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Abstract: The design of C2-symmetric biologically active molecules is a subject of interest to the scien-
tific community. It provides the possibility of discovering medicine with higher biological potential
than the parent drugs. Such molecules are generally produced by classic chemistry, considering the
shortness of reaction sequence and the efficacy for each step. This review describes and analyzes
recent advances in the field and emphasizes selected C2-symmetric molecules (or axial symmetric
molecules) made during the last 10 years. However, the description of the dimers is contextualized
by prior work allowing its development, and they are categorized by their structure and/or by their
properties. Hence, this review presents dimers composed of steroids, sugars, and nucleosides; known
and synthetic anticancer agents; polyphenol compounds; terpenes, known and synthetic antibacterial
agents; and natural products. A special focus on the anticancer potential of the dimers transpires
throughout the review, notwithstanding their structure and/or primary biological properties.

Keywords: antitumor agents; biological activity; C2-symmetry; dimers; drug design; synthesis

1. Introduction

The synthesis of dimeric molecules has attracted considerable attention over the years.
Dimers of biologically active molecules quite often show higher activity than the monomeric
unit [1]. Many biological receptors or targets, once activated, dimerize upon an initial
interaction with a drug. Thus, a dimer that could interact with such targets was imagined
to be able to produce a stronger biological response than the parent drug. A dimeric drug
could accommodate two independent binding sites on a receptor molecule, leading to
a thermodynamically stronger interaction than that obtained by the attachment of two
monomeric drugs (Figure 1a) [2,3]. Hence, this strategy was exploited for the construction
of many types of drugs for the discovery of cutting-edge and innovative therapeutics.

The motivation for the design of dimers evolves from the fact that in natural products,
molecular bilateral symmetry is found in about 7% of all isolated molecules, which rep-
resents a higher number than that estimated on coincidence [4]. Particularly, the C2-axis
represents 69% of the total number of naturally occurring dimers. Generally, the biosyn-
thesis of dimeric natural molecules occurs by a head-on approach of two identical units.
So once again, Mother Nature inspires researchers to construct symmetrical therapeutic
molecules [4]. Figure 1b displays this particular type of C2 symmetry (sigma plane or axis)
that is often utilized by researchers to construct dimeric molecules. This topic was the
subject of several reviews in the field of anticancer drugs [5], in the field of steroids [6], and
recently as bioactive oligovalent symmetrical molecules [7].
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Figure 1. (a) Schematic representation of a dimeric molecule interacting with its receptor and bio-

logical outcome. (b) Schematic representations of C2-sigma plane or C2-axis symmetry using small 
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Figure 1. (a) Schematic representation of a dimeric molecule interacting with its receptor and
biological outcome. (b) Schematic representations of C2-sigma plane or C2-axis symmetry using
small molecules.

Herein, we describe the most recent advances in this rich and vast research domain
with a focus on the last decade (2010–2020). This review is divided into important types
of biologically active molecules and emphasis on the earlier work that allowed the de-
velopment of the reported dimers. The selection of the topics was based on recently
reported studies in the literature. This review is divided into the following sections:
steroids dimers and non-steroidal analogues, sugars and nucleoside-based dimers, dimers
of known and synthetic anticancer agents, polyphenol dimers, terpenoid dimers, dimers of
known and synthetic antibacterial agents, and recently isolated dimeric natural products.
The molecules are categorized by their respective types to contrast the original medicinal
properties with that of the corresponding dimers. Furthermore, the different sections were
also selected as the authors of the studies express the need for designing a dimer to improve
the activity of the basic molecules. The selection of compounds was also guided by the
relevance of the described biological data.

It is important to specify that dimeric drugs are mainly intended to link two receptors,
inhibiting the usual response to a ligand and frequently synergizing this response. Some
dimeric molecules can be made to alkylate DNA inhibiting cell growth. The design of
dimers will be guided by the intended molecular target. Most often, dimeric drugs are
not released (or cleaved) within the cellular component of the cell, so they can act as a
completely new molecular unit inside the targeted cells. Furthermore, such dimers are not
meant to follow Lipinski’s rule of five, which applies to small molecular entities.

