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Single antimicrobial therapy has been unable to resist the global spread of bacterial resistance. Literatures of available in vitro and
in vivo studies were reviewed and the results showed that low frequency ultrasound (LFU) has a promising synergistic bactericidal
effect with antibiotics against both planktonic and biofilm bacteria. It also can facilitate the release of antibiotics from medical
implants. As a noninvasive and targeted therapy, LFU has great potential in treating bacterial infections. However, more in-depth
and detailed studies are still needed before LFU is officially applied as a combination therapy in the field of anti-infective treatment.

1. Introduction

After the application of the first antibiotic penicillin, a series
of natural, semisynthetic, and synthetic antimicrobials were
discovered and applied in clinics, achieving great progress
in bacterial infection therapy and saving millions of lives
at the golden age of antibiotics [1]. However, many decades
later, bacterial infections have again become a serious threat
due to lack of new drug development and rapid emergence
of resistant bacteria. Facing the global “antibiotic resistance
crisis,” we are now in the “postantibiotic era” [2]. For exam-
ple, tigecycline and colistin are the last-resort antibiotics for
multidrug resistant (MDR) Acinetobacter, which is defined
as a serious threat to human health [3]. Unfortunately, tige-
cycline-resistant Acinetobacter baumannii was reported only
2 years after tigecycline was approved by FDA in 2005 [4].
Colistin heteroresistant and resistant A. baumannii have also
been described worldwide [5]. In this context, antimicrobial
combination therapy has become an option to treat infection
withMDRbacteria because of broad coverage and synergistic
effect. However, it also brings higher risk of adverse events,
leading to treatment failure, increased antibiotic use, and
possible accelerated emergence of drug resistance [6].

Overall, we need other methods to confront the growing
problem of bacterial resistance. Low frequency ultrasound
(LFU) is one of the safe and promising physical methods
[7]. Ultrasound, a pressure sound wave with frequency of

20 kHz or more, has been used for decades in research and
diagnostics. LFU generally has a frequency ranging from 20
to 100 kHz and is also termed as high-power ultrasound [8].
It is believed that the acoustic cavitation, or the growth and
collapse of microbubbles in liquid media, is the underlying
mechanism for the bactericidal effects of ultrasound because
it could generate mechanical forces such as shock waves,
shear forces, and microjets to damage microorganisms [9].
The stable cavitation and radiation pressure will generate
multidirectional acoustic microstreams, which will produce
a high shear stress to enhance the release and delivery of
antibiotic from imbedded implants [10]. With other advan-
tages such as beam directivity and capability of treating deep
tissue targets without tissue damage, LFU has been reported
in series of studies to be a promising method to enhance the
antibiotic action on bacteria. Based on available in vitro and
in vivo data, we aimed to evaluate the synergistic effects of
LFU and antibiotics combination therapy in future clinical
practice in this review.

2. Synergistic Effects of LFU and Antibiotics
against Planktonic Bacteria

Although many studies showed that LFU alone can sig-
nificantly reduce bacterial counts [8, 11–13], Pitt et al. [14]
first confirmed the synergistic effects of LFU and antibiotics
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Figure 1: Nonthermal effect of stable cavitation by microbubble-mediated ultrasound. The mechanical effect of cavitating bubbles created
pores in the cell membrane.This allowed gentamicin to enter the bacteria via passive diffusion. (a) In ultrasound condition, there were sparse
microbubbles and only a few gentamicin particles passed through cell membrane. (b) Addition of external microbubbles strengthened the
cavitation, created more pores, and drove more drugs through bacterial cell membrane [16].

