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Introduction

Fungi occupy a myriad of niches. They can be free-living

(indifferent) as saprophytes recycling nutrients in the natural

environment and/or have a range of relationships (affectionate

and deceitful) with insect, animal, or plant hosts. Interactions with

plants can be a continuum and range from obligate biotrophy

where fungi cannot be cultured outside living hosts to necrotrophy

where fungi kill and live on released nutrients. Biotrophic fungi

need to avoid or suppress defence responses. They include

symbionts, which confer a benefit to the host, and pathogens,

which can cause devastating diseases such as stem rust, which

threatens production of wheat worldwide [1]. Mycorrhizae

colonise roots of .80% of land plants and are symbiotic,

increasing nitrogen and phosphorus uptake from the soil, while

feeding on sugars from the host photosynthate. Secreted proteins

are on the front line of host–fungal interactions, and a particular

class, effectors, is a hot topic. Here, we examine a range of fungi

and consider their complement of secreted proteins (secretome)

and roles of effectors in fungal lifestyles.

For Some Fungi, There Is a Relationship between
Lifestyle and Secretome Size

The Fungal Secretome Database (FSD) [2] predicts secreted

proteins using SignalP, which identifies secretion signal peptides

within proteins. We applied SignalP to several recently completed

genomes and examined whether the ratio of secretome size to total

gene number reflects the predominant lifestyles (Figure 1). The

total gene number ranges from 4,000 to 20,000, and the

proportion of secreted proteins from 4% to 14%. Fungi with

biphasic lifestyles have a large proportion of secreted proteins.

These include the hemibiotrophic rice blast fungus Magnaporthe

oryzae, the corn smut fungus Ustilago maydis, and Piriformospora indica,

which colonizes dead roots saprophytically and live roots as a

biotrophic symbiont [3]. Its biphasic lifestyle is reflected in its

transcriptome; many genes induced during growth on living roots

are similar to those of the symbiont Laccaria bicolor, whereas genes

induced during saprophytic growth are similar to those of the

saprophyte Coprinus cinereus. The insect pathogens Metarhizium

anisopliae and Metarhizium acridum also have large secretomes [4].

Many saprophytes have similarly sized secretomes as necrotrophs,

as noted previously [2], which may reflect the fact that necrotrophs

often have an extended saprophytic phase as part of their life cycle.

Animal pathogens have fewer genes than saprophytes or plant-

interacting fungi do, and a lower proportion of predicted secreted

proteins.

The Fungal Secretome Includes Carbohydrate-
Degrading Enzymes and Effectors

Within the secretome there are different classes of proteins. Below

we discuss two of them. Carbohydrate-degrading enzymes encoded

by multigene families are secreted copiously by saprophytes to feed

from complex molecules in the environment. Insect and plant

pathogens that have to breach the host surface to gain entry also

have large numbers, as do necrotrophs, which feed from tissue after

they kill it. In contrast, biotrophs have few such families, as

previously noted for mycorrhizae [5]; consequently, there is

minimal release of pathogen-associated molecular patterns (PAMPs)

from the plant cell wall. Accordingly, basal innate immunity, a

mechanism common to animals and plants, is not triggered.

Another class is effectors, which facilitate infection and/or induce

defence responses [6]. Effectors are generally ,300 amino acids,

cysteine-rich, and lack transmembrane domains. They are often

species-specific, polymorphic between isolates, and highly tran-

scribed in planta. They can be avirulence proteins, which are

complementary to plant resistance proteins in ‘‘gene for gene’’

interactions, host-specific toxins, or interfere with innate immunity

by dampening or strengthening defence responses. Many proteins

with effector-like properties have unknown functions.

