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Abstract

Objective: The aim of this literature review is to yield a comprehensive and exhaustive overview 

of the existing evidence and up-to-date applications of artificial intelligence for knee osteoarthritis.

Methods: A literature review was performed by using PubMed, Google Scholar, and IEEE 

databases for articles published in peer-reviewed journals in 2022. The articles focusing on the 

use of artificial intelligence in diagnosis and prognosis of knee osteoarthritis and accelerating the 

image acquisition were selected. For each selected study, the code availability, considered number 

of patients and knees, imaging type, covariates, grading type of osteoarthritis, models, validation 

approaches, objectives, and results were reviewed.

Results: 395 articles were screened, and 35 of them were reviewed. Eight articles were based 

on diagnosis, six on prognosis prediction, three on classification, three on accelerated image 

acquisition, and 15 on segmentation of knee osteoarthritis. 57% of the articles used MRI, 26% 

radiography, 6% MRI together with radiography, 6% ultrasonography, and 6% only clinical data. 

23% of the articles made the computer codes available for their study, and 26% used clinical data. 

External validation and nested cross-validation were used in 17% and 14% of articles, respectively.

Conclusions: The use of artificial intelligence provided a promising potential to enhance the 

detection and management of knee osteoarthritis. Translating the developed models into clinics is 

still in the early stages of development. The translation of artificial intelligence models is expected 

to be further examined in prospective studies to support clinicians in improving routine healthcare 

practice.
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1. Introduction

Osteoarthritis is one of the most common forms of arthritis which affects many joints, 

yet is widely located in weight-bearing ones and mostly occur in the knee [1]. It is a 
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multifactorial disease leading to joint deformations and severe disability. The increased 

number of patients having Knee Osteoarthritis (KOA) highlights the importance of early 

diagnosis of the disease. KOA is mainly diagnosed by using clinical and radiographic 

changes that emerged from structural deformations. However, current treatment methods 

including both pharmacological and non-pharmacological ones have limited efficacy for 

preventing Osteoarthritis (OA) progression [2]. The main radiographic findings of KOA are 

osteophyte formation, Joint Space Narrowing (JSN), and subchondral sclerosis [3,4]. As 

the severity of these findings approaches advanced stages, nonsurgical interventions become 

increasingly ineffective. The disease leads to excruciating pain and mostly a Total Knee 

Replacement (TKR) is required. Therefore, early diagnosis of the disease could play a 

crucial role in postponing the TKR [1,3].

The diagnosis of KOA is based on clinically reported symptoms and reports from imaging 

modalities. The most common clinical symptoms include inflammation, debilitating pain, 

and functional limitations [5]. Different imaging modalities such as radiography or X-ray, 

Magnetic Resonance Imaging (MRI), and ultrasonography are used for KOA diagnosis 

[1,3,6]. Radiography is used to detect structural changes in bone [7], ultra- sonography 

enables evaluation of the superficial soft tissues [8], while MRI is used to detect soft-tissue 

alterations, bone marrow lesions, and early osteophytic changes [9]. The diagnosis of KOA 

is studied by using different imaging modalities together with various Artificial Intelligence 

(AI) approaches [7,8,10,1].

Deep Learning (DL), a branch of AI, has been widely used in the field of KOA for the last 

decade [1,11,12]. The performance of DL in medical imaging field has outperformed human 

readers in many tasks [3]. DL employs automatic feature extraction considering different 

Convolutional Neural Network (CNN) models [2,11]. Recently, CNN approaches have been 

used with Transfer learning (TL) scheme, since it reuses the information obtained through 

pre-trained models as a starting point for a new task, hence decreases the training time 

[13]. Additionally, using CNN with TL enhances model performance compared to the ones 

trained without pre-trained information [13].

Using AI applications on KOA has been increased significantly in the last decade [1–

3,11,14–20]. In [1], different imaging modalities for traditional OA diagnosis and recent 

image-based machine learning algorithms were reviewed to discover KOA imaging features 

for diagnosis and prognosis. Existing literature on KOA imaging modalities, knee joint 

localization, classification of OA severity, and prediction of disease progression was yielded 

in a detailed way. However, the study mostly provided the papers published before 2022 

in which novel and updated approaches on KOA were investigated and it reviewed only 

3 papers from 2022. In [11], the use of machine learning in the clinical care of OA 

was reviewed. Instead of reviewing each article in detail, the number of patients, ML 

algorithms, type of data, validation methods, and data availability of the 46 reviewed articles 

were reported together. While [18] reviewed 23 articles using AI, machine learning, and 

DL algorithms in Total Knee Arthroplasty (TKA), [14] reviewed 23 articles using AI 

in diagnosis of KOA and prediction of arthroplasty outcomes providing the prediction 

outcome, algorithm, statistical performance, strengths, weaknesses, and clinical significance 

of the papers. The [2] reviewed 31 articles with AI applications in OA including OA 
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classification tasks through imaging and non-imaging-based ML models, analysis of both 

radiographs for automatic detection of OA severity, and MR images for detection of 

cartilage/meniscus lesions and cartilage segmentation for automatic T2 quantification by 

using DL approaches. In [15], 36 articles using DL applications in knee joint imaging were 

reviewed using a checklist for AI in medical imaging, divided by imaging modality, and 

characterized by imaging task, data source, algorithm type, and outcome metrics. In [3], 

segmentation methods allowing the estimation of articular cartilage loss rate ranging from 

traditional to DL algorithms were reviewed from 30 articles.

Differently from the existing literature, in this review paper, a comprehensive study on 

AI approaches in KOA was performed. The study was based on 35 papers, 34 of which 

were published in 2022. It included knee joint detection and segmentation, OA severity 

classification and disease progression prediction with different imaging modalities, and 

image acquisition with accelerated MRI. Since the AI field is moving fast compared to 

traditional fields of research, a review paper including up-to-date algorithms used in the field 

helps researchers steer future research directions.