in 1994 (Table 1). They evaluated the combination of LFU
and gentamicin against planktonic cultures of Pseudomonas
aeruginosa (P. aeruginosa), Escherichia coli (E. coli), Staphylo-
coccus epidermidis (S. epidermidis), and Staphylococcus aureus
(S. aureus) and found that, at the level of 67 kHz and
0.3W/cm2 intensity, continuous ultrasound alone had no
bacteria inhibitory or bactericidal activity, but, in combina-
tion with the LFU, the minimum inhibitory concentrations
(MICs) of gentamicin for P. aeruginosa and E. coli were
reduced from 4 to 3 𝜇g/ml and 6 to 3𝜇g/ml, respectively,
and the viability of bacteria decreased by several orders of
magnitude. However, ultrasonic treatment enhanced activity
of antibiotics was not observed with Gram-positive S. epider-
midis and S. aureus. Williams and Pitt [15] also observed the
combined effect of gentamicin and LFU against E. coli. The
greatest bactericidal effect (approximately 5 log reductions
in viable population) was realized with continuous ultra-
sonic insonation at 70 kHz and 4.5W/cm2. Zhu et al. [16]
confirmed that microbubble-mediated LFU could further
enhance the antimicrobial efficacy of gentamicin compared
with LFU alone.Thesemight be because the addition of exter-
nal microbubbles strengthened the cavitation, created more
pores, and drove more drugs through bacterial cell mem-
brane (Figure 1). Rapoport et al. [17] applied a spin-labeled
gentamicin bioreduction kinetics model to reveal the mech-
anism of this synergism against Gram-negative P. aeruginosa
and E. coli. Hydrophilic gentamicin is assumed to function
through porin channels in the outer cell membranes. The
results showed the penetration of spin-labeled gentamicin
was not affected by continuous insonation with intensity
below the cavitation threshold (2.4W/cm2), implying that
the synergistic effect between hydrophilic antibiotics and
LFU in killing Gram-negative bacteria did not result from
the enhanced antibiotic penetration through bacterial cell
walls. They speculated that it might be caused by the effect
of ultrasound on interaction of antibiotics with bacterial

cells. It has been reported that although P. aeruginosa is
resistant to erythromycin (MIC between 350 and 250𝜇g/ml),
combination of erythromycinwith continuous LFU at 70 kHz
and 2.2W/cm2 LFU enhanced the bactericidal effect of
125 𝜇g/ml erythromycin against P. aeruginosa [18]. Rapoport
et al. [19] found that application of continuous ultrasound
to suspended P. aeruginosa cells resulted in increased uptake
of hydrophobic antibiotic erythromycin. This effect was
different from that on hydrophilic antibiotics because the
penetration of lipophilic compounds proceeds through the
phospholipid bilayers rather than the porin channels. The
data suggested that, in contrast to porin channels, phos-
pholipid bilayers are perturbed by insonation, forming some
transient defects responsible for the enhanced penetration
of lipid-soluble substances. The effect was transient because
the initial membrane permeability was restored after the
termination of insonation. Runyan et al. [20] found that the
rate of nitrocefin hydrolysis, which reflects the entry rate of
antibiotics, in suspension of P. aeruginosa was increased by
application of continuous ultrasound in an intensity-depend-
ent manner. Liu et al. [21] evaluated the antibacterial effect
of fluoroquinolones (levofloxacin and ciprofloxacin) on E.
coli with and without stimulation of continuous ultrasound
at 40 kHz and found that addition of LFU enhanced the
killing rate of fluoroquinolone to E. coli by 10–30% compared
with fluoroquinolone alone. Moreover, they found that ∙O2−
and ∙OH produced through combined effect of LFU and
fluoroquinolones might be the main reason for the enhanced
bactericidal effect. Rediske et al. [22] compared the action of
LFU combined with antibiotics on several bacterial species.
They found that gentamicin, kanamycin, or streptomycin
at MIC level in combination with continuous ultrasound
decreased viability of E. aerogenes by 4-, 2-, and 1-log degree
than exposure to antibiotic alone for 3 h. The killing rate of
gentamicin at the MIC in combination with ultrasound on S.
marcescens and S. derby was 2-3 logs greater than that with
antibiotic alone.
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Although Pitt et al. [14] showed that LFU alone did not
enhance gentamicin activity against Gram-positive strains,
combination of LFU with other antibiotics showed synergis-
tic bactericidal effect on S. aureus and S. epidermidis (Table 1).
Ayan et al. [23] investigated the effects of eight antibi-
otics, namely, penicillin, oxacillin, erythromycin, teicoplanin,
vancomycin, clindamycin, levofloxacin, and ciprofloxacin,
in combination with LFU, and found combined treatment
of antibiotics with continuous LFU at 1.5MHz and 30–
161mW/cm2 significantly lowered the number of bacterial c
olonies comparedwith that of treatmentwith antibiotics alone
(𝑃 < 0.001). Conner-Kerr et al. [24] conducted an in vitro
study to determine the effects of continuous LFU delivered at
35 kHz and 2W/cm2 on bacterial viability, cell wall structure,
and colony characteristics, including antibiotic resistance
on Methicillin-resistant S. aureus (MRSA). They found that
combined treatment of LFU increased the inhibition zone of
1 𝜇g oxacillin on MRSA plates to above 13mm, the critical
value for determining antibiotic resistance, indicating that
combined treatment of LFU decreased bacterial resistance to
oxacillin. Rediske et al. [22] reported that bactericidal effect
of ampicillin in combination with continuous ultrasound
at 70 kHz and 3W/cm2 against S. epidermidis was 1.5 logs
greater than that of ampicillin alone.