2. Steroids Dimers and Non-Steroidal Analogs

Steroids play an important biological role in nature. Hence, the dimerization strategy
was applied to steroids with the goal of improving their biological potential. Several dimers
were fabricated by reaction of steroidal compounds (1a–d) with Lawesson’s catalyst [8].
According to the reaction conditions, different proportions of the dimers 2, 3, and 4 with
distinct linkers were isolated and characterized (Figure 2). These dimers were tested for
their biological activity and the results showed the dimer with a sulfur ether bridge, the
bis(cholesta-3,5-dien-3-yl) sulfide 2, was the most active compound [9]. The doses having
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antiproliferative activity of this particular sulfide on cervical cancer (HeLa), breast cancers
(MDA-MB-453 and MDA-MB-361), and leukemia (K562) human cell lines ranged from 14.9
to 27.1 µM in comparison to cisplatin, ranging from 2.1 to 17.1 µM. The dimeric compounds
showed no antimicrobial activity; however, those linked with trithiolane ring system 3
exhibited antifungal activity against Saccharomyces cerevisiae. Despite the fact that the
dimers are interesting molecules, the synthesis is rather difficult as it leads to a complex
mixture of compounds.
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Figure 2. Synthesis of symmetric (3,4) and asymmetric (4) steroid dimers with a sulfur-based bridge.

In another study, Vesper et al. reported the synthesis of novel C2-symmetric testos-
terone dimers were linked at position 7α of the steroid nucleus [10]. Two series of dimers
were constructed from testosterone (5) using either a α,ω-aliphatic diol or an aromatic
regioisomeric diol (ortho, meta, or para) as tether chains to produce dimers 6a–d and 7a–c,
respectively (Figure 3). The dimers were constructed in a stepwise manner via the corre-
sponding ester units 8a–d and 9a–c, allowing comparison of the antiproliferative activity
with the final dimers. The most active dimer 6a (n = 1) showed an IC50 of 3.8, 1.4, and
1.8 µM on LNCaP (AR+), DU-145 (AR−), and PC3 (AR−) prostate cancer cell lines, re-
spectively. This level of activity is about 12, 70, and 40 times more powerful than that of
cyproterone acetate, a known antiandrogen used as the control drug. Interestingly, the
precursor 8a was also active with an IC50 of 57 µM for LNCaP cells, 120 µM for DU-145 cells,
and 132 µM for the PC3 cells. Dimers 6c–d were less active than dimer 6a but displayed
selectivity on androgen-dependent LNCaP prostate cancer cells. Unfortunately, dimers
7a–c were not tested in this study.

Comparative investigations of testosterone dimers 6b and 7a with similar chain
lengths were recently performed in our laboratory [11–15]. The interactions with sev-
eral bio-macromolecules were studied using various spectroscopic methods, transmis-
sion electron microscopy (TEM), as well as molecular modeling. The first study showed
that beta-lactoglobulin was able to encapsulate testosterone readily in comparison with
the dimers 6b and 7a. The binding affinity for beta-lactoglobulin was higher for testos-
terone with a binding constant of 5.6 × 104 M−1 than 7a with 2.9 × 104 M−1 and 6b with
4.8 × 103 M−1 [11]. These dimers can also bind human serum albumin (HSA) and bovine
serum albumin (BSA), proteins able to transport biological substrates and drugs [12,13].
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The dimers could also alter DNA and tRNA morphology [14,15]. These investigations
provide further insight into the nature of steroid–biological macromolecule interactions
and demonstrate the value of designer dimers.
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and 9a–c.