2. Methods

A literature search was performed by using PubMed, Google Scholar, and IEEE 

databases for articles published in peer-reviewed journals, MICCAI 2022, and MIDL 2022 

conferences between the 1st of January 2022 and the 31st of December 2022. The keywords 

of ((knee) AND ((osteoarthritis) OR (arthroplasty)) AND ((artificial intelligence) OR (deep 

learning) OR (machine learning))) were used for searching the articles. We selected studies 

focusing on the use of AI in the diagnosis of KOA, prediction of the need for TKR, 

segmentation and localization of knee structures, and accelerating the image acquisition. 

Non-English language articles and articles with no English translation were excluded. A 

reviewer screened the articles for their relevance to the strength of the evidence. Detailed 

search strategies and selection criteria can be found in Fig. 1. The majority of the articles 

reviewed in this paper used Osteoarthritis Initiative (OAI) database for KOA prediction, 

segmentation, and classification [16,11,3]. The Multicenter Osteoarthritis Study (MOST) 

and Prevention of Knee Osteoarthritis in Overweight Females (PROOF) are the other 

considered databases [21]. Some articles used these databases separately or ensemble them 

to compare the performance of their proposed methods [22,23,21]. The number of papers 

using different database are given in Fig. 2.

3. Imaging of knee osteoarthritis

The knee joint includes various tissues, such as bones, muscles, cartilage, meniscus, tendons, 

and ligaments which might have complex pathological changes by time [3,15]. KOA is a 

degenerative joint disease with symptoms of osteophyte formation, cartilage degeneration, 

JSN, and subchondral sclerosis. Radiograph and MRI of the knee are the most commonly 

used knee imaging techniques in literature [1].

The knee joint structures are analyzed using different KOA imaging modalities such as 

radiography, MRI, and ultrasonography [1,24]. Radiography or X-ray is mostly used for 
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the prediction of KOA and the classification of KOA severity, while MRI is the mostly 

considered for segmentation of knee joints to develop predictive models for KOA (Tables 1 

and 2).

Different imaging modalities have various KOA grading systems to evaluate the severity of 

the disease. The Kellgren-Lawrence (KL) and Osteoarthritis Research Society International 

(OARSI) are mostly used grading systems for radiography to investigate the OA features 

such as osteophyte, JSN, percentage of JSN, bone end deformity, and subchondral sclerosis 

[1]. The KL grading system uses five grades to classify KOA severity from the radiographs, 

where Grade 0 corresponds to the normal knee, and the other grades correspond to the 

progression of the disease. Grade 0 is normal, Grade 1 shows doubtful signs of OA, Grade 

2 is mild OA, Grade 3 is moderate OA, and Grade 4 is severe OA [7]. The Whole-Organ 

Magnetic Resonance Imaging Scores (WORMS) scoring method incorporates 14 features 

for evaluating the KOA using MRI [10]. The Knee injury and Osteoarthritis Outcome Score 

(KOOS) is a self-reported 42-item questionnaire with 5 subscales that evaluates knee health 

[25]. The MRI Osteoarthritis Knee Score (MOAKS) scoring tool has 14 subregions and 

individual features for KOA [1]. These are mostly used grading systems for MR imaging 

modalities to examine cartilage, meniscal tears, bone marrow lesions, anterior cruciate 

ligament tears, subchondral cysts, bone attrition, effusion synovitis, osteophytes, ligaments, 

and synovial thickening.

3.1. Radiography (X-Ray)

In a radiograph of an advanced OA joint, a decrease in joint space width is typically 

observed between the bones of the joint, indicating cartilage degeneration [26,27]. 

Therefore, the bone starts to rub against the bone which could lead to cysts or fluid-filled 

cavities [28]. In addition, the radiograph enables visualizations of sclerosis, increased bone 

density, and bone spurs that are emerged due to joint surface misalignment. Even though 

radiography has a low cost and it allows bony structure visualization, it is mostly limited to 

2D visualization and does not provide soft tissue information, which is important because 

research shows OA degeneration starts from soft tissues [1,29].

3.2. Magnetic resonance imaging

MR imaging helps to evaluate the structural changes in KOA and to visualize the affected 

tissues due to OA pathologies, such as soft tissue, subchondral bone, meniscus, and cartilage 

[30,31]. MRI has been shown to have high specificity for the diagnosis of cartilage 

deformation, yet low sensitivity for investigation of small abnormalities and injuries [32]. It 

is widely used as a non-invasive technique for assessing cartilage injuries and allows both 

2D and 3D visualizations. However, the diagnostic performance of MRI highly depends on 

the level of readers expertise. Additionally, knee implants affect the quality of images and it 

is an expensive modality.

3.3. Ultrasonography

Ultrasonography is a non-invasive diagnostic tool that uses high-frequency sound waves to 

produce real-time images of the knee joints and other internal structures within the body, 

including muscles, tendons, blood vessels, and organs [33]. It enables immediate evaluation 
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of soft tissues, such as cartilage and menisci [34,35]. Differently from radiographs, 

it facilitates a 3D evaluation of the joint without ionizing radiation exposure [36]. 

Ultrasonography is a non-invasive, fast, operator-dependent, and low-cost imaging modality. 

It allows the real-time evaluation of the synovium and ligaments. The main limitations of 

ultrasonography in assessing large joints include its inability to pass through bony structures, 

difficulty in visualizing deeper structures, and its inability to estimate bone erosion depth 

[37].

4. Applications of artificial intelligence in knee osteoarthritis

Current diagnosis of KOA mostly relies on evaluation of medical images using KL grading 

system. Recently, there has been a growing interest in the use of AI for automatic diagnosis, 

prognosis, segmentation, and classification of KOA to enhance diagnostic accuracy and 

efficiency [3,14]. AI can help in automatic diagnosis by analyzing large amounts of data 

to provide diagnoses. The following reviewed studies have represented that AI helps 

to enhance the performance of KOA diagnosis and prognosis in terms of accuracy and 

reproducibility compared to human readers.