At present, only in vitro experiments were applied against
planktonic bacteria. Using in vitro experiments can eas-
ily determine the antibacterial effect and quickly suggest
whether the combination of LFU and specific antimicrobial
agents has a synergistic antibacterial effect on a certain bac-
terium. Most of these studies applied continuous ultrasound
with frequency ranging from 35 to 70Hz and intensity lower
than 4.7W/cm2. Only one study applied higher frequency
(1.5MHz) and also showed the synergistic bactericidal effect
with antibiotics. Although these results are promising, differ-
ences in the critical ultrasound parameters among these stud-
ies are evident. Especially for ultrasound time, some studies
showed obvious synergism after exposure to LFU within
30min, while others apply continuous ultrasound for 24 h or
even longer.

3. Synergistic Effects of LFU and
Antibiotics against Biofilm

Biofilms are microbes attached to surfaces or to each other
in aggregates or clumps. Biofilms show extreme tolerance to
antimicrobials and host defenses and can withstand 100–1000
times higher antimicrobial concentrations than planktonic
counterparts [25]. Therefore, biofilm caused infection has
always been a troubling clinical problem.

Reports of synergistic effects of LFU and antibiotics
against biofilm were summarized in Table 2. Qian et al. [26]
conducted a series of experiments to test the synergism effect
of LFU and gentamicin on biofilm of P. aeruginosa. First,
they found that continuous LFU at 500 kHz and 10mW/cm2
enhanced the bactericidal effect of gentamicin against 24 h
old biofilm. In addition, confocal scanning laser microscopy
(CSLM) showed that LFU at 10mW/cm2 did not disrupt
biofilm. Therefore, they hypothesized that there is minimal

concern that ultrasonic treatment of an implant infection
would break up and disseminate clusters of biomass to other
parts of the body.Then they compared the effect of ultrasound
at different frequencies of 70 kHz, 500 kHz, 2.25MHz, and
10MHz, respectively, and at power density of 10mW/cm2.
The results indicated lower frequency ultrasound was signif-
icantly more effective than higher frequency ultrasound in
reducing bacterial viability within the biofilm [27]. In another
study they found that continuouswaveformultrasound at fre-
quency of 70 kHz and power density of 10mW/cm2 wasmore
effective in enhancing antibiotic bactericidal effect than that
at intensity of 1mW/cm2 and pulsed waveform ultrasound
with a burst power density appeared to be as effective as con-
tinuous ultrasound at the same power density [28]. Based on
these studies, Qian et al. [28] conducted a comprehensive
analysis about the possible mechanisms in light of the
observed influence of various ultrasonic parameters on the
enhanced action of gentamicin against biofilms. First they
rejected the hypothesis of oscillatory shear inducing antibi-
otic uptake. Because mathematical analysis of oscillatory
shear stress on the cell shows that the magnitude of stress
increases with frequency, the bactericidal effect of ultra-
sound decreases with its frequency. They also ruled out the
existence of transient cavitation in the bioacoustic effect.
There is no difference between the viability of the control
biofilm and the biofilm exposed to ultrasound only. This
indicates that the cells are not killed by the free radicals or
extreme environment produced by transient cavitation and
the observed bioacoustic effect is related to the temporal peak
intensity, not the temporal average intensity of ultrasound.
If transient cavitation were involved, the bactericidal effect
would be a function of temporal average intensity, not peak
intensity. Finally, because the dependence upon peak power
density suggests that acoustic pressure plays a significant role,
they speculated it is possible that stable cavitation and the
accompanying microstreaming contribute to the bioacoustic
effect.