Bastien et al. reported the synthesis of two testosterone dimers [16]. They are readily
available from testosterone (5) through an efficient five-step synthetic path with an overall
yield of 36% (trans-11, 24% and cis-11, 12%) (Figure 4). The key dimerization step involved
an olefin metathesis reaction of 7α-allyltestosterone acetate (10) with the Hoveyda–Grubbs
second-generation catalyst. The isomeric dimers were easily separable by flash chromatog-
raphy (trans and cis, 2:1). X-ray diffraction crystallography confirmed the structure of the
minor cis isomer and indirectly proved the structure of the major trans isomer. MTT assays
showed that the cis dimer had the best activity against human prostate cancer cell lines.
cis-11 with an IC50 of 30.3 µM and 24.7 µM on LNCaP prostate cancer cells (AR+) and
PC3 (AR−), respectively, displayed similar activity to that of the known antiandrogen
cyproterone acetate. Interestingly, the trans-11 was active only on androgen-independent
PC3 cancer cells.

In Denisov et al., the dimers were used to study allosteric effects in substrate binding
to cytochrome P450 CYP3A4 by resonance Raman and UV-Vis spectroscopy [17]. This
work shows that both dimers bind to the catalytic binding site of CYP3A4, which is
known to be sufficiently flexible to accommodate structurally different substrates. It was
discovered that the cis-11 binds more tightly and induces about 100% spin shift due to its
compact structure. In comparison, the trans-11 is a larger molecule that binds similarly
to two monomeric testosterone as it exhibits comparable spectral (resonance Raman (rR)
spectroscopy) properties and binding affinity. This study provided the first direct evidence
for an allosteric effect of the peripheral binding site at the protein–membrane interface on
the functional properties of CPY3A4.
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In order to modulate estrogen receptor alpha (ERα)-mediated transcription events,
Wendlant et al. developed a series of symmetric estrogen dimers linked at position C-
17 [18]. The first series of dimers, comprised of compounds 14 to 17, was fabricated through
the use of oxime chemistry [19] by starting from estrone 12 or estrone 3-methyl ether 13
(Figure 5). A stability analysis was conducted and proved that the dimers were robust
under various conditions. However, all compounds were analyzed for their agonist affinity
for ERα and none of them showed a superior affinity to that of 17β-estradiol. In response
to those results, dimers 18, 19, and 20 were synthesized in the hope of increasing ERα
affinity. Those compounds were fabricated via the use of a Girard-based linker, which
increases the hydrophilicity of the targets. Of all these compounds, the dimer 19 showed
the best results with a binding efficacy to ERα of about 125% compared with that of
estrogen at optimal concentration. This dimer was also evaluated for its binding specificity
and was found to link strongly to ERα whereas it was inactive against the three steroid
hormone receptors, which include progesterone receptors (PR), androgen receptors (AR),
and glucocorticoid receptors (GR). In vivo studies are still needed to evaluate the drug
potential of this new candidate.

With the aim of modulating the activity of the estrogen receptor (ER), a recent ap-
proach consisted of designing C2-symmetric dimers to bridge both ligand binding sites
of a dimeric ER [20]. In order to exploit this strategy, Knox et al. developed a series of
cyclophenylacrylic acid dimers, which can downregulate the activity of ER [21]. The choice
of structure for those dimers was based on crystallographic and theoretical studies [22,23].
The synthetic route to form those dimers is shown in Figure 6. Starting from the relevant
acyl chloride 21, a Friedel–Crafts acylation with anisole followed by a Grignard reaction
with 4-bromobenzaldehyde protected as acetal results in a compound that can be treated
with acid to deprotect the acetal and dehydrate the hydroxyl group, which forms the
diphenyl core. Then, a Wittig–Horner reaction with trimethyl-/triethylphosphonoacetate
and hydrolysis allows the formation of compound 22. The anisole ring is then converted
to phenol and a treatment of the resulting compound with DIPEA, PyBOP, and the corre-
sponding diamine spacer results in the formation of 23. Of all the derivatives formed in
the study, two principal series can be distinguished: the first corresponds to a derivative
of GW7604 [23], where R1 is a phenyl group and R2 is an ethyl group; the second series
is composed of cyclofenil derivatives [24], where R1 and R2 are linked by a cyclohexyl
ring. In both these series, the number of carbons of the diamine spacer varies between one
and five.
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materials (21).