4.1. Diagnosis of KOA

In [7], to address the ambiguity between adjacent KL grades, particularly in early-stage 

OA, an investigation was conducted on OA severity assessment utilizing a two-step scheme 

that employs an object detection CNN to segment knee joint areas. The study focused on 

the label uncertainty and proposed an approach that enabled the model to learn from the 

highly confident samples. These samples were characterized by considering an integrated 

learning technique that fuses label confidence estimation, which focuses on the probability 

of correctly labeled samples. This estimation process involves preserving the predicted label 

distribution for all samples in the validation set, calculating the self-confidence for each 

class, and using this as a threshold to distinguish between highly and low confident samples 

within the validation set based on their reliability. In order to help CNN learn from two sets 

accordingly, a hybrid loss function which enhances the effects of highly confident samples 

and controls the impacts of low confident ones with a weight parameter was proposed. The 

early-stage OA assessment includes KL-0 vs. KL-1, KL-1 vs. KL-2, and KL-0 vs. KL-2 

classifications. A mean accuracy of 70.13% and a Matthews correlation coefficient of 0.5864 

were obtained on the five-class OA assessment task. However, the study did not include an 

examination of whether the use of high-confidence labels introduces bias into the system 

and whether its accuracy is comparable to that of human readers.

Detection of the OA lesions in the two knees simultaneously was studied by using a deep 

Siamese CNN model [38]. The last Fully Connected (FC) layer was modified and two extra 

FC layers were added to employ the transfer learning. The Deep Siamese network was 

studied in order to identify the similarity metrics between the lateral and medial parts of a 

cropped knee image. The medial side was horizontally flipped to maintain symmetry with 

the lateral one. The multi-class accuracy of 61% was obtained by using the proposed model. 

The precision of 70%, 54%, 61%, 53%, and 91% as well as recall of 71%, 44%, 60%, 89%, 

and 44% were obtained for KL0, KL1, KL2, KL3, and KL4, respectively. The classification 
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of KL-0, KL-3, and KL-4 classes yielded better precision and recall results than KL-1 and 

KL-2. It was explained in the study that this is due to the slight differences between KL-1 

and KL-2, making it challenging for even specialists to distinguish between KL-1 and KL-0 

or KL-2. However, using private data limits the fair comparison of the results with the 

existing literature ones.

A semi-supervised scheme based on Dual-Consistency Mean Teacher (DC-MT) 

classification model was proposed to utilize unlabeled data effectively for better 

assessment of knee cartilage defect grading at the slice level of MR images [39]. An 

attention loss function was employed to force the network focus on and lie within the 

cartilage regions, which may provide accurate attention masks and enhance classification 

performance, simultaneously. An aggregation scheme was employed to ensembles slice-

level classification outcomes for identifying the final subject-level diagnosis. The student 

model was subject to both supervised and unsupervised losses. The supervised loss included 

classification and attention losses, while the unsupervised loss included classification 

and attention consistency losses. The teacher model was updated using an exponential 

moving average strategy based on the student model. The two models were fed with 

different noise perturbations of the input MR slice and encouraged to be consistent. 

The class activation mapping method was employed to generate the attention masks that 

emphasizes the particular regions for the classification network. The study determined 

the severity of knee cartilage defect and yielded the attention masks for cartilage region 

localization simultaneously. The proposed method demonstrated an improvement in both the 

classification and localization of knee cartilage defects when compared to a fully-supervised 

baseline network trained with labeled data. This improvement was especially notable when 

using limited labeled data, with the Area Under Curve (AUC) increasing from 81.5% to 

86.7% under training with 25% labeled data and 75% unlabeled data.

In order to determine the important risk factors that contribute to KOA diagnosis, a fuzzy 

logic-based ensemble feature selection method aggregating the output of different feature 

selection algorithms with several ML models was used [40]. The multidimensional clinical 

data was utilized. The participants with KL ≥ 2 in at least one of the two knees or in 

both at baseline were considered as KOA, whereas the ones with KL0 or KL1 grade at 

baseline were considered as Non-KOA. The impact of risk factors on the diagnosis of 

KOA was evaluated using a SHapley additive explanations approach. This method, based 

on game theory’s Shapley Values and local explanations, allowed for the determination of 

the influence of selected features and the understanding of the decision-making process of 

the best-performing model. Among the studied risk factors, knee symptoms, risk factors, 

or both, history of knee surgery, age, Body Mass Index (BMI), and KOOS score were 

found to be the most important ones in KOA diagnosis, respectively. It was concluded that 

considering heterogeneous risk factors from various feature categories was required for the 

effective diagnosis of KOA. However, the study only focused on the clinical parameters and 

ignored the effects of imaging techniques on KOA diagnosis.

In [41], the cartilage injury assessment of KOA was studied by using an image 

superresolution algorithm based on an improved multiscale wide residual network model 

together with several MRI sequences. The performance of the proposed model was 
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compared with the single-shot multibox detector, superresolution CNN, and enhanced deep 

superresolution algorithms. The proposed algorithm outperformed the compared ones in 

overall quality, with quantitative analysis showing significantly higher Peak Signal- to-Noise 

Ratio (PSNR) (38.87 dB) and Structural Similarity Index Measure (SSIM) (0.956) values 

compared to superresolution CNN (PSNR = 30.41 dB, SSIM = 0.892), single-shot multibox 

detector (PSNR = 26.11 dB, SSIM = 0.749), and enhanced deep superresolution (PSNR 

= 27.84 dB, SSIM = 0.788) algorithms. Arthroscopic analysis provided that grade I and 

grade II lesions concentrated on patella and femoral trochlear and grade III and grade IV 

lesions gradually developed into the medial and lateral articular cartilage. Among different 

MRI sequences, the 3D-DESS-WE one yielded the highest diagnostic accuracy of over 

95% in grade IV lesions. The Kappa consistency test values were 0.748 and 0.682 for the 

3D-DESS-WE and T2 mapping sequences, respectively. The study stated that DL together 

with MRI could clearly demonstrates the cartilage lesions of KOA. However, the data is 

self-acquired and is not available with an open-access, but from the corresponding author 

upon request.