Some in vitro and in vivo experiments aimed at biofilm
of E. coli also showed enhanced efficacy of gentamicin by
LFU. An in vitro study found that, after 6 h of combined
gentamicin and ultrasound treatment, a single-species E. coli
biofilm showed no reproductive ability. The combination
of continuous wave ultrasound at 70 kHz with gentamicin
significantly reduced bacterial viability comparedwith antibi-
otic alone and resulted in about 97% killing within 2 h.When
the exposure time was extended to 6 h, the combination of
ultrasound and gentamicin completely inhibited the repro-
ductive ability of the biofilm. However, the combination of
500 kHz ultrasound and antibiotic produced only a slight
reduction [29]. Rediske et al. [30] developed an in vivo rabbit
model with biofilm-infected disks implanted to determine
if continuous ultrasound at 28.48 kHz could enhance the
effects of gentamicin. They found that treatment alone with
ultrasound at 100mW/cm2 did not affect the viable counts
of bacteria, but treatment with antibiotic plus ultrasound
reduced the viable counts of bacteria by 2.39 log 10 fold (𝑃 =
0.048) compared with treatment with antibiotic alone. In
addition, treatment with ultrasound at 100mW/cm2 showed
no damage to the rabbit skin, but treatment with ultrasound
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at 300mW/cm2 did. To minimize the skin damage, they
evaluated the pulsed ultrasound at 300 or 600mW/cm2 in a
pulse of 100 cycles with a 1 : 3 or 1 : 6 duty cycle, wherein the
temporal average intensity was 100mW/cm2, and found that
ultrasound enhanced the action of gentamicin in killing
E. coli but did not damage skin at pulse or continuous
intensity of at least 300mW/cm2 and an average intensity of
100mW/cm2 [31].

Carmen et al. [32] conducted in vitro and in vivo
researches on LFU combinedwith gentamicin or vancomycin
against P. aeruginosa and E. coli biofilm. Their in vitro study
using colony biofilms found that ultrasound at 70 kHz and
1.5W/cm2 can significantly increase gentamicin transport
through biofilms and 45min of insonation can double the
amount of gentamicin in E. coli biofilm compared to their
noninsonated counterparts. In addition, no detectable gen-
tamicin penetrated P. aeruginosa biofilms without ultra-
sound. But more than 0.45mg gentamicin was collected after
45min of insonation.Their in vivo study on rabbits implanted
subcutaneouslywith infected biofilmdisks showed that appli-
cation of pulsed ultrasound in a 1 : 3 duty cycle at 28.5 kHz
and 500mW/cm2 with 48 h of gentamicin treatment resulted
in a significant reduction of 2.28 ± 0.83 log 10CFU/cm2 in
E. coli biofilm. However, 24 or 48 h of ultrasound combined
with gentamicin failed to significantly enhance the killing of
P. aeruginosa in the biofilm.This difference may be related to
the documented difference in outer membrane permeability
between P. aeruginosa and E. coli [33]. In another study, they
found that S. epidermidis biofilms responded favorably to
combinations of ultrasound and vancomycin, because 48 h of
ultrasound significantly reduced viable bacteria in the biofilm
by 2.08 log 10CFU/cm2 [34].