Effectors of Biotrophic Fungi Modulate Plant
Responses

There are few genome sequences of biotrophic fungi, and as

gene knockouts are difficult to carry out in such fungi, few effectors

have been functionally analysed. Three that elicit plant responses

have been characterized recently, two from symbionts and one

from a pathogen. MISS7 from L. bicolor is the most highly

upregulated gene during symbiosis with poplar. The encoded

protein, which is crucial for successful symbiosis, moves to the

nucleus where it modulates expression of poplar genes, including

ones that alter root architecture [7]. A highly expressed effector

from the mycorrhiza Glomus intraradices, SP7, moves to the plant

nucleus where it interacts with pathogenesis-related transcription

factor ERF19 and helps establish symbiosis, probably by

dampening host defence [8]. A third effector that modulates plant

responses is a chorismate mutase from U. maydis. This enzyme

dimerises with a chorismate mutase from corn, and suppresses the
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production of salicylic acid, a key molecule in plant defence

signaling [9].

Effector Genes Can Move within and between
Kingdoms

Effector genes are often located within repeat-rich regions, near

telomeres, or even on lineage-specific chromosomes; as a result,

these genes are readily lost, gained, or mutated [10]. The gene

encoding the host-specific toxin ToxA of Stagonospora nodorum is

located near a transposase and is present in another wheat

pathogen, Pyrenophora tritici-repentis [11]. Transfer of ToxA from S.

nodorum to P. tritici-repentis probably occurred by horizontal gene

transfer (HGT) on co-infected wheat leaves about 50 years ago.

Genes not only move between fungal genera, but also across

kingdoms. Phylogenetic analyses have revealed transfer of effector

genes from fungi to oomycetes with 8% of the secretome of the

sudden oak death oomycete Phytophthora ramorum proposed to be

derived by HGT from fungi [12].

Animal Pathogens May Not Need Many Effectors

Generally, there are few barriers for a fungus to overcome when

infecting animals. In many cases a fungus needs to be small

enough to enter the host, survive at 37uC (in the case of

mammalian pathogens), and evade immune responses [13].

Figure 1. Relationship between predicted secreted protein number and total gene content of fungi. Data are from [3], or by applying
SignalP to genome releases (indicated by *). Dashed lines discriminate between fungi with high (.10) or low (,6) % secreted proteins. Animal
pathogens: Batrachochytrium dendrobatidis, Candida albicans, Coccidioides immitis, C. posadasii, Cryptococcus neoformans, Histoplasma capsulatum,
Malassezia globosa, Microsporum gypseum, Paracoccidioides brasiliensis, Penicillium marneffei, Trichophyton equinum. Hemibiotrophs: Grosmania
clavigera*, Leptosphaeria maculans* [14], Magnaporthe oryzae*, Mycosphaerella fijiensis, M. graminicola, Moniliophthora perniciosa, Ustilago maydis.
Entomopathogen: Metarhizium anisopliae* [4]. Necrotrophs: Botrytis cinerea, Cochliobolus heterostrophus, Fusarium graminearum, F. oxysporum, F.
solani, Pyrenophora tritici-repentis, Stagonospora nodorum*, Sclerotinia sclerotiorum, Verticillium albo-atrum, V. dahliae. Biotrophs: Melampsora laricis-
populina* [15], Puccinia graminis f.sp. tritici. Saprophytes: Aspergillus flavus, A. nidulans, A. niger, Coprinus cinereus, Neurospora crassa, Neosartorya
fischeri, Podospora anserina, Penicillium chrysogenum, Phanerochaete chrysosporium, Pleurotus ostreatus, Postia placenta, Sporotrichum thermophile,
Trichoderma reesei, T. virens. Symbionts: Laccaria bicolor, Piriformospora indica* [3], Tuber melanosporum* [16].
doi:10.1371/journal.ppat.1002515.g001
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Animal pathogens are often soil saprophytes that infect opportu-

nistically, but, unlike most plant pathogens, some mammalian

pathogens are not highly adapted to their hosts. Perhaps because

of this, many animal fungal pathogens, in contrast to most plant

fungal pathogens, do not display host specificity. An obvious

exception to this is the insect pathogenic genus Metarhizium, which

displays species specificity [4]. Furthermore, there is generally no

intimate cellular relationship between fungus and animal as exists

for obligate biotrophs or symbionts, which are enveloped in fungal

and plant plasmalemmas. Thus, effectors may not be necessary to

mediate deceit in all fungal–animal interactions, but are likely to

be crucial for interactions that deceitful and affectionate fungi have

with plants.
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