A KOA Computer-Assisted Diagnosis (CAD) using multivariate information, namely 

Vibroarthrographics (VAGs) signal emitted by human knee joints, age, and BMI, based on a 

DL model was investigated for the automatic KOA detection, the KOA early detection, and 

the KOA grading detection [33]. By placing an accelerometer at the articular surface, a VAG 

signal can be obtained which contains pathological information related to the roughness, 

softening, and breakdown of cartilage. An Aggregated Multiscale Dilated (AMD)-CNN 

framework having two parallel pathways was designed to extract features from multivariate 

information of KOA patients. The features from VAG signals were captured in the first 

pathway using a multi-scale 1D dilated CNN and the ones from age and BMI signals were 

obtained in the second pathway using a FC Neural Network (NN). A Laplace distribution-

based scheme was used to classify the extracted featFures from the AMD-CNN approach.

The KOA evaluation using KL grading in real-life knee radiographs was investigated 

by using a CNN model [42]. To assess the model’s performance and interobserver 

agreement, two orthopedic surgeons and a musculoskeletal radiologist evaluated the OAI 

testing set and external validation images for KL classification. The quadratic kappa 

values of the model–surgeon 1, model–surgeon 2, and model–radiologist were 0.80, 0.84, 

and 0.86, respectively. The model provided the accuracy of 78% which was consistent 

with interobserver agreement for the OAI knees and external validation knees. A lower 

interSobserver agreement for the images misclassified by the model was obtained. The 

surgical candidate detection performance of the model for KL3 and KL4 grades was better 

than that of specialists with an F1 score of 0.923.

A DL based framework was proposed in [23] to automatically grade KOA from PA views of 

radiographs. The proposed model has five steps: image preprocessing, localization of knees 

joints considering the YOLO v3-tiny model, initial evaluation of the severity of OA using a 

VGG16 based CNN classifier, segmentation of the joints and calculation of the JSN taking 

into account U-net architecture for bone segmentation, and a combination of the JSN and 

the initial evaluation to predict the KL grade. When MOST data was used as a test set, the 

accuracy of 58.86%, 71.93%, and 75.86% were obtained for using only segmentation based 
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JSN without classification model, only classification model without the JSN component, and 

segmentation based JSN together with classification model, respectively. The accuracy of 

64.48% were obtained for segmentation based JSN together with classification model when 

the OAI data was used as a test set.

4.2. Prognosis prediction for KOA

In [9], the results of seven teams with 23 entries submitted to KNOAP2020 challenge 

to predict the incident symptomatic radiographic KOA within 78 months on a test set. 

The ResNet-34 model trained with 1581 knees from the OAI to predict TKR surgery 

from radiographs together with age, BMI, and KL considering Logistic Regression (LR) 

prediction method provided the highest AUC of 0.64. Using automatically extracted 

radiograph and MRI features together with clinical variables yielded the highest Balanced 

Accuracy (BACC) of 0.59 for the ensemble of three different models, namely model 1 

using radiograph, MRI, and clinical variable as modalities, joint shape and space features 

for radiograph and automatically extracted cartilage features for MRI as feature extraction, 

and gradient boosting machine as prediction model, model 2 using radiograph as modality, 

ResNet18 as feature extraction and prediction model, model 3 using radiograph and clinical 

variable as modalities, joint shape and space features for radiograph as feature extraction, 

and gradient boosting machine as prediction model.

An Adversarial Evolving Neural Network (A-ENN) with an adversarial training scheme 

was examined to predict KL grading based on the baseline radiograph observation without 

using the scans from follow-up visits [43]. As disease level progresses, the Evolving Neural 

Network (ENN) involves the progression of KOA patterns for accurately addressing the 

disease through comparing a set of template images of different KL grades. An adversarial 

training scheme with a discriminator provided how the input image changes to/from 

templates of each KL grades. A mean square error was used to measure the distance between 

an estimated template and each ground-truth template in a pixel-wise manner. By using 

multiple evolving traces and the original input image, the classification of raw longitudinal 

KOA grading probabilities was performed. A maximum pooling was applied on the KL 

grade probabilities and they were fused with the input image to predict a longitudinal KL 

grade. An overall accuracy of 62.7% was obtained.

In [10], an ML-based prediction model was developed for incident radiographic OA of the 

right knee over 8 years using MRI, demographics, and clinical predictors including muscle 

strength and symptoms. The radiographic images of participants with KL grade of 0–1 at 

baseline from OAI were analyzed. Subjects having the same KL grade over 8 years were 

accepted to be false, whereas subjects having KL grade of 2–4 were defined to be a true 

set. The prediction performance of three different models was compared: Model 1 with 112 

predictors based on OA risk factors and MRI imaging features, namely cartilage T2 and 

WORMS; Model 2 with top ten predictors based on feature importance score from Model 1 

and clinical relevance, and Model 3 with Model 2 without the imaging predictors. Among 

these three models, the Model 1 performed best with the highest AUC of 0.792.

A DL risk evaluation model analyzing the baseline PA knee radiograph was investigated for 

predicting the pain progression in subjects with or at risk of KOA [44]. Pain progression was 
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identified as a 9-point or greater increase in Western Ontario and Mc- Master Universities 

Osteoarthritis (WOMAC) Pain Score (PS) between the baseline and two or more follow-up 

time points over 48 months. The cascaded two stage DL model consisted of two deep CNNs 

was considered. The EfficientNet DL model with AUC of 0.77 yielded better diagnostic 

performance than the DenseNet with AUC of 0.75. The traditional model considering 

the baseline clinical and imaging risk factors resulted in an AUC of 0.69. A combined 

joint training model developed by using DL analysis of baseline radiographs with clinical, 

demographic, and radiographic risk factors provided the highest AUC of 0.81.