All compounds were tested in vitro for biological activity [21]. A transactivation
assay showed that all compounds possess full antagonistic potency against ERα/β. The
downregulative potential of the dimers was tested on the basis of ERα activity expressed
in the MCF-7 cells and the results ranged from low to medium, every molecule being
less potent than the reference drug fulvestrant, a known estrogen receptor antagonist.
None of these compounds stimulated ER expression. The most active compound was the
cyclofenil derivative that possesses a spacer containing four carbon atoms. Not only did
this compound show the highest binding affinity to ERα with a relative binding affinity
of 79.2% compared with fulvestrant, it also showed a downregulation efficacy of 38%
at 1 µM against the ER content of the MCF-7 cells, as determined by an in-cell Western
immunoassay. These results showed once again that the strategy of dimerization as an
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antagonist of a particular receptor may be an interesting method to synthesize novel
medicinal compounds.

3. Sugars and Nucleoside-Based Dimers

Sugars are essential to life, not only as a source of energy, but also as a building block
for several bio-macromolecules. An interesting enzymatic synthesis of several C-6-acylated
derivatives of NAG-thiazoline 24 (2′-methyl-αD-glucopyrano-[2,1-d]-∆2′-thiazoline) was
reported, and the products were tested for their inhibitory activities toward fungal β-N-
acetylhexosamididase [25]. Amongst the products fabricated, two dimers were prepared
by enzymatic transesterification of a suitable bis-vinylester and 24 using Novosym 435,
a lipase from Candida antarctica immobilized on acrylic resin (Figure 7). The dimers 25
and 26 were obtained with 28% and 53% yield, respectively. The dimers were tested for
their inhibitory activity on a fungal β-N-acetylhexosaminidase, and unlike the parent
compound 24, a well-known competitive inhibitor of the enzyme, both dimers displayed
mixed inhibitory effects.
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In a series of three recent publications, Barianiak et al. reported several nucleoside
dimers analogues composed of floxuridine and thymidine linked by a 1,2,3-triazole ring
system [26–28]. The target dimers are not symmetric but were designed as hybrid drugs
with highly active antimetabolic building blocks. This research aimed at discovering
compounds with enhanced biological activities. Particularly, the dimers could be used
as nucleoside drugs, either by their chemical properties enabling them to terminate DNA
synthesis or by their physical properties by disrupting the DNA helix. Overall, new
anticancer drugs are sought by these researchers [26].

Two types of dimers were formed: in the first type, the dinucleosides are linked at
3′–3′ position (30a–d); and the second type are connected at the 5′–5′ position (34a–d)
(Figure 8a,b). Hence, the relevant azides (27a,b or 31a,b) and propargyl ethers (either
28a,b or 32a,b) are reacted together using the Huisgen cycloaddition reaction to produce
excellent yields (70–90%) for the dimers (29a–d and 33a–d) bearing a 1,2,3-triazole ring
system. Treatment with ammonium fluoride produce the final dimers 30a–d and 34a–d
with 75–95% yields. The triazole ring replaces the natural internucleotide phosphodiester
linkage, leading to greater stability by increasing resistance to nuclease enzymes. In
comparison with the phosphodiester bond, the triazole ring is neutral, allowing increased
cell penetration and interactions with DNA and RNA due to the lack of electrostatic
repulsion [26].

The impact on cell viability of dimers and precursors was tested on three types of
human cancer cells; KB (carcinoma nasopharynx), HeLa (cervical cancer), and MCF-7
(breast cancer) using the colorimetric MTT assay. The results were compared with the
nucleoside drug cytarabine (ara-C), with an internal standard 5-fluoro-2′-deoxyuridine
(5-FdU), and with 3′-azido-3′-deoxythymidine (AZT) as a control drug. It was discovered
that dimer 34d was the most active dimer with an IC50 of 3.10 µM on KB cells, 3.46 µM
on MCF-7 cells, and 3.76 µM on HeLa cells. Dimer 34d was twice as active as 5-FdU and
displayed equipotent activity to that of ara-C. Dimer 34a was also interesting with an IC50
of 3.40, 4.11, and 5.06 µM against HeLa, MCF-7, and KB cell lines, respectively. The 3′–3′

