric regression
smoother is fit to each print-tip on the corresponding array
individually. If the non-parametric regression smoother for a
particular print-tip, or for a subset of print-tips, is an obvious
outlier, feature alignment is investigated. All procedures were
performed in SAS v8.2.

Division 3 analysis

Intensity distribution was assessed using box-and-whisker
plots on a per array basis. Line plots demonstrating trends
in global mean feature intensity, global mean background
intensity and the count of saturated features were created
depicting upper control limits (UCLs) and lower control limits
(LCLs) for each metric. Acceptable numbers of saturated fea-
tures have been historically established in this laboratory to be
1-2% of the total number of features. To assist in quality
analysis it is generally useful to group microarrays performed
on the same date together when plotting to identify temporal
trends. All procedures were performed in SAS v8.2.
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RESULTS

Figure 2 provides an overview of the microarray data quality
control protocol which is divided into General Quality Metrics
(Division 1), Feature Alignment (Division 2), and Distribu-
tional Alignment (Division 3). Two additional divisions are
included to place the protocol into context within the overall
data management scheme.

Establishment of high- and low-quality HDS

High- and low-quality HDS were created to anchor quality
assessments to arrays of known quality to prevent inappropri-
ate assessment of arrays as high quality due simply to low
variance within the study. High quality was defined empiric-
ally based on corroboration by a complementary technology
(e.g. QRT-PCR), low feature background intensity, congruent
distribution of data points and detection of a comparable num-
ber of identified features. For example, among high-quality
arrays, QRT-PCR corroborates >80% of the gene expression
trends exhibited by arrays (13—15). Arrays not found to have
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the desired characteristics in all of the above categories were
labeled as low quality.

The HQ-HDS is based on a random sampling of the
high-quality microarrays from all investigators within our
laboratory (HQ-HDS: n = 87), and a LQ-HDS similar to
the HQ-HDS, but representing a random sampling of the
low-quality microarrays (LQ-HDS: n = 68) from an overall
total of 388 time-course and dose-response two color cDNA
microarrays. Each HDS consists of the Cy3 and Cy5 global
mean feature signal intensity (where global refers to the entire
microarray), Cy3 and Cy5 global mean background signal
intensity, and the Cy3 and Cy5 global SNR of the global
mean feature signal intensity to the global mean background
signal intensity) for each array in the dataset.

Division 1: SVMs predict microarray quality

Division 1 analysis utilizes the HQ- and LQ-HDSs to develop
and train a SVM model that discriminates best quality classes

utilizing all six classification variables present within the
HDS. The SVM model accurately classified (100%) a random
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Figure 2. Microarray quality control protocol. General Quality Metrics, Feature Alignment, and Distributional Alignment divisions are depicted with two additional
divisions that place the protocol into context with the overall data management infrastructure. General Quality Metrics (Division 1) analysis uses a SVM model
trained on the HDS, which includes a combination of the high- and low-quality datasets (HQ-HDS and LQ-HDS, respectively). The predictor variables are filtered
through a step forward logistic regression to identify the most discriminatory and predictive variables for use in training the SVM, and further analysis. Feature
Alignment (Division 2) conducts a loess analysis based on treatment, dye and microarray variables using the raw intensity values from each array to determine if a
subgrid has been misaligned during the quantification process. Distributional Analysis (Division 3) combines box-and-whisker plots with standard line plots to
identify trends in data distributions and the number of saturated and unidentified features. Quality control output is stored within the database for further HDS
refinement (Division 4) and the data is forwarded for analysis (Division 5).




PAGE 5 oF 11

Table 1. Comparison of the predictive accuracy of SVM models for microarray
quality predictions

Sensitivity Specificity PPV NPV
All predictor variables® 0.93 0.70 0.89 0.79
EMC minimized model® 0.96 0.92 0.97 0.90

“All predictor variables includes six variables: Cy3 and Cy5 mean global feature
intensities; Cy3 and Cy5 mean global background intensities, Cy3 and Cy5
SNRs (ratio of the two above listed values).

"The ECM minimized model variables are those from the model that showed the
lowest expected cost of misclassification. The lowest ECM model included the
following three variables: Cy5 mean global feature intensity, Cy3 mean global
background intensity, and the Cy5 SNR.

sampling of low- (n = 40) and high-quality (n = 44) datasets
from the HDS, here after referred to as the training set.
Since this is a binary system the term positive is used to
denote high-quality microarrays, while negative is used to
denote low-quality microarrays. The positive predictive
value (PPV) is the proportion of predicted high-quality arrays
relative to the number of true high-quality arrays. The negative
predictive value (NPV) is similar to the PPV except it is cal-
culated with respect to low-quality arrays. The SVM model
accurately predicts high-quality microarrays when using a
validation set (a randomly selected subset of the HDS, not
including arrays from the training set) of 59 low-quality and
174 high-quality datasets, with a PPV of 89%, but performed
less effectively when predicting low-quality microarrays,
with a NPV of 79% (Table 1). In other words, 89% of the
true high-quality arrays were accurately predicted to be of high
quality, while only 79% of the true low-quality arrays were
accurately predicted to be of low quality.