The effect of different acquisition modalities and image qualities on the performance of the 

combined Trabecular Bone Texture (TBT)-Siamese CNN prediction model was investigated 

and compared to LR technique for prediction the medial JSN progression [22]. The TBT 

was defined as an imaging descriptor providing information on trabecular bone changes 

owing to KOA and calculated by a variogram-based method. The Siamese CNN calculated 

the probability distribution of the KL grades of baseline radiographs. The KOA progression 

prediction was employed by using of the same KOA progression prediction model validated 

on independent OAI and MOST datasets, namely training the model with one dataset and 

testing it with the other, and vice versa. The radiographs were automatically segmented by 

BoneFinder to identify 16 Region of Interests (ROIs). The KOA progression was evaluated 

based on an increase in the OARSI medial-JSN grades over 48 months in OAI and 60 

months in MOST. The proposed TBT-CNN model predicted JSN progression with and AUC 

of 0.75 and 0.81 in OAI and MOST, respectively. The prediction ability of TBT-CNN was 

invariant from the acquisition modality or image quality when the model was trained and 

tested on the same cohort.

In [35], the prediction of TKR was examined. The predictive performance of ultrasound 

features such as osteophytes, meniscal extrusion, synovitis in the suprapatellar recess, 

femoral cartilage thickness, and quality for future KOA surgery were investigated. In the 

multivariate analysis, five multivariate predictive models were considered, namely Model1 

using age, sex, BMI, knee injury, familial OA, and occupational load clinical variables, 

Model2 using Model1 features and KL grade from radiographic images, Model3 using 

Model1 features and ultrasound features, Model4 using Model1 features together with 

ultrasound features and KL grade, Model5 or ensemble model using ensemble of Model2 

and Model3 which averaged their output probabilities. The study stated that considering 

ultrasound features along with clinical variables could predict KOA surgery almost as good 

as using the KL grading based radiographic images.

4.3. Segmentation and localization

The cross-cohort performance and robustness of the different architectures on three clinical 

cohorts without manual adaptation of model or optimization of hyperparameters were 

studied in a retrospective cohort study [21]. Four OA segmentation models were compared. 

The MPUnet and Knee Imaging Quantification (KIQ) frameworks were applied with 

default settings across all cohorts. The MPUnet was trained using only the sagittal view, 

which corresponds to training a 2D U-Net with the MPUnet’s augmentation strategy and 

training pipeline. The impact of incorporating multiple views was examined. The KIQ 
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method is a validated automatic segmentation technique based on task-specific knowledge. 

It aligns scans to a reference knee MRI model using rigid multi-atlas registration and 

computes Gaussian derivative features within regions of interest. Voxel-wise classifications 

were performed using compartment-specific classifiers and largest connected component 

analysis selects final segmentation volumes for each compartment. The results of the study 

represented that the MPUnet matched or exceeded the performance of KIQ and 2D U-Net on 

all compartments across three cohorts and no manual tuning was required for MPUnet.

In [45], the results of six networks to address the semantic and clinical efficacy of automatic 

segmentation models for identifying OA progression was provided. Different DL models 

were assessed and compared for segmenting articular (femoral, tibial, and patellar) cartilage 

and the meniscus. The segmentation metrics of all tissues (P=.99) were similar for the four 

top-performing networks. The Dice coefficient correlations between network pairs were high 

(>0.85), per-scan thickness errors were negligible among networks Team1–Team4 (P=.99), 

and longitudinal changes represented minimal bias (<0.03mm).

The correlation between segmentation metrics and thickness error was low (p<0.41). 

The result of majority-vote ensemble and top-performing networks was similar (P=.99). 

Empirical upper-bound performances were similar for both combinations (P=.99).

A 3D reconstruction was analyzed to develop and validate an automatic Femoral Articular 

Cartilage (FAC) segmentation framework for 3D ultrasound knee data of KOA patients 

and healthy volunteers was analyzed in [8]. In order to monitor the femoral trochlea 

cartilage, the proposed scheme included the DL model predictions on the 2D ultrasound 

slices sampled in the transverse plane followed by reconstruction into a 3D surface. 

Considering 3D reconstruction decreased the prediction performance comparing to using 

2D predictions only, yet the difference was not statistically significant. The effects of using 

DL approaches to systematically evaluate generalizability of auto- mated MRI cartilage 

segmentation models across four independent datasets differ in MR vendor and model, 

subject population, and image acquisition parameters were examined [46]. The clinically 

related cartilage morphometry and relaxometry metrics besides the traditional segmentation 

ones were used in the study. It is concluded that quantitative Double-Echo Steady-State 

(qDESS)-trained models generalize well to independent qDESS datasets regardless of MR 

scanner type, MR scan parameters, and subject population.

In [47], a conditional Generative Adversarial Network (GAN) based DL model was studied. 

The segmentation of heterogeneous clinical MRI scans was performed by optimizing a 

pre-trained model built from a homogeneous research dataset with a TL algorithm. The 

study considered the TL model with a U-Net architecture as the generator and a CNN as the 

discriminator. The model with TL outperformed that of without TL and performed similarly 

as the manual segmentation.