Seth et al. [35] used a rabbit in vivowound biofilmmodel.
They topically applied ciprofloxacin on postoperative day 4
to eliminate planktonic P. aeruginosa and an antimicrobial
absorbent dressing containing polyhexamethylene biguanide
to prevent regrowth of planktonic bacteria and carried out
LFU treatment every other day or every day. They found that
applications of LFU significantly impacted biofilm-infected
wounds, including a decrease in viable bacteria, as well
as an overall improvement in wound healing and host
inflammatory dynamics. Human 𝛽-defensin 3 (HBD-3) is a
promising cationic antimicrobial peptide for future bacterici-
dal employment. One study showed that biofilm density, the
percentage of live cells, and the viable count of Staphylococcus
that recovered from the biofilm on the titanium surface in
mice were significantly decreased after combined treatment
of HBD-3 with ultrasound. Moreover, ultrasound could
enhance HBD-3 activity of inhibiting the biofilm-associated
genes expression [36]. Liu et al. [37] found that although
application of LFU (40 kHz, 600mW/cm2, 30min, duty cycle
1 : 9) alone or in combination with single antibiotic (colistin
or vancomycin) failed to significantly reduce bacteria counts
in A. baumannii biofilms, application of LFU in combination
with both colistin and vancomycin apparently had more
effective antibacterial function against biofilm.

Both the in vitro and animal model studies have been
applied in the LFU combinations studies against biofilm. In

addition to confirming that LFU has a synergistic antimi-
crobial effect on biofilms, these series studies further clar-
ified three key issues. First, at the same intensity, lower
frequency ultrasound is more effective than higher frequency
ultrasound in reducing bacterial viability within the biofilm.
Secondly, synergistic antimicrobial effect of pulsed-wave
ultrasound is related to the temporal peak intensity, not the
temporal average intensity of ultrasound. Thirdly, skin dam-
age is related to the average intensity of ultrasound. The
higher the average ultrasound intensity, the greater the
damage to the skin.These suggest thatmaximum sterilization
and minimized damage to skin can be achieved by adjusting
the duty cycle of pulsed LFU. From the in vivo data included
in these reviews, although the study design was different,
LFU at 20–30 kHz with the intensity range from 200 to
500mW/cm2 seems to have most successful outcomes in
enhancing bactericidal effect against biofilm.

4. Effect of LFU on Antibiotic Release
from Implanted Material

The high incidence of device-related biofilm infections has
spurred a rapidly growing field of research directed at control-
ling or eliminating biofilm formation. Various device-related
infections have been well documented on vascular catheters
as well as prosthetic hips, knees, and other orthopedic
implants [38]. In recent years great efforts have been devoted
to create biocompatible materials that prevent or minimize
biofilm infection by inhibiting the formation and survival of
biofilms. One strategy is to incorporate antibiotics into the
devices or materials, which targets the site where biofilm
formation is likely to occur. LFU plays an important role in
facilitating antibiotic release. For example, Norris et al.
[39] assessed the efficacy of ultrasonically controlled release
of ciprofloxacin from self-assembled coatings on poly(2-
hydroxyethyl methacrylate) hydrogels against P. aeruginosa
biofilm and showed application of LFU enhanced release of
ciprofloxacin, which was retained inside the polymer in the
absence of ultrasound. And biofilm accumulation on cipro-
floxacin-loaded hydrogels with ultrasound-induced drug
delivery was significantly reduced compared to that in the
control experiments (Table 3).