Expected cost of misclassification function improves
the predictive accuracy of the SVM

To identify the combination of most predictive features (i.e.
the most predictive variables of the six used in the first SVM),
a series of 50 models with different combinations of features
were constructed, including the model with all features and
models with only one feature. The most optimum model was
chosen by minimizing the ECM function based on the clas-
sification of the validation set. The ECM values ranged from
10.93 to 112.3, with the best model using three features, and
the worst model using only one feature, the Cy3 global mean
background.

The optimum model consisted of the Cy5 global (whole
array) mean feature signal intensity, Cy3 global mean back-
ground, Cy5 global SNR. This model exhibited modest
improvement in the sensitivity of the SVM (96% as opposed
to 93%), and a vast improvement in the specificity of the SVM
(92% as opposed to 70%). Similar increases were also exhib-
ited in the PPV (97% compared to 89%) and NPV (90%
compared to 79%) as well. These results suggest that assess-
ment using all available variables to train the SVM model
contributes to noise that compromise array quality predictions
made on the validation set.

An SVM is necessary for classification as the data exhibit
a non-linear separating margin (Figure 3). This precludes the
use of linear models, such as logistic regression models, for
efficient classification of data quality.
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Figure 3. Principal components plots of the training and validation sets. The
(A) training and (B) validation sets were subjected to PCA, and the first three
principal components were plotted. It is clear that a non-linear margin provides
separation between the high- and low-quality populations.

Division 2: non-parametric regression methods
detect grid misalignments

A non-parametric regression procedure is utilized for detecting
grid misalignments. MA-plots have been used to visualize
microarray normalization implemented on the print-tip level
(12,16). In addition to aiding in normalization, MA-plots assist
with the identification of misaligned grids. Non-parametric
regression methods, initially introduced to estimate bias, are
also capable of identifying misaligned microarray quantifica-
tion grids on a per array basis provided that most of the
microarrays under study are correctly aligned, and that mis-
alignment is an infrequent and aberrant event (12). Whereas
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most of the microarray grid blocks (a geographical region on
the microarray where all features are printed by the same print-
tip) have a slight non-linear relationship, misaligned blocks
will exhibit a significantly greater slope than correctly aligned
blocks such that they appear as obvious outliers in the MA-plot
(Figure 4A and B).
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Arrays demonstrating misaligned features are identified for
follow-up and realignment. The realignment of the block will
result in the alteration of the global intensity values for that
array and as a result are resubmitted for Division 1 analysis.
During the realignment process, it may be possible to diagnose
possible causes of the misalignment, such as high background,
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Figure 4. Loess analysis of microarray data identifies microarrays with misaligned grids. (A) Loess analysis of the raw intensity values from each array identified one
misaligned subgrid on this microarray as evidenced by the lines with large and sharp slopes (arrow). Each subgrid is represented by two lines, one for each dye.
(B) Subgrids 17-24 were identified as possibly problematic in A, and plotted in B for better resolution, identifying subgrid #24 as the putatively misaligned subgrid.
The investigator verified the misalignment using the quantification software and corrected it before further analysis.
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dust contamination, or robotic printing error, facilitating cor-
rective action to minimize future occurrences thus improving
assay performance and consistency.

Division 3: identifying compressed and similar
data distributions in microarray data