connection was less effective in producing active dimers than the 5′–5′ connection.
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Figure 8. (a) Click chemistry synthesis of dimers 30a–d by combination of 3′-azido-nucleosides and 3′-O-propargyl-
nucleosides. AZT, 3′-azido-3′-deoxythymidine (27a); AddFU, 3′-azido-2′,3′-dideoxy-5-fluorouridine (27b). (b) Click
chemistry synthesis of dimers 34a–d by combination of 5′-azido-nucleosides and 5′-O-propargyl-nucleosides; 5′-AZT,
5′-azido-5′-deoxythymidine (31a); 5′-AddFU, 5′-azido-2′,5′-dideoxy-5-fluorouridine (31b).

4. Dimers of Known and Synthetic Anticancer Agents

This section analyzes dimers formed with the goal of improving the anticancer ef-
fects of the monomeric unit. Simple small molecules such as cantharidin (CAN) and
demethylcantharidin (DMC) are protein phosphatase inhibitors that have been used for
centuries (since 1264) as anticancer agents against various cancer types [29], and the ref-
erences cited there (Figure 9). These compounds are effective against multidrug-resistant
cells; however, cantharidin is toxic to normal cells, primarily of the gastrointestinal tract,
urethra, and kidney. So, many analogues were synthesized to improve its activity while
reducing its toxic side effects on normal cells. Cheng et al. reported the synthesis and
antiproliferative activity of four unsaturated bis-norcantharimides and the corresponding
saturated molecules [29]. The synthesis is easy and consists of an initial Diels–Alder re-
action between maleic anhydride (35) and furane (36) to give 37, which is reacted with
1,4-diaminobutane, 1,6-diaminohexane, diethylenetriamine, and triethylenetetramine to
obtain the final derivatives 38 (n = 2, 4) and 39 (n = 1, 2) (Figure 9). Catalytic hydrogena-
tion provides the corresponding saturated dimeric analogues, but unfortunately, all these
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dimers were inactive on human lung cancer cells (A549) when tested by the cell viability
MTT assay.
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Figure 9. Synthesis of four unsaturated bis-norcantharimides: dimers 38 and 39.

Furutachi et al. were interested in the design and biological evaluation of dimeric
hydantoin dimers [30], and as seen in Figure 10a, the synthesis is straightforward [31,32].
These authors also reported previous work on symmetrical hydantoin derivatives [33]. In
the most recent publication, the synthesis consists of reacting aminoester 40 with a relevant
diisocyanide, providing a variety of hydantoin dimers 41 (Figure 10a) [30]. The target
molecules are illustrated in Figure 10b. Two types of dimers were fabricated that are linked
together either by an aromatic chain 42 or by an aliphatic chain 43 (Figure 10b), and the
dimers were obtained as a mixture of stereoisomers. As a first screening, the authors tested
the dimers on two types of human cancer cells: U251 (brain glioma cells) and KB3-1 human
carcinoma cells [30], and if positive results are obtained, it is planned by the research group
to separate the stereoisomers to more precisely study their biological potential.
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The antiproliferative activity of the dimers was evaluated using the colorimetric MTT
assay, which revealed that dimer 42 (n = 1) displayed the best activity with an IC50 of 0.46
and 5.21 µM on U251 and KB3-1 cell lines, respectively. This particular C2-symmetric dimer
is connected by a biphenylmethane bridge. The IC50 of cisplatin, the reference drug, was
3.06 and 6.90 µM against these two cells, respectively. Generally, the hydantoin dimers were
more active in U251 cancer cells with an IC50 ranging from 0.46 to 7.0 µM in comparison
with an IC50 ranging from 5.21 to 26.08 µM on the KB3-1 cells. Notably, amongst the dimers
linked by a methylene chain, dimer 43 (m = 8) showed the best antiproliferative activity on
brain glioma cells (U251) with an IC50 of 1.05 µM. There was no clear relationship between
the length of the aliphatic chain and the observed antiproliferative activities.

