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Chemotherapy-induced peripheral
neuropathy: evidence from genome-wide
association studies and replication within
multiple myeloma patients
Seyed Hamidreza Mahmoudpour1,2,3* , Obul Reddy Bandapalli1, Miguel Inácio da Silva Filho1, Chiara Campo1,
Kari Hemminki1,4, Hartmut Goldschmidt5,6, Maximilian Merz5,7 and Asta Försti1,4

Abstract

Background: Based on the possible shared mechanisms of chemotherapy-induced peripheral neuropathy (CIPN) for
different drugs, we aimed to aggregate results of all previously published genome-wide association studies (GWAS) on
CIPN, and to replicate them within a cohort of multiple myeloma (MM) patients.

Methods: Following a systematic literature search, data for CIPN associated single nucleotide polymorphisms (SNPs)
with P-values< 10− 5 were extracted; these associations were investigated within a cohort of 983 German MM patients
treated with bortezomib, thalidomide or vincristine. Cases were subjects that developed CIPN grade 2–4 while controls
developed no or sub-clinical CIPN. Logistic regression with additive model was used.

Results: In total, 9 GWASs were identified from the literature on CIPN caused by different drugs (4 paclitaxel, 2
bortezomib, 1 vincristine, 1 docetaxel, and 1 oxaliplatin). Data were extracted for 526 SNPs in 109 loci. One
hundred fourty-eight patients in our study population were CIPN cases (102/646 bortezomib, 17/63 thalidomide
and 29/274 vincristine). In total, 13 SNPs in 9 loci were replicated in our population (p-value< 0.05). The four
smallest P-values relevant to the nerve function were 0.0006 for rs8014839 (close to the FBXO33 gene), 0.004 for
rs4618330 (close to the INTU gene), 0.006 for rs1903216 (close to the BCL6 gene) and 0.03 for rs4687753 (close
to the IL17RB gene).

Conclusions: Replicated SNPs provide clues of the molecular mechanism of CIPN and can be strong candidates
for further research aiming to predict the risk of CIPN in clinical practice, particularly rs8014839, rs4618330,
rs1903216, and rs4687753, which showed relevance to the function of nervous system.
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Background
Chemotherapy-induced peripheral neuropathy (CIPN) is a
disabling common adverse drug reaction of several chemo-
therapeutic agents including platinum compounds, taxanes,
vinca alkaloids, proteasome inhibitors and thalidomide. The
reported incidence of CIPN is ranging from 12.1% up to

over 90% of patients undergoing treatment with various
antineoplastic agents [1]. CIPN not only restricts the treat-
ment (dose reductions, delay or cessation of therapy) but
also significantly influences the patient’s quality of life after
treatment. The 5-years survival rate for people diagnosed
with cancer of any site was 66.9% in the US in 2013 [2]. It is
therefore important to predict and prevent CIPN for a better
quality of life in the growing number of cancer survivors.
A number of candidate gene approach studies have

shown different genetic predictors of CIPN [3–5]. How-
ever in general, most of the candidate gene approach
studies have been difficult to replicate and their results
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should be interpreted with extreme caution [6]. On the
other hand, recent robust genome-wide association studies
(GWASs), mainly focussing on individual chemotherapeutic
agents, have introduced several genetic markers to predict
the risk of CIPN. However, many of those associations have
not been replicated yet in an independent population or
within patients treated with other chemotherapeutic agents.
Hypothesizing on shared mechanisms of CIPN for different
medications, we aimed to replicate the associations of all
previously published GWASs on CIPN within a cohort of
newly diagnosed multiple myeloma (MM) patients treated
with either bortezomib, vincristine or thalidomide.

Methods
Literature search
In order to extract data from all previously published
GWASs on CIPN, a systematic literature search was con-
ducted within the PubMed central database until December
2016 for the English language references. To maximize the
search coverage, medical subject heading (MeSH) terms for
the “genome-wide association study” and “chemotherapy”
and “neuropathy” were included. Title and abstract of the
retrieved references were screened manually to include only
original human studies that investigated the association of
CIPN with genetic variations on the whole-genome level.
Animal studies, review articles, editorials and abstracts of
conferences were excluded. Furthermore, all references of
the included studies or review studies were also assessed
for additional published articles not included in the original
search or not indexed in PubMed. Full texts of all included
studies were retrieved via the library of German cancer
research center (DKFZ). The following information was
extracted from the full text or via direct contact with the
authors of included studies: publication year, source of the
clinical data (study design), ethical approval statement,
sample size (number of cases and controls), chemotherapy
medication that caused CIPN, cancer site, genotyping
methods, ethnicity of patients and for the replication, all