The most frequently reported research on LFU promotes
the release of antibiotics was about bone cement (Table 3).
Hendriks et al. [40] first compared the response of three com-
mercially available bone cements to ultrasound and found
a striking increased release of gentamicin upon ultrasound
at 46.5 kHz and 167mW/cm2. They also carried a series
experiment to test the effects of LFU on gentamicin-loaded
beads or bone cements bymeasuring gentamicin release from
both materials after 18 h of exposure in PBS and found that
ultrasound significantly increased gentamicin release from
beads, but only marginally from bone cements [41]. Then
they investigated the effect of gentamicin released from bone
cements treated with LFU on 4 strains derived from patients,
including E. coli, S. aureus, coagulase-negative staphylococci,
and P. aeruginosa. They found that ultrasound plus gentam-
icin further reduced bacterial viability of both planktonic
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and biofilm bacteria and the percentage of reduction was
higher for biofilm bacteria than for planktonic bacteria.
They speculated that this was probably due to the slow
diffusion of the released antibiotic through the biofilm in the
suspension, causing a higher local concentration of antibiotic
in the biofilm than in suspension [42]. Moreover, LFU in
combination with different administration of gentamicin
on bone cements was assessed in rabbit model. Compared
to the negative controls, ultrasound resulted in more than
50% enhancement in bacterial killing in combination with
both systemic gentamicin and gentamicin released from
antibiotic-loaded bone cement [43].

Cai et al. [44] investigated the effect of pulsed-wave LFU
on the antimicrobial efficacy of vancomycin on acrylic bone
cement. After implanting cement and inoculating S. aureus
into the bilateral hips of rabbits, ultrasound was applied to
animals in the normal ultrasound group at 0–12 h of post-
operation and to those in the delayed-ultrasound group
at 12–24 h of postoperation. The results showed that the
length of time when local drug level exceeded the minimum
inhibitory concentration (𝑇 > MIC) was significantly pro-
longed in the delayed-ultrasound group compared with that
in the ultrasound untreated or normal ultrasound groups. In
addition, bacterial densities in both right hip aspirates and
right femoral tissues at 48 h reduced the most in the delayed-
ultrasound group. They also revealed that intermittent ultra-
sonication (a 10min pause between two 40-min ultrasonic
periods) improved vancomycin release from cement in view
of prolonged 𝑇 > MIC compared with continuous ultra-
sonication [10]. The mechanisms involved in the ultrasound-
enhanced drug release from cement were attributed most
to the nonthermal effect of ultrasound, mainly the stable
cavitation and the radiation pressure, which generate mul-
tidirectional acoustic microstreams. The microstream pro-
duced a high shear stress at drug-cement interfaces, allowing
detachment of drug grains from the surface. Meanwhile,
the microstream pushed solution into acrylic matrix via
craters and channels (Figure 2) [10].They further investigated
whether microbubbles-mediated ultrasound could facilitate
vancomycin elution from cylindrical specimens and enhance
activity of the eluted antibiotic against S. aureus. The in vitro
and in vivo results all showed that both elution and activity
of vancomycin were significantly higher in vancomycin +
microbubbles + ultrasound specimen than in vancomycin or
vancomycin + ultrasound specimens [45].

Yan et al. [46] investigated the enhancement of continu-
ous ultrasound on vancomycin release and antimicrobial effi-
cacy of antibiotic on acrylic bone cement.The results showed
that ultrasound increased the drug elution by 2.57–27.44%
when compared with the controls in vitro. Vancomycin
concentrations in the rabbit hip cavity and urinary elimina-
tion of vancomycin were both measured after exposure to
ultrasound. The results showed that continuous ultrasound
increased local 𝑇max by 47.6mg/mL and urinary elimination
of vancomycin by 109.56mg but failed to prolong the local
𝑇 > MIC.Wendling et al. [47] developed a study to determine
the effect of different mixing techniques of vancomycin-
impregnated polymethylmethacrylate cement with LFU
on antibiotic elution. They found that the combination of

a delayed mix technique with LFU treatments could signif-
icantly increase both short- and long-term antibiotic elution
without affecting mechanical strength.