A different research project from Furutachi et al. described the synthesis of C2-
symmetric phenyl boronic acid pinacol esters with different linkers and reported their
biological potential as antiviral and antibacterial agents [34], and more recently, as anti-
cancer agents [35]. The general structure 45 is illustrated in Figure 11a. These dimers are
easily prepared by reacting amino-phenyl boronic acid pinacol esters 44 with relevant
dicarboxylic acid dichlorides in the presence of triethylamine (for example, leading to 46)
or with diisocyanide to obtain 49 (Figure 11b). Dimer 47 was synthesized by reacting the
precursor bis-amide with Lawesson’s catalyst with 55% yield. A unique symmetric com-
pound 50 was obtained with 35% yield from 2,5-diphenylhydroquinone reacted with BCl3
and AlCl3. The same research team also described several dimeric pinacol acids [36,37].
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8), pinacol esters (46, 47, 49), and compound 50.

These molecules were tested for their anti-herpes simplex virus activities [34,36,37].
Interestingly, the phenyl boronic acid pinacol esters 46 showed anti-HSV-1 activity with
an EC50 of 8 µM, while the corresponding phenyl boronic acid 48 (n = 7) was inactive
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(EC50 > 100 µM). The bis-thioamide 47 was twice as active as 46, with an EC50 of 4 µM;
also dimer 50 with an EC50 of 5.5 µM is an interesting anti-HSV-1 compound.

The new dimers were also tested for their anticancer activities on human brain glioma
cells (U251) and human carcinoma cells (KB3-1) using the MTT assay [35]. The symmetric
dimer 48 (n = 8) was the most active compound, displaying an IC50 of 19 and 3.78 µM on
U251 and KB3-1 cancer cells, respectively. Of note, the antiproliferative activity of dimer
48 (n = 8) was greater than that of cisplatin (IC50 of 6.9 µM) on KB3-1 cells. Dimer 49 has
a different linker chain and showed activity only on KB3-1 cells with an IC50 of 44.4 µM.
Finally, dimer 48 (n = 7) showed moderate activity with an IC50 of 39.6 and 32.5 µM on
U251 and KB3-1 cancer cells, respectively. There was no clear relationship between the
length and nature of the linker with the observed antiproliferative activities. Overall, the
synthesis of this type of dimer is easy and some of the compounds present interesting
activity that could guide future development.

The antitumor properties of pyrrolo[2,1−c][1,4]benzodiazepine (PBD) compounds
have been studied since 1963, when they were first isolated from the fermentation broth of
the thermophilic actinomycete Streptomyces refuineus [38]. An initial biological screening of
the extract showed a specific activity against Gram-positive organisms and an antitumor
activity against sarcoma 180 and adenocarcinoma 755 mouse tumor systems [38]. It was
later understood that the molecular structure of PBD compounds allows them to fit in DNA
minor grooves and the electrophilic carbon of the imine group reacts with the amine of
guanine bases, revealing the alkylating properties of PBDs [39]. In order to enhance their
cross-linking properties, synthetic PBD dimers linked by their phenolic C8-positions via
flexible ether bridge were investigated, since molecular modeling and NMR studies showed
that this type of linkage could allow both PBD units to perform intrastrand or interstrand
DNA cross-links, a hypothesis that was later reinforced by DNA-binding studies [39].
To that end, Howard et al. synthesized interesting PBD dimers in a nine-step synthesis
(Figure 12a) by starting from the known 2-nitrobenzoic acid dimeric core (51) [40]. The
key steps of this synthesis are the tetralactam formation, which was achieved with Raney
nickel and hydrazine followed by a Suzuki coupling reaction. The resulting dimer SG2202
(52) was then tested in vitro, where it exhibited significantly higher cytotoxicity than other
known PBD dimers [40]; however, the lack of hydrosolubility of SG2202 limited the in vivo
assay. In order to resolve this problem, the prodrug SG2285 (53) was also synthesized by
adding a bisulfite moiety at the C11 and C11′ positions. Both of these dimers were then
tested on ten human tumor cell lines via an Alamar Blue assay. Although the prodrug
SG2285 was slightly less effective than SG2202, both dimers showed a cytotoxic activity
in the picomolar range for all cell lines tested, the best results being observed for the T
lymphoblast cell lines CCRF-CEM, with an IC50 of 0.1 pM for SG2202 and 1.4 pM for
SG2285 [40]. Further studies also demonstrated the cross-linking activity of SG2202 and
SG2285 [41].