SNPs associated at the significance level of the
P-values < 10− 5 were retrieved. If no SNP reached
below this threshold, only the most significantly asso-
ciated SNP reported in the paper was selected. All
non-SNP genetic variations were excluded for replica-
tion. The effect sizes were extracted from the paper ei-
ther as odds ratios (ORs), hazard ratios (HRs) or beta
coefficients. Chromosomal positions, reference allele
and alternate alleles were extracted from database of
Single Nucleotide Polymorphisms (dbSNP) [7].

Patient sample, genotyping and data analyses
The study population comprised patients selected from a
previously performed GWAS in Germany on 1082 MM
cases, recruited through the German-Speaking Myeloma
Multicenter Group (GMMG), coordinated by the University
Clinic Heidelberg. About 85% of patients were registered in
3 clinical trials (HD3, HD4 and MM5) [8–10]; about 15%
were recruited outside clinical trials (Table 1). In summary,
the patients received one of the following therapy regimens
as an induction therapy followed by maintenance therapy
and autologous stem-cell transplantation: a) bortezomib,
doxorubicin, and dexamethasone (PAD), b) vincristine,
doxorubicin, and dexamethasone (VAD), c) thalidomide,
doxorubicin, and dexamethasone (TAD). From 646 patients
who were treated with bortezomib, 480 patients (74.3%),
were treated intravenously (IV) and 154 patients (23.8%)
subcutaneously (SC). For 12 patients (1.8%), the route of
administration was changed from IV to SC during the treat-
ment. For all the patients, neuropathy was evaluated before
the start of every therapy cycle, after the induction therapy,
and before the stem-cell transplantation. The latest version
of Common Terminology Criteria for Adverse Events
(CTCAE) was used to grade the CIPN (version 2.0 for HD3,
version 3.0 for HD4, version 4.0 for MM5, and various
versions for patients outside the trials). Patients were
excluded from trials, if they had clinically relevant
pre-existing neuropathy; in case of subclinical pre-existing

Table 1 General characteristics of study population

Characteristics CIPN Cases (148) Controls (835)

Mean age 57.48 57.30

Gender male % 86 (58%) 493 (59%)

History of neuropathy 21 (14.2%) 30 (3.6%)

Medication Medication

Bortezomib Vincristine Thalidomide Bortezomib Vincristine Thalidomide

Study HD3 – 4 6 – 53 40

HD4 28 15 – 116 132 –

MM5 47 – – 394 – –

NTP 27 10 11 34 60 6

Total 102 (68.9%) 29 (19.6%) 17 (11.5%) 544 (65.2%) 245 (29.3%) 46 (5.5%)

CIPN chemotherapy-induced peripheral neuropathy, NTP non-trial patients
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neuropathy, the history of neuropathy was recorded. Sample
and clinical data collection from patients was done with in-
formed consent and with the relevant ethical review board
approval in accordance with the Declaration of Helsinki
(ethical committee numbers: L-119/2001, L-222/2004, and
AFmu-119/2010 from the University Clinic Heidelberg [11].
For the replication of associations from the previous
GWASs on CIPN, in the present study only the patients
treated with either bortezomib, vincristine or thalidomide
were taken into account [12]: 983 European newly diag-
nosed MM patients, out of whom 148 were CIPN cases of
grade 2–4 (102/646 treated with bortezomib, 29/274 treated
with vincristine and 17/63 treated with thalidomide).
Genotyping was completed using Illumina Human

OmniExpress arrays, in accordance to the manufacturer’s
protocols (Illumina, San Diego, USA). Standardized quality
control measures were implemented, prior to any associ-
ation analysis. Samples in which less than 95% of SNPs were
successfully genotyped were excluded. Principal component
analysis was utilized to assess and correct population stratifi-
cation and unanticipated relatedness. SNPs with call rates of
less than 95% or with minor allele frequency (MAF) of less
than 1% or with deviation from Hardy-Weinberg equilib-
rium with P < 10− 5 in controls were excluded from the
analyses. To increase the genome coverage, imputation
based on the 1000 Genomes data was performed using
IMPUTEv2 for SNPs not present in the Illumina arrays. Im-
puted SNPs with an information metric < 0.30 or MAF < 1%
were excluded [13]. Estimates of odds ratios (ORs), corre-
sponding 95% confidence intervals (CIs) and P-values were
obtained from logistic regression models assuming an addi-
tive genetic model to assess the association of selected SNPs
with the CIPN. For the replicated SNPs on the nominal level
of significance (p < 0.05), alleles were aligned with the litera-
ture reported alleles, in a way that the same risk alleles were
considered for both replication and the original publication.
In case of discordance between risk alleles, the SNP was not
considered to be replicated. The strongest signal in each
locus was further investigated.