The knee cartilage segmentation using a two-stage multi-atlas segmentation approach 

together with a Semi-Supervised Learning (SSL) scheme was investigated [48]. The target 

voxels were labeled by using the spectral information of globally sampled images from 

the target data and their spatially correspondent images obtained from the atlases. The 

Cigdem and Deniz Page 10

Osteoarthr Imaging. Author manuscript; available in PMC 2024 June 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



proposed framework consisted of sparse reconstructions of voxels from linear neighbor- 

hoods, HOG feature descriptors of regions, and label propagation through sparse graph 

constructions. The performance of the proposed segmentation approach outperformed the 

existing patch-based methods and the average execution time computational load of the 

propose method decreased by more than 70% compared to the other considered patch-based 

ones. Additionally, using a 5-class problem which split the bone and cartilage components 

of 3-class one into their respective femoral and tibial parts yielded that the proposed 

approach provided comparable performance to the existing state-of-the-art knee cartilage 

segmentation methods.

In [49], an improved Mask Rb-CNN approach, which is an instance segmentation 

framework that distinguishes individual objects of interest such as different anatomical 

structures (e.g. bone and cartilage) was studied. The Mask Rb-CNN model was modified 

to enhance the segmentation accuracy around the instance edges. It could be applicable 

for various tissue scales, pathologies, and MRI sequences related to OA, overcoming 

the imbalanced class problem. The improved-mask Rb-CNN model consisted of an extra 

ROIAligned block, an additional decoder block in the segmentation header, and connecting 

them considering a skip connection. A high agreement between the two readers were 

obtained for both Mask Rb-CNN and improved-mask Rb-CNN models.

A framework called KCB-Net was introduced to segment cartilages and bones in 3D knee 

joint MR images with sparse annotation [50]. Each 2D slice in an unlabeled training set of 

3D images was initially encoded into a feature vector in an unsupervised manner. Subsets of 

diverse image slices were selected for expert annotations by ranking the most information-

contributing slices highest. This allowed image segmentation models to be trained using 

annotations with a high-sparsity ratio. In the proposed framework, an ensemble of three 2D 

segmentation modules and one 3D module that incorporated features from multiple scales 

with edge-sensitive branches was utilized to produce pseudo-labels for the un-annotated 

slices. These pseudo-labels were subsequently employed to re-train the 3D model for 

several iterations. The final segmentation results were produced by post-processing the 

feature maps generated by the ensemble model. The primal–dual internal point method was 

used for fine-tuning the segmentation results. The study stated that the framework on full 

annotations outperformed the state-of-the-art methods and provided high quality outputs for 

small annotation ratios down to 10%.

The knee tissue segmentation model using a deep collaborative method including an encoder 

and decoder-based segmentation network together with a low rank tensor- reconstructed one 

was examined [51]. The segmentation network was built in two paths where the first one 

might be unsuccessful and overlook the boundary patches, the second one having low rank 

reconstructed input mitigated the impacts of this failure. The features from both the source 

and their low rank reconstruction images were extracted by using the proposed method.

An automatic articular cartilage segmentation method using an nnU-Net based two- stage 

approach was examined in [52]. The outputs of the first stage were considered to calculate 

the intermediate features for cartilage segmentation refinement at the second stage. At the 

first stage, nnU-Net was used to capture hard tissue and articular cartilage segmentation, 
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and distance and entropy maps were calculated to encode uncertainty in the initial cartilage 

segmentation. These maps were then concatenated with the original image at the second 

stage. A sub-volume around the cartilage was cropped using the initial segmentation 

approach and used as input for another nnU-Net for segmentation refinement. In [53], the 

erroneous regions on the boundary surfaces of segmented objects were addressed by using 

a DL framework for the quality control and segmentation evaluation. A CNN model was 

examined to capture the image features on the boundaries of multi-objects which may be 

considered to determine the location-based inaccurate segmentation.

The performance of a surface-based examination on cartilage morphology was studied [54]. 

To capture the precise regional analyses of cartilage morphology and relaxometry, a U-Net 

based CNN generated knee MRI segmentation in the 3D Cartilage Surface Mapping (3D-

CaSM) method was considered. The performance of segmentation from 3D U-Net provided 

higher accuracy in the extracted thickness and T2 features using 3D-CaSM compared to that 

from 2D U-Net.

In [55], a Dynamic Abnormality Detection and Progression (DADP) framework for 

longitudinal knee MRI analyzes was studied to overcome the lack of building spatial- 

temporal correspondences and correlations in cartilage thickness as well as the spatio-

temporal heterogeneity in cartilage lesions. The 2D cartilage thickness maps were extracted 

from 3D images and the spatial correspondences were built on these 2D flattened data 

across the time within each data and across all data. A dynamic functional mixed- effects 

model was proposed to simultaneously differentiate individual cartilage lesions on MRI 

data at baseline, 12 months, 24 months, and 48 months for dynamic abnormality detection 

and progression. The study concluded that the proposed DADP model detected the subject-

specific dynamic cartilage regions, effectively and yielded population-level statistical disease 

mapping and subgroup analysis.

The development of Transformer-based interactive image segmentation approaches for 3D 

MR images was examined in [56]. The study aimed to address the limited memory capacity 

of computationally demanding Transformers by proposing a memory-efficient Transformer 

named iSegFormer. This Transformer combined a Swin Transformer with a lightweight 

Multi-Layer Perception (MLP) decoder. To overcome the limited availability of labels for 

3D MR images, the iSegFormer was pre-trained using a large amount of unlabeled data 

before being fine-tuned with a limited number of segmented 2D slices. A pre-existing 

segmentation propagation model, which was pretrained on videos, was considered to 

propagate the 2D segmentations obtained by iSegFormer to unsegmented slices in 3D 

images. The iSegFormer was trained with 507 3D MR images from OAI-ZIB dataset. Three 

segmented slices per image (40, 80, and 120) resulted in 1521 training, 150 validation, and 

150 testing slices. A Dice score of 82.2% was obtained for 3D knee cartilage segmentation 

when the 2D interactive segmentations of 5 slices were extended to other unprocessed ones 

within the same 3D volume.