Division 3 identifies microarrays with compressed or non-
uniform dynamic range. Box-and-whisker plots were used to
analyze feature intensity distributions on a per-microarray
basis (Figure 5). Based on empirical observations, optimal
distributions have the following characteristics: (i) a 25th
percentile of ~700-2000U, (i) a 75th percentile of
~7000-10000 U (i.e. interquartile range spanning intensities
of 5000-9300 U), (iii) a median of ~3000-6000 U and 4 a
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Figure 5. Illustration of the box-and-whisker plot to examine the distribution of
feature intensities. Boxes represent the interquartile range, with the 75th per-
centile at the top and the 25th percentile at the bottom. The line in the middle of
the box represents the 50th percentile, or median, while the plus represents the
mean. The pluses for arrays 20-24 lie on the 75th percentile line of the box.
Whiskers represent the rest of the distribution, with their terminations repres-
enting the lowest and highest feature intensity values. The x-axis represents the
individual microarray, while the y-axis represents the feature intensity values.
The boxplot of the HQ-HDS population of median Cy5 signals
(array_code = 0), illustrating a broad range of values, from eight randomly
selected HQ-HDS arrays. (A) Ideally the 75th percentile would be in the range
of 7000-13 000 U, with an interquartile range of ~5000-9500 U. The arrays
under study (array_code > 0) exhibit some compression (Cy5 channel shown
here), as indicated by compressed interquartile ranges (i.e. boxes), with micro-
arrays 19-24 exhibiting the greatest compression issues. (B) Visualization of
the same data using boxplots of the log,-transformed data. Here, the high quality
distribution appears centered ~11.51 U, with an interquartile range spanning
9.86-13.27. It is evident that the remainder of these distributions are com-
pressed compared to the HQ-HDS, and the distributions for 19-24 are shifted
downwards, a feature not evident when using normal space boxplots.
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mean within the interquartile range defined by the boxed
region in Figure 5. The distribution of mean Cy5 median
feature intensity values for the HQ-HDS is shown in
Figure 5 (array_rep = 0). Based on these criteria, microarrays
19-24 fail to show appropriate distributions because the 75th
percentile is lower than the recommended range of 7000-
10000 U (array_reps: 19-24). Microarrays 13—18 approach
appropriate distributions, since the 75th percentile of the fea-
ture intensity distribution is closer to the recommended 75th
percentile (i.e. 7000—10 000 U) which is more consistent with
the empirically defined recommendations based on the HQ-
HDS (Figure 5A). Boxplots generated on the log, transformed
data (Figure 5B) further illustrate the data compression in
arrays 13—18, and demonstrate that the distributions for arrays
19-24 also exhibit a downward shift in the IQR.

As the interquartile range and number of saturated features
are positively correlated (Figure 6), the number of saturated
features serves as a useful surrogate marker to ensure com-
parable data distributions are achieved during array scanning.
Figure 7 shows the number of saturated features per array for
the microarrays shown in Figure 5 (array_reps > 0). Typically
this plot includes the upper and lower control limits (empir-
ically defined to be 2 and 1%, respectively). These control
limits set the boundaries for acceptable data (i.e. data must lie
between the control limits to be acceptable). However, on this
plot all of the microarrays (15-24) are well below the LCL
(in the range of 0.1-0.5% of the features). Consequently,
microarrays 19-24 have severely compressed dynamic
range, as reflected by the low number of saturated features.

Implementation

The protocol is an initial step to provide a non-biased data
quality assessment tool that facilitates the sharing of high-
quality data, albeit on a per lab basis. It is meant to be
implemented locally, with a focus on intralaboratory or col-
laborative project quality assessments as opposed to broad
quality assessments of datasets within public repositories. It
is assumed that at the very least, some form of feature quality
control, such as that found in image quantification software
[e.g. GenePix (Axon Instruments), AnalyzerDG (Molecular-
ware)] or which can be implemented separately (6,7), before
implementation of these methods. A more detailed listing of
assumptions is provided in Table 2. The primary goal is to
ensure arrays are of comparable quality, and to minimize
unnecessary technical variation that may skew future results.
As such, these techniques are platform independent, but do
not support cross-platform quality comparisons within a study
or across a public repository.

To implement the full protocol, an internally established
HDS of high- and low-quality microarrays must be available
in order to assess quality metrics of interest for Division 1
analysis. The predictive variables presented in this study are
specific to our HDS; implementations of the general method
by other groups may identify additional variables, although
overlaps between laboratories are likely. Use of the ECM
function facilitates the identification of SVM models that
are more predictive than others. Investigators may wish to
explore other methods of feature selection, or to utilize
the first several principal components from a principal
components analysis (PCA), to create SVM models that
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Figure 7. Saturated features correlate with compressed distributions. The
microarrays depicted are the same shown in the box-and-whisker plot in
Figure 5. The largest degree of distributional compression in Figure 5 corre-
sponds to microarrays 19-24, the ones with the lowest number of saturated
features.

minimize the ECM. Ultimately, the investigator must decide
which variables are most predictive when used in the SVM.
Investigators may also be required to use an alternative kernel
in the SVM procedure to ensure optimal discrimination.
Division 2 and 3 analyses may be implemented without the
use of the HDS, may be implemented independent of Division
1, and each other, and may be implemented in any order.
Division 2 and 3 analyses may use any statistical software
that supports LOESS and boxplot creation, such as R or
SAS. Although the algorithm for Division 2 is commonly
used for normalization, our use in this manner is not
for its normalization properties, but rather its visualization

Table 2. Applied assumptions for intralaboratory quality control and assurance
protocol®

. Test and training datasets were obtained using the same, pre-agreed SOP

. Test and training datasets used the same microarray platform

. Microarray scanning is performed using the same equipment

. Image analysis (including segmentation and background calculation
methods) used the same approach for test and training datasets

5. Same normalization methods were used for test and training datasets

(Division 3 analyses)

N =

“The datasets available for this manuscript were insufficient to test the necessity
of each assumption.

properties. Thus, use of Division 2 does not preclude the
use of other normalization techniques.