In silico functional analyses
To investigate the influence of the replicated SNPs, their
regulatory nature and the possible functional effects of the
SNPs or their associated SNPs (r2 ≥ 0.8), computational
predictions were performed using the HaploReg v4.1 tool
(www.broadinstitute.org/mammals/haploreg), which con-
tains data from the Roadmap Epigenomics and ENCODE
projects, sequence conservation data across mammals, the
effect of SNPs on regulatory motifs, and the effect of SNPs
on expression from eQTL studies. For eQTL hits, the most
relevant tissues were presented together with the correlated
gene and reported P-value. The RefSeq data and GENCODE
data were used for the gene annotation [14]. The UCSC
genome browser home (https://genome.ucsc.edu/) was used

that gives a rapid and detailed access to any region of the
genome and the tool RegulomeDB (http://regulomedb.org/)
was used to identify DNA features and regulatory elements
that contain the coordinate of the SNP [15].

Results
After applying the inclusion/exclusion criteria for the
literature search, 9 GWASs were identified on CIPN (Fig. 1).
All the included studies stated their ethical approval to con-
duct the study from relevant authorized ethic committees.
Paclitaxel-induced neuropathy was the most common
investigated CIPN with 4 studies [16–19], followed by 2
GWASs on bortezomib-induced neuropathy [20, 21].
Vincristine, docetaxel and oxaliplatin-induced neuropathy,
each had been studied once [22–24]. Table 2 presents the
details of all included studies. There were 2 studies within
MM patients, 2 studies in breast cancer patients and 1 study
each in prostate cancer, colon cancer and acute lympho-
blastic leukemia (ALL) patients. Two studies out of 9 did
not specify the cancer site. Almost all GWASs were within
the adult population except the one on vincristine-induced
neuropathy in children with ALL. This study was also the
only included study that meta-analysed GWAS from 2 pa-
tient populations. For our study, the most significantly asso-
ciated SNPs from the meta-analysis (p-value < 10− 5) were
selected for the replication. The number of included genetic
variants from this study was the highest among all 9 studies
(458 SNPs out of 526 included SNPs in total) [22]. The sam-
ple size of included studies ranged from 96 patients to 1357
patients. The smallest study was the one on oxaliplatin-in-
duced neuropathy in colon cancer patients. It was also the
only one that did not reported any SNP reaching the
significance level of 10− 5, therefore the most signifi-
cantly associated SNP was selected from this study as
reported in the paper [24]. The level of significance
(P-values) was extracted for 526 SNPs in 109 loci that
met the inclusion criteria for the replication; In each
locus the most significantly associated SNP from the
literature is highlighted (Additional file 1).
All selected SNPs were investigated in a population of

983 MM patients out of which 148 subjects developed
the clinically relevant peripheral neuropathy grade 2 or
higher. The general characteristics of included patients
are presented in Table 1.
In total 9 loci out of 109 selected loci were repli-

cated in the present study population at the nominal
significance level (p-value< 0.05), however, the stron-
gest signals in the relevant loci reached lower
p-values (Table 3). Eight of those loci were replicated
from one study that investigated the vincristine-in-
duced neuropathy in children with ALL and 2 other
loci were replicated from 2 independent studies on
paclitaxel-induced neuropathy in patients with breast
cancer. SNPs of these 2 loci were directly genotyped
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SNPs and he other 8 replicated loci contained im-
puted SNPs, however in these loci, there was a genotyped
SNP in high linkage disequilibrium (LD) with the imputed
one. Table 3 shows the details of the replicated SNP in each
locus with its effect size and p-value both from the original
study and the replication. The strongest signal in each locus

from the current study is also presented together with the
pairwise LD indicator of (r2).