To ensure accurate segmentation of knee cartilage on a continuous basis, a Position- prior 

Clustering-based Self-attention Module (PCAM) was proposed [57]. The self-attention 

method was used to collect long-range contextual information inaccurate dis- continuous 
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segmentation caused by the limited receptive field in CNNs. To estimate class centers, 

the clustering-based method was considered, which promoted intra-class consistency and 

improved segmentation accuracy. The position-prior enhanced the precision of center 

estimation through excluding false positives from the side-output. The proposed PCAM can 

be integrated into any segmentation NN with an encoder-decoder structure. The experiments 

were performed using 507 3D MR images from OAI-ZIB dataset. The Dice score of 89.35% 

and 86.14% were obtained for femoral and tibial cartilage, respectively.

4.4. Classification

The viability of a knee arthroplasty prediction model using 3 different radiograph views 

(anterior-posterior, lateral, and sunrise) was evaluated to determine whether a patient of 

KOA requires a TKA, Unicompartmental Knee Arthroplasty (UKA), or No Surgery [58]. 

The study suggested that the machine learning approach represented viability for predicting 

which patients are candidates for a UKA, TKA, or no surgical intervention. An accuracy of 

87.8% on the holdout test set and a quadratic Cohen’s kappa score of 0.81 were obtained.

In [59], two GANs that can generate an unlimited number of KOA radiographs at different 

KL grades was proposed. The KL0 and KL1 grade images were merged into the KL01 class, 

whereas KL2, KL3, and KL4 ones were merged into the KL234 class. In [59], 320.000 

DeepFake images were generated synthetically from 5.556 knee joints radiographs with 

varying osteoarthritis severity using the GAN approach. The experts were asked to classify 

30 real and 30 DeepFake images. The rate of classifying DeepFakes images as real ones was 

higher than classifying real images as DeepFakes ones.

The performance of ResNet-50, DenseNet-121, and Convolutional Variational AutoEncoder 

(CVAE) DL models were investigated to predict KOA incidence within 24 months [60]. To 

capture the ROI containing the knee joint from the IW-TSE sequence, a DL model was used 

to segment bone on a SAG/3D/DESS/WE sequence. After IW-TSE and DESS sequences 

registration, the DESS segmentations were applied to the related IW-TSE scans. Combining 

the patient data with MRI-based features improved the performance.

4.5. Accelerated MRI

Accelerated quantitative imaging using AI is a novel topic with great promise in MSK 

imaging field. Recent reconstruction approaches using Parallel Imaging (PI) and compressed 

sensing have been shown to yield decreased acquisition time while maintaining acceptable 

image quality at a low acceleration rate compared to MRI. In [61], a ROI- specific 

optimization of accelerated acquisitions was examined. The considered DL model yielded 

T2 maps in knee and hip cartilage, and lumbar spine IVDs from accelerated T2- prepared 

snapshot gradient-echo acquisitions and InterVertebral Disc (IVD) performance with a 4-

component loss function. The gray level co-occurrence matrix-based approach provided 

better results than the considered state-of-the-art models for the knee and hip pipelines and 

retained smooth textures for the most acceleration factors R as well as sharper ones through 

moderate acceleration factors. The study concluded that the proposed approach provided 

robust T2 maps and better preservation of small and clinically related features.
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The diagnostic performance of different combinations of Simultaneous Multi-Slice (SMS) 

and PI approaches considering DL models for reconstruction was compared in [62]. The 

edge rise distance and noise power were calculated for quantitative evaluations of image 

sharpness and noise, respectively. The diagnostic performance of overall image quality 

and internal knee derangement were similar for 2-fold PI with 2-fold SMS acceleration 

(P2S2), P3S2, and P4S2 protocols. While the edge rise distance values were similar for 

DL protocols and conventional imaging, the noise power ones considering the DL protocols 

were importantly lower than conventional imaging. The study stated that using DL-enhanced 

8-fold acceleration imaging, 4-fold PI with 2-fold SMS, provided comparable results with 

considering conventional 2-fold PI for the assessment of internal knee derangement, with a 

71% decrease in acquisition time.

In [63], a 1D convolution was used to make the deep network memory-efficient, easier to 

be trained and generalized. The 1D CNN model was built through unrolling the iteration 

procedure of a low-rank and sparse reconstruction model that searches the coil correlation 

and image sparsity, respectively. The experimental results provided that One-dimensional 

Deep Low-rank and Sparse Network (ODLS) is robust to different undersampling scenarios 

and some mismatches between the training and test data. The Relative L2 Norm Error 

(RLNE) of 0.08 was obtained for Acceleration Factors (AF)=3.

5. Discussions and future directions

AI has been widely used for segmentation, prediction, and classification of KOA using 

radiographs and MRI imaging modalities. These models aim to diagnose the KOA at its 

early stages and prevent or postpone the TKR. Radiograph was used to classify the KOA 

and predict KOA progression based on KL grading system, and MRI was used to localize 

the knee joints and predict knee pain. Clinical and demographic variables, pain level, gait 

performances were also used for KOA prediction. Recent studies have started to consider 

the simultaneous analysis of radiographs or MRI, along with clinical and demographic 

variables, to predict the progression of KOA [9]. In order to develop an automated tool for 

assisting clinicians in evaluating the severity of KOA, it is expected to be more informative 

to facilitate all available patient data coherently.

The preliminary results of DL on fully-automated segmentation of knee cartilage and 

bone have shown reasonable potential in terms of generalizability and robustness. Using 

DL methods for segmentation reduced the segmentation time compared to model- and 

atlas-based approaches. Moreover, DL has been shown to identify OA phenotypes, predict 

KOA severity, and identify the KOA progression from mild to severe. In the near future, DL 

models that incorporate more than a single imaging modality and patient data from multiple 

time points are expected to be studied broadly to improve the performance of DL in KOA.