The biological potential of SG2285 (53) has sparked the attention of the scientific
community in the last few years and its intellectual property has been acquired by Spirogen
Ltd., London, UK. Following the outstanding results of SG2285, Spirogen developed other
PBD dimers such as SG3249, also named Tesirine (57), a dimer first synthesized in 2012 [42]
(Figure 12b).

Tesirine was designed to act as a warhead in the domain of antibody-drug conjugates
(ADCs). In Tesirine, the PBD dimer acts as an antitumoral agent, whereas a valine–alanine
linker is designed to be cleaved by Cathepsin B in order to release the chemotherapeutic
drug in the body. Tesirine also has a polyethylene glycol (PEG) spacer and a maleimide
designed to allow the conjugation of various antibodies via a Michael addition.

In 2016, Tiberghien et al. developed a scale-up synthetic route to Tesirine (Figure 12b) [43].
Key steps in their synthesis involve the nitration of benzylvanillin (54), followed by a
Pinnick oxidation in order to form the carboxylic acid that can react with the hydroxyproline
derivative to yield the corresponding amide. The hydroxyl group on the molecule is then
oxidized with a TEMPO/TCCA combination, which results in the molecule 56. Afterward,
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this compound is treated with triflic anhydride followed by a Suzuki coupling reaction
to induce the methyl group at the C2 position. The nitro group was then reduced with
zinc and dilute formic acid before being treated with allyl chloroformate to yield the
corresponding carbamate (allyloxycarbonyl or alloc group). A deprotection of the hydroxyl
group on the 2-pyrroline ring and a ring-closing Swern oxidation allowed the formation of
the lactam, which was modified to form molecule 57. This molecule was then subjected
to Williamson ether chemistry via 1,5-diiodopentane in order to produce the PBD dimer.
Prior to dimerization, one unit was linked with alloc-Val-Ala-para-amino-benzylalcohol.
After the dimerization, the nitrogen bearing the alloc group was deprotected and the free
amine was coupled with Mal-dPEG8-Acid to form Tesirine (57). With over 30 steps in total,
it was possible for the authors to achieve this synthesis with a total yield of 0.54% [43].
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The activity of Tesirine was studied and it was found that it exhibits cytotoxic effects in
the ng/mL range against HER2 expressive human breast cancer cell line SKBR3 [43]. After
more intensive biological studies [44], linkage of Tesirine with antibodies was tested and
the antibody rovalpituzumab was chosen for its ability to bind to Delta-like ligand 3 (DLL3),
an inhibitory Notch ligand expressed on the cellular surface of small-cell lung cancer and
large-cell neuroendocrine tumors but expressed minimally in healthy tissues [45]. The
drug candidate Rovalpituzumab Tesirine (Rova-T) was tested on small-cell lung cancer and
demonstrated excellent cytotoxic activity [45]. Rova-T even progressed to clinical trials,
but the developer AbbVie announced in 2019 that the Rova-T research and development
program was ended in phase III clinical study due to a lack of survival benefit for the
patients [46].