Discussion
Out of 526 included SNPs in 109 loci, retrieved from 9
independent published GWAS on CIPN, 13 SNPs in 9

Table 2 The details of all included studies
Reference Year Sample size

case/controls
Ethnicity Chemotherapy

agent
Source
of data

Genotyping Cancer site

Magrangeas 2016 155/314 European Bortezomib RCT SNP 6.0 Affymetrix arrays Multiple myeloma

García-Sanz 2016 33/139 NA Bortezomib and/
or thalidomide

RCT Axiom Exome Genotyping
array (Affymetrix)

Multiple myeloma

Hertz 2016 50/566 Caucasian Docetaxel RCT HumanHap610-Quad
Genotyping BeadChip
(Illumina)

Prostate cancer

Komatsu 2015 24/121 Asian Paclitaxel Cohort
study

Illumina Omni-Express
BeadChip

Cancer (NS)

Schneider 2015 576/781 European Paclitaxel RCT HumanOmni1-Quad
array (Illumina)

Breast cancer

Diouf 2015 86/235 Mixed
population

Vincristine RCT Affymetrix GeneChip
Human Mapping 500 K array
532,552 SNPs) or the
SNP 6.0 array (906,600 SNPs)
(Affymetrix)

Acute lymphoblastic
leukemia (ALL)

Leandro-García 2013 144
Cox
regression

European Paclitaxel Cohort
study

Infinium BeadChip Human
660WQuad assay
(Illumina)

Cancer (NS)

Baldwin 2012 855
cox
regression

European Paclitaxel RCT HumanHap610-Quad
Genotyping BeadChip
(Illumina)

Breast cancer

Won 2011 39/57 Asian Oxaliplatin Cohort
study

Affymetrix Genome-Wide
Human SNP Array 6.0

Colon cancer

NA not available, RCT randomized control trial, NS not specified

Fig. 1 Flowchart of literature search and study selection in four phases. The figure illustrates the reasons for excluding studies
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loci were replicated on the nominal level of significance
of P < 0.05 in our study within 983 newly diagnosed MM
patients treated with chemotherapy. This was in comple-
tion of our previous work [25]. All replicated loci were
from 3 relatively large GWASs with the study population
of 1357, 855 and 321 cancer patients, respectively [16,
19, 22]. The involvement of some of the replicated vari-
ants in relevant tissues of the nervous system is poten-
tially an indicator of a true association:
In Table 4, the most relevant results are presented from

the computational predictions for potential functionality
of the replicated loci, performed using the HaploRegv4.1.
The 14q21.1 locus contains 2 replicated SNPs

(rs8014839 and rs9806038). rs8014839 is the most sig-
nificantly replicated SNP in this region, covering several
genes including FBXO33 (F-box protein 33), CTAGE5
(cutaneous T-cell lymphoma-associated antigen, family
member 5), TRAPPC6B (trafficking protein particle
complex 6B), PNN (pinin, desmosome associated pro-
tein), and MIA2 (melanoma inhibitory activity 2). This
variant is annotated with histone mark enrichment in
several tissues, including the brain. There were 4 eQTL
targets reported in the blood, including CTAGE5 at
p-value = 4.68 × 10− 54, TRAPPC6B at p-value = 2.80 ×

10− 43, PNN at p-value = 3.74 × 10− 4 and FBXO33 at
p-value = 4.19 × 10− 4 [26]. FBXO33 is hypothesised to
have function in phosphorylation-dependent ubiquitina-
tion and affecting the serum level of inflammatory cyto-
kines [27]. In a recent GWAS it has been shown that the
FBXO33 is associated with the attention deficiency hyper-
activity disorder (ADHD) as a neurodevelopmental disease.
In that study, the authors showed that the variant alleles
were associated with decreased FBXO33 expression in lym-
phoblastoid cell lines and with reduced frontal grey matter
volume [28]. The strongest eQTL target of rs8014839,
CTAGE5 together with FBXO33 has been associated on a
genome-wide level with an optic neuropathy (glaucoma) in
animals as one of the leading causes of blindness [29]. Add-
itionally CTAGE5 has an important role in cell membrane
transport which is relevant to the function of nervous sys-
tem [30]. The other strong eQTL target, TRAPPC6B plays
a role in vesicle transport which could be important in syn-
aptic nervous system [31]. This evidence indicates that the
genetic variants which cause differences in development of
the nervous system may lead to variation in neuronal sensi-
tivity, including susceptibility to CIPN, however, functional
studies are crucial to reveal the role of these variants in the
central nervous system development.