DL image reconstruction has been used to accelerate MRI by significantly reducing the scan 

time required for MRI examinations without compromising image quality or diagnostic 

accuracy. Reducing the duration of MRI acquisition might decrease discomfort of a 

patient and the costs of patient care. The existing studies have shown a high degree of 

interchangeability between standard and accelerated images.
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DL models have gained popularity owing to their ability to accurately model complex 

data and make predictions. Currently, many users viewing DL models as a black box, a 

model whose inputs and outputs can be observed, yet whose underlying processes are not 

well understood. This lack of understanding can limit interpretability and explainability. 

Additionally, DL models also have high generalization power when trained on large datasets, 

raising questions about performance and data acquisition. Recent advancements in computer 

science that involve the use of visualization tools open new avenues to better understand the 

underlying learning behavior of DL models. Even though these visualization tools provide 

general information about the decision task, they have not been able to provide one-to-one 

correspondence on how a decision was performed based on the inputs. This is an active area 

of research in the AI field. Further studies need to be performed to better understand how the 

decision process takes place for predicting KOA-related tasks.

A large portion of the articles reviewed did not validate developed models in an external 

validation set. External validation is a process that evaluates the performance of an AI model 

using a test dataset that was not part of the training data. Without external validation, it 

remains uncertain how well the model will perform on new data from different populations 

or healthcare settings. Hence, external validation sets should be used to identify the 

generalizability of the developed models. Considering external validation can enhance the 

reliability of AI models used for KOA. Moreover, some of the articles did not provide source 

code, and the information about cohorts or how to access the private dataset was missing. 

In order to compare the performance of a predictive model with previous approaches, it 

is important to share cohorts, trained model weights, model parameters and source codes 

with other researchers. Future studies need to ensure the reproducibility of the presented 

approaches. This will enable fast validation of the original results and fast progress to the 

next phase of KOA research.

With the help of observational datasets, such as OAI and MOST, model development 

for KOA has been studied extensively with well-structured data. Due to a lack of new 

data, the researchers have not been able to study the effect of current improvements on 

imaging devices and changes in the imaging parameters on the DL model performance 

effectively. In order to incorporate DL models in clinics, the generalizability of these 

models need to be validated on the current imaging protocols/devices as well as on the 

patient cohorts understudied in the available datasets. Currently, the development of effective 

AI models may require the use of large datasets to obtain high generalization power. 

However, acquisition and annotation of these datasets and the availability of high-quality 

data for training AI models may pose significant challenges. Generating synthetic data, 

augmentation, or leveraging existing datasets through transfer learning have been used as 

solutions to address these challenges [47,38,39]. Moreover, new era of DL approaches using 

self/un-supervised pretraining opens new venues for improving the generalization of DL 

models in limited data regime [64].

Acknowledgments

This study is supported in part by the National Institutes of Health (R01 AR074453).

Cigdem and Deniz Page 15

Osteoarthr Imaging. Author manuscript; available in PMC 2024 June 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Abbreviations:

A-ENN adversarial evolving neural network

AF acceleration factors

AI artificial intelligence

AMD aggregated multiscale dilated

AP average precision

AUC area under curve

BACC balanced accuracy

BMI body mass index

CAD computer-assisted diagnosis

CLS classification

CNN convolutional neural network

CV cross-validation

CVAE convolutional variational autoEncoder

DADP dynamic abnormality detection and progression

DC-MT dual-consistency mean teacher

dGEMRIC delayed gadolinium-enhanced MRI of cartilage

DL deep learning

EMA exponential moving average

ENN evolving neural network

FAC femoral articular cartilage

FC fully connected

FLASH fast low-angle shoot

FSE/TSE fast or turbo spin echo

GAN generative adversarial network

GNB gaussian naive Bayesian

HyLP hybrid label propagation

IoR intersection over detected region

IoU intersection over union
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IVD interVertebral disc

JSN joint space narrowing

KIQ knee imaging quantification

KL Kellgren-lawrence

kNN k-nearest neighbors

KOA Knee Osteoarthritis

KOOS Knee injury and Osteoarthritis Outcome Score

LOO leave-one-out

LR logistic regression

MLP multilayer perception

MOAKS MRI osteoarthritis knee score

MOST multicenter osteoarthritis study

MRI Magnetic Resonance Imaging

MSK MusculoSKeletal

MUST musculoskeletal pain in ullensaker study

NN neural network

NoD Number of data/image

NoK number of knee

OA osteoarthritis

OAGS osteoarthritis grading system

OAI osteoarthritis initiative

OARSI osteoarthritis research society international

ODLS one-dimensional deep low-rank and sparse network

PCAM position-prior clustering-based self-attention module

PH private hospital

PI Parallel imaging

PROOF prevention of knee osteoarthritis in overweight females

PS pain score

PSNR peak signal-to-noise ratio
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PPV positive predictive values

P2S2 2-fold PI with 2-fold SMS acceleration

qDESS quantitative double-echo steady-State

Rb-CNN region-based convolutional neural networks

RegLP regional label propagation

RLNE relative L2 norm error

ROI region of interest

SEG segmentation

SJTU-SPH Shanghai Jiao Tong University Affiliated Sixth People’s Hospital

SMS simultaneous multi-slice

SSIM structural similarity index measure

SSL semi-supervised learning

SVM support-vector machines

TBT trabecular bone texture

TKA total knee arthroplasty

TKR total knee replacement

TL transfer learning

UKA unicompartmental knee arthroplasty

VAG VibroArthroGraphic

VGG visual geometry group

ViT visual transformer

WOMAC western ontario and McMaster universities osteoarthritis

ZIB Zuse Institute Berlin

3D-CaSM 3D cartilage surface Mapping.
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Fig. 1. 
The article selection flowchart with exclusion criteria.

Cigdem and Deniz Page 24

Osteoarthr Imaging. Author manuscript; available in PMC 2024 June 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 2. 
The reviewed articles on KOA prediction using AI algorithms.
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