DISCUSSION

Quality control measures are performed to ensure that extreme
or unusual variation and other technical issues do not over-
shadow biological and treatment variance. Although the goal
of normalization is to minimize technical variation across
samples, most normalization techniques will be more success-
ful if less technical variation is present before normalization.
Therefore, quality control techniques are used to identify tech-
nical variation arising from assignable causes due to the pro-
cess. If the variability exceeds a chosen threshold, low-quality
datasets can be identified and eliminated or corrected before
further analysis while addressing sources of undesirable
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variation in future studies, thus improving assay performance
and consistency. Normalization on the other hand corrects for
variability that arises from assignable causes.

By controlling the quality of the data, assurances can be
made that the results from these studies are due more to bio-
logical variation, and less to technical variation. Furthermore,
by decreasing the technical variation, more accurate estimates
of gene expression may be made, while making more power
available for significance testing. This has direct impacts
on knowledge that is exchanged through data sharing via sci-
entific publications and public data repositories.

A streamlined and standardized process of microarray qual-
ity control has been developed that encompasses several com-
plementary techniques. The protocol combines a trained SVM
model and non-parametric regression model with more clas-
sical techniques such as box-and-whisker and line plots.
Although, it is possible to approach the line plot using a
Shewhart plot, where control limits are defined based on
the variance (NIST/SEMATECH e-Handbook of Statistical
Methods, http://www.itl.nist.gov/div898/handbook/, accessed
on April 5, 2004), for our purposes empirically defined control
limits are preferred. Several different variables, including the
feature signal and background intensity levels, SNRs, grid
alignment, data distribution and dynamic range, and the num-
ber of saturated and undetected features are used to assess data
quality on a per array basis, thus providing a streamlined, high-
throughput analysis method to identify quality assurance
issues that require intervention.

Quality assignments by the SVM improved only when the
most predictive variables, as determined by minimizing the
ECM function, were used (Table 1). By using the most
predictive variables the SVM improves in sensitivity (i.e.
true positive rate), specificity (i.e. true negative rate), PPV
and NPV, suggesting that the SVM model that minimized
the ECM function does not contain as much noise compared
to the model that uses all of the predictive variables, and that
the ECM can be used as an objective function for evaluating
SVM performance. Also, collinearity between the Cy5 SNR
and the Cy5 background was not exhibited in the most pre-
dictive model (Figure 8). With respect to the protocol,
microarrays that are of high quality progress to Division 2
analysis while the samples from the low-quality microarrays
are flagged to repeat the hybridization.

Predictive variables may differ among labs, and are expec-
ted to be technology/platform and protocol dependent. In this
study it is not surprising that Cy5 mean global feature intensity
and Cy5 SNR are both included in the model as it is reported to
be more susceptible to environmental factors, such as ambient
ozone levels, than Cy3 (17).

Division 2 analyses focuses on grid alignment using MA-
plots, and plotting the data on a per-block or subgrid basis to
identify block misalignments. This streamlines the process of
realignment which can be reassessed in Divisions 1 and 2, and
minimizes the need to conduct costly, time consuming, and
potentially unnecessary repeat hybridizations.

Division 3 analyses are concerned with data distributions,
and ensuring proper dynamic range. Appropriately and
similarly distributed data are considered to be of high-
technical quality and are forwarded for further analysis.
Data distributions are assessed using box-and-whisker plots,
where the highest intensity value should be at saturation
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Figure 8. Cy5 mean global feature intensity and Cy5 SNR are not correlated.
The scatterplot of mean global feature intensity and the SNR illustrates that no
relationship exists, per se, between the two variables. The line in the plot
represents the loess best fit line through the data. The dip in the line is a result
of the concentration of low-quality arrays between 5000 and 7500 U on the
x-axis.