Table 3 Details of the replicated loci both from published studies, replication cohort and strongest signal in the region

Reference Locus Published
SNP

Strongest
signal in the
locus
(current study)

Position
(hg38)

Risk
allele

Published studies Replication

Effect size (OR/HR) P-value Medication Association
OR

P-value Imputation
Info

Diouf 14q21.1 rs8014839 39,374,915 G 3.63 5.1 × 10−6 Vincristine 1.55 0.0006 0.99

rs8014839a 39,374,915 G – – NA NA NA

Diouf 4q28.1 rs4618330 126,757,231 A 0.47 6.4 × 10− 6 Vincristine 0.7 0.004 0.98

rs28742896 c 127,678,685 A – – 0.6 0.0001 0.99

Baldwin 3q27.3 rs1903216 187,911,715 A 1.59 5.6 × 10−6 Paclitaxel 1.4 0.006 1

rs2611620 c 187,826,512 A – – 1.69 5.6 × 10−5 0.98

Diouf 3p14.2 rs35558909 60,933,303 G 3.17 4.3 × 10−7 Vincristine 1.36 0.01 0.98

rs2121845 a 60,922,227 A – – 1.76 0.01 1

Diouf 3p21.1 rs4687753 53,861,434 A 4.49 6.2 × 10−6 Vincristine 1.32 0.03 0.99

rs9840079b 53,858,614 T – – 1.39 0.007 0.99

Diouf 8q24.12 rs7817522 120,028,312 T 4.21 3.1 × 10−6 Vincristine 1.3 0.03 0.99

rs17822044a 119,997,585 G – – 1.35 0.02 1

Schneider 15q21.3 rs2062640 54,737,776 G 2.01 7.9 × 10− 6 Paclitaxel 1.42 0.04 1

rs2695677 c 54,799,953 C – – 1.96 0.0003 0.98

Diouf 2q33.3 rs11694118 208,077,000 A 0.18 8.8 × 10−6 Vincristine 0.75 0.04 0.96

rs17538082a 208,060,995 T – – 0.73 0.03 1

Diouf 5q23.2 rs10070183 124,521,298 C 0.43 2.8 × 10− 6 Vincristine 0.77 0.04 0.95

rs10478625b 124,527,954 T – – 0.71 0.009 1

Chr Chromosome, SNP Single nucleotide polymorphism, OR Odds ratio, HR Hazard ratio, NA: not applicable
ar2 ≥ 0.8, b r2 ≥ 0.6, c r2 ≥ 0.4 (r2: The linkage disequilibrium metrics between the SNPs), Imputation Info: the score ranging between 0 and 1 which
is the indicator of the certainty of imputation for each SNP
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The rs4618330 in 4q28.1 which maps to 876 kb 5′ of
the INTU (inturned planar cell polarity protein) gene, is
associated with 12 motif changes including 8 motif
changes in a group of FOX transcription factor family genes
[32] and according to the RegulomeDB it is also likely to
affect their binding. Although none of the 12 SNPs in the
high LD region were reported to function as an eQTL,
changes in the FOX binding sites could potentially explain
the involvement of the SNPs in the neuropathy because
previous studies have shown a role of the FOXA genes in
regulating the maintenance of dopaminergic function of
neurons, particularly in the embryonic stages [33]. Addition-
ally, FOXJ1 is a significant transcription factor in the central
nervous and reproductive systems and overexpression of
FOXJ1 has been reported to be highly associated with colon
cancer stage and its outcome [34, 35]. Motif changes for the
FOX transcription factor family genes were observed also in
other replicated loci in our study within 3p21.1 (rs4687753)
and 5q23.2 (rs6891783) [36].
On chromosome 3, there are 4 replicated loci and

rs1903216 in 3q27.3 is the most significantly associated
variant among them that maps 166 kb 5′ to the BCL6
(B-cell Lymphoma 6) gene and it is one of the key SNPs
associated with the CIPN because this SNP is the only one
among 9 replicated loci which has previously been repli-
cated both in European and African American popula-
tions [16]. However, after that 2 studies have failed to
replicate this association. One of them is a small study
with only 119 patient treated with paclitaxel out of whom
46 had developed neuropathy [4]. The other one is a larger
study with1303 breast cancer patients treated with pacli-
taxel [36]. The population of this latter study was slightly
different from the original GWAS both in distribution of
menopausal status (as an age indicator) and HER2 (hu-
man epidermal growth factor receptor 2) status while in
several study populations the association between age and
CIPN has been reported [19, 37, 38]. Therefore, a part of
unsuccessful replication could be explained by the inter-
action between the effect of age and genetic variants.
More importantly, the paclitaxel administration intervals
were different in these two studies. In the discovery
GWAS only patients with biweekly regimen were included
[16], while in the small replication study patients had
weekly regimen [4] and in the larger replication, at least
half of the included patients had therapy every 3 weeks
[36]; this longer interval is shown in the other studies to
decrease the incidence of neuropathy by around 10% [39]
which could partially explain the unsuccessful replication
as well. The BCL6 gene encodes one of the transcription
factor proteins which is associated with several lymph-
omas, such as diffuse large B-cell lymphoma, Hodgkin
lymphoma and chronic lymphocytic leukaemia trough
program regulation of the germinal centre B cell [40], but
its role in the nervous system is not clear yet. The