Pulse ultrasound ismost commonly applied in these stud-
ies. Some studies have evaluated the synergistic antimicrobial
effects of LFU using pharmacokinetics/pharmacodynamics
and demonstrate the ability of LFU in promoting drug release
in bone cement. However, in addition to the frequency, many
other factors also affect the release of antibiotics, such as
intensity and the treatment duration time of LFU itself, bone
cement type, mixing technique, and the beginning ultra-
sound time after implantation. At the same time, only a few
studies examined the effect of ultrasound on the physical
properties of the implant. According to the current limited
results, it can only be roughly speculated that 20–50 kHz and
100–300mW/cm2 are relatively effective frequency and inten-
sity range of LFU in promoting antibiotic release from
implanted materials. However, more comprehensive and in-
depth research is still needed.

5. Clinical Practice of LFU and Antibiotic
Combination Therapy

As a therapeutic adjuvant, LFU has been extensively studied
in chronic wound healing and offers relatively painless
debridement and bacterial biofilm destruction. For example,
Breuing et al. [48] explored the effect of LFU on wounds in 17
patients and found that woundwas healed in 9 (53%) patients
with or without the aid of skin grafts and reduced by at least
50% in size in 6 (35%) and by 20%–30% in 2 patients. In addi-
tion, no patients required initiation of antibiotic treatment
after starting LFU. Tewarie et al. [49] compared the ultrasonic
debridement (𝑛 = 18) with conventional surgical therapy
(𝑛 = 19) in removing bacterial biofilms and preservation
of vital sternal tissue in 37 consecutive patients. Time to
secondary wound closure following eradication was signif-
icantly shortened in LFU group. Postoperative antibiotic
treatment time and recurrence of sternocutaneous fistula also
showed a trend in favor of LFU group. However, only few
clinical reports exist on the combined application of LFU and
antibiotics. Only Komrakov and Antipov [50] reported that
combined use of LFU and gentamycin solution for treatment
of wounds in 17 patients reduced the critical level of bacterial
wound colonization.They found that this combination could
decrease the incidence of purulent-septic complications from
35.7 to 5.9%. There was no wound suppuration in 14 patients
after the operations for late reocclusion performed in the
presence of cicatrices of the tissues.

6. Conclusions

Based on the available in vitro and in vivo data, it can be
concluded that LFU can assist the antibiotic action on both
planktonic and biofilm bacteria. For antibiotic imbedded
implants, LFU can promote the release of antibiotics to
achieve the optimal efficacy. However, there is still a long
way to go before clinical application of combination therapy
of LFU with antibiotics. First of all, the current studies
involved a narrow range of susceptible pathogens. There are
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Figure 2: Possible mechanisms for the improvement of intermittent watt-level ultrasonication on vancomycin release from acrylic cement.
(a) No ultrasonication. A large number of drug grains resided in the craters and the bottoms of pores through adhering to cement matrix,
only a little fraction accessed the external PBS. (b) Ultrasonication is on, and the detaching force by microstreams produced vortex at the
drug-cement interface during the ultrasonication period. Large quantities of drug grains were desorbed. However, the pushing force, another
force by microstreams, hampered the drug from outward diffusion through the channels or craters into the external PBS. (c) Pushing force
disappeared in the pause period for intermittent ultrasonication.The desorbed grains diffuse readily out of the craters and pores through the
concentration gradient, which was built up during the ultrasonication period [10].

very few studies on the most threatening MDR bacteria.
Secondly, frequency, intensity, and pulse cycle varied a lot
at present. The promising frequency and intensity from in
vitro studies are likely to cause local damage in in vivo
studies [30, 31]. Therefore, LFU parameters appropriate for
clinical application need to be further explored. Thirdly, one
study indicated that LFU treatment reduced the interface
shear strength and initial stability of vancomycin-loaded
acrylic bone cement-stem [51]. So the impact of LFU on
the physical properties of the implant materials requires a
comprehensive examination. At last, because bacteria will
partially be removed from the biofilm surface when LFU is
applied [52], whether it will bring the risk of spreading the

pathogens and forming systemic bloodstream infection also
requires more careful evaluation.
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