(65535 U). Data exhibiting appropriate distributions have
yielded comparable results to those verified by QRT-PCR
(13). Most problems with compressed interquartile range
and distributions are linked to inappropriate photomultiplier
tube (PMT) gain settings. The PMT gain should be set to
obtain a comparable number of saturated features (our experi-
ence is that 1-2% is appropriate) in order to achieve similarly
shaped data distributions across all arrays (i.e. 75th percentile
of ~7000-10 000 U and 25th percentile of ~700-2000 U, with
a mean within the interquartile range).

The most reliable indicator of obtaining appropriate
dynamic ranges during the scanning process is the number
of saturated features, and not the PMT value. We advocate
shifting the PMT value in order to obtain a proper data dis-
tribution, and sacrificing the overall background intensity.
Ideally, the background signal intensity will be low enough
so that shifts in PMT will not adversely affect the number of
identifiable features. Thus, it is not advisable to standardize the
PMT gain value for an entire microarray experiment, as it is
expected that optimal PMT gain values will vary by microar-
ray. Changing the gain values following a microarray scan
repeatedly may result in photobleaching of the dyes, especially
when smaller amounts of labeled samples (e.g. <15 pg of
starting material) are hybridized to the array. Following
scanning, diagnostic plots can be used to determine if the
number of saturated features meet the criteria (1 and 2% as
the LCL and UCL, respectively, are typically used). Abbre-
viated and compressed data distributions can manifest prob-
lems in downstream analysis and normalization, and may
compromise subsequent statistical analysis of gene expression
changes.

For example, arrays 19-24 exhibit the greatest degree of
data compression in addition to shifted IQRs (Figure 5) and
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Figure 9. Background signal should be sacrificed for more saturated features.
The microarrays depicted are the same shown in the box-and-whisker plot in
Figure 5. The arrays with the largest Cy3 background are arrays 21-24. The
reference line represents the mean Cy3 background for the HQ-HDS. In this
case, the investigator was more concerned with obtaining a low Cy3 back-
ground than an optimal number of saturated features. Cy3 background should be
sacrificed to increase the number of saturated features as the mean background
for those arrays is below the mean for the HQ-HDS.

highlight the correlation between the number of saturated
features and the compressed distribution (Figure 7). The
low background levels for these microarrays (Figure 9) is a
likely contributing factor since the PMT gain was purposefully
set low to minimize background intensity, resulting in the
constricted interquartile range. Instead, PMT levels should
have been increased to achieve 1-2% feature saturation to
increase the probability of obtaining an appropriate and uni-
form distribution (dynamic range) across all microarrays
within the study.

Some may question the necessity of a large-scale QAP,
especially with regard to experiments employing the reference
design, where a common reference sample is present on all of
the microarrays which could serve as indicator of quality.
However, in a well-controlled experiment, the reference sam-
ple will be independent of the treatment samples, especially
when using dye-swaps and technical replicates. Thus, with the
samples being independent, they will also be uncorrelated;
meaning signal intensities from the reference should not reflect
signal intensities from the treatments. Consequently, variance
in the two sample classes will also be independent, and the
quality of the reference signal will have no relationship to
the quality of the treatment signal. This also would preclude
the use of the reference sample based method based from those
designs that do not incorporate a reference sample, such as the
loop family of designs.

Following these quality control methods, only high-quality
data should proceed to normalization and higher-order ana-
lyses. However, all microarray data should be stored in an
appropriate database, including low-quality microarray data,
for future refinement of the HDSs. This ensures the quality of
work being generated within a laboratory to be of their highest
quality. However, it does not facilitate comparisons to the
general body of publicly available data. By ensuring data
being produced at the laboratory level is of the best local
quality, investigators ensure the reproducibility of their results.
However, the burden of quality assessment by the public user
and peer reviewers still remains a challenge that is beyond the
scope of these methods.
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CONCLUSIONS

This protocol serves as an initial step to assess intralaboratory
or collaborative group data quality for studies conducted using
the same spotted microarray platform. Quality control ensures
data integrity and is essential to facilitate subsequent analysis
and meaningful interpretation that support conclusions, future
hypotheses and knowledge-based decision making. It provides
complementary QA/QC methods that include automated,
high-throughput quality assessment using SVMs. Combining
this protocol with other methods such as biological replicate
clustering (5), and spot quality control assessments provides a
more complete quality control protocol that ensures the integ-
rity of cDNA and oligonucleotide microarray data. The adop-
tion of such measures is necessary to instill confidence in data
uploaded to public repositories, an emerging requirement for a
growing number of prestigious journals. However, the devel-
opment of an enterprise solution that assesses data quality
across platforms and between independent groups available
within public repositories is needed in order to realize
comprehensive knowledge extraction from publicly available
complex datasets.

SUPPLEMENTARY DATA
Supplementary Data are available at NAR Online.
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