HaploReg analyses showed enhancer histone mark enrich-
ment in several tissues. It is also related to 5 motif
changes, among them BCL_disc6 [32].
3p21.1 is the other key replicated region which is cov-

ering the genes IL17RB (Interleukin 17 receptor B),
CACNA1D (calcium voltage-gated channel subunit
alpha1 D), CHDH (choline dehydrogenase), ACTR8
(arp8 actin-related protein 8 homolog) and SELK (sele-
noprotein K). The replicated SNP, rs4687753, in this
region is in a high LD (r 2 > 0.8) with 49 other variants
based on the HaploReg analyses. Fifty-three eQTL hits are
related to this variant, the most relevant ones are in nerve
tissues targeting ACTR8 at p-value = 1.78 × 10− 12, CHDH
at p-value = 1.06 × 10− 7, IL17RB at p-value = 6.2 × 10− 7

and SELK at p-value = 8.03 × 10− 6. ACTR8 and IL17RB
are eQTL targets in brain as well at p-value of 3.49 × 10− 9

and 1.49 × 10− 7, respectively [41]. The role of ACTR8 in
transcriptional regulation and DNA repair has been shown
previously [42]. Furthermore, there are 8 motif changes as-
sociated with this variant including the Foxa_disc4 and
POU3F2, the latter one resulting in transcription factor
binding site change based on the RegulomeDB data [43].
The effect of this variation on regulating the expression of
genes particularly in the nervous system, makes it plausible
to contribute to CIPN; this strongly suggests further func-
tional research on the variant.
To the best of our knowledge, this study is the first

genetic association study that tries to aggregate results
from all GWASs on CIPN and replicate them in an in-
dependent and relatively large population. Since we
used the data from clinical trials, the quality of pheno-
type evaluation was high standard. The restricted power
of this replication is acknowledged, although the num-
ber of included patients was the highest in comparison
to all the included GWAS except one of them [19]. Fur-
thermore, when assuming that the 109 tested loci are
independent and using the Bonferroni correction for
multiple testing (P = 0.05/109 = 0.0004), only 3 out of
the 9 replicated loci (4q28.1, 3q27.3, 15q21.3) would
survive, which can be considered another limitation of
this study. However, the assumption in the Bonferroni
correction is that each test has a sufficient statistical
power to be successful [44]. This is not the case here as
many tests are underpowered and the application of the
correction to 109 tests is not appropriate. All the repli-
cated loci were from the three relatively large studies
but in addition to the small sample size of other previ-
ous studies, there might be other reasons for unsuc-
cessful replication: the grade of CIPN in our study for
cases was considered to be two or higher while for
example Hertz et al. considered grade three or higher
in their study including relatively large number of pa-
tients [23]. While the majority of patients in our study
were treated with bortezomib, we could not replicate
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the findings from two previous GWAS on bortezomib,
probably due to differences in the route of administra-
tion of the drug: compared to the previous GWAS, in
which IV administration was used, 25% of the patients
in our population had the SC administration and this
can modify the risk of CIPN [45].
From the clinical point of view, this study provides add-

itional support for the involvement of genetic variation in
CIPN. However, the combined effects of the replicated loci
as a genetic risk score needs to be further investigated in an
independent population, and the current evidence is not
enough to have an immediate impact on clinical practice.

Conclusions
We replicated several SNPs in 9 loci, previously re-
ported to be associated with CIPN in published
GWASs. These findings provide further clue to conduct
molecular studies on the effect of those variants on
CIPN and to get new insights for better understanding
the mechanism of CIPN such as hypersensitivity of
nerves that may occur during the nervous system
development or the overexpression of proteins involv-
ing in the membrane ion exchange procedures and
vesicle transport. Additionally, the findings provide
evidence that 4 relevant SNPs (rs8014839, rs4618330,
rs1903216, and rs4687753) could be promising candi-
dates for predicting the risk of CIPN in the future.
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