Compounds containing Schiff base are known to often exhibit biological activity [47],
and some drugs containing an imidazole motif that possess anticancer [48], hypnotic [49],
and anxiolytic [50] properties are currently marketed. A series of Schiff-base dimers was
developed in order to study the impact of dimerization on the biological activity of such
compounds [51]. In this study, 30 dimers were synthesized and their effect was studied in
three types of cancer cell lines. Of all the novel compounds, the dimers 58 (Figure 13) and 59
showed the best cytotoxic activity. These two compounds bear an imidazo[1,2−a]pyridine
skeleton and were fabricated by a one-pot synthesis, where 2-aminopyridine reacts first
with the corresponding dialdehyde to form the amidine, which is then heated in the
presence of phenylacetylene, CuSO4, and D-glucose to yield the desirable compound [52].
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Although many of the dimers appear to exhibit no significant cytotoxicity, compounds
58 and 59 showed high activity against the three cell lines tested: cervical (HeLa), breast
(MDA-MB-231), and renal cancer cell lines (ACHN). In all cases, these dimers were found
to possess an IC50 below 1 µM. In vivo studies were conducted with compounds 58 and 59
on mammary carcinoma rats and the parameters evaluated were hemoglobin, packed cell
volume, red blood cells, standard deviation, and white blood cells. The results showed that
these two compounds had similar activity to the tamoxifen reference, which highlights the
therapeutic potential of symmetric imidazo[1,2−a]pyridine dimers.

5. Polyphenol Dimers

It is now established that flavonoids provide several health benefits, including anti-
oxidative, anti-inflammatory, anti-mutagenic, and anti-carcinogenic properties, along with
being able to modulate certain enzyme functions [53]. Silybin is a flavonolignan product
extracted from the milk thistle (Silybum marianum (L.) Gaertn. (Asteraceae)), also named
silymarin [54]. It is isolated as a mixture of two diastereoisomers silybin A (60a) and silybin
B (60b) (Figure 14a), and they possess antioxidant and hepatoprotective activities. Inter-
estingly, 2,3-dehydrosilybin 61 displays higher antioxidant and anticancer activities than
silybin [55,56]. Generally, dimerization of these products (60a, 60b) produces compounds
with higher biological potential [54].
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The C2-symmetric dimers 60aa and 60bb were prepared using a transesterification
reaction with Novozym 435 and the divinyl ester of dodecanedioic acid in the presence
of silybin 60a or 60b with 24% and 44% yields, respectively (Figure 14a). The novel
dimers are linked at C-23 via a diester spacer and they are assembled by a lipase-mediated
method [57]. Shorter divinyl ester did not provide any dimers but only monemeric esters.
The asymmetric dimer was obtained in a stepwise manner via the monoester product of
60a, which was then combined with 60b to produce 60ab in a 26% yield.

Another series of flavonolignans dimers was also developed that were linked by
diether linkers either using 1,3-bis(bromomethyl)benzene or 1,4-bis(bromomethyl)benzene
(Figure 14b). So, upon treatment of silybin A (60a) or silybin B (60b) with the relevant
bis(bromomethyl)benzene and potassium carbonate in acetone at reflux, the dimers para-
62aa, para-62bb, para-62ab, and meta-62ab were obtained as a diether linked at position C-7
(Figure 14b).

In order to evaluate antioxidant ability of the dimers, a 1,1-diphenyl-2-picrylhydrazyl
(DPPH) assay was performed. The radical scavenging ability of the silybin dimers 60aa,
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60bb, and 60ab, and para-62aa, para-62bb, para-62ab, and meta-62ab (inhibition values
varying between 7.1% and 10.7%) was superior to the inhibition value measured for silybin
A (60a) (6.6%). However, the value determined for 2,3-dehydrosilybin 61 (83%) was much
higher than the inhibition value of its corresponding dimer (see 61 dimer) (33.4%). The
same trend in the results was observed in an inhibition of microsomal lipoperoxidation
assay. The cytotoxic potential of silybin A 60a and its dimer 60aa, and 2,3-dehydrosilybin 61
and its dimer (61 dimer) was tested on HUVEC vascular cells, NAK skin cells, BALB/c 3T3
fibroblasts, and HepG2 transformed hepatoma epithelial cells. Although all compounds
were ineffective on the NAK cell line, silybin A (60a) was found to be less active than its
dimer 60aa on every other cell, and 2,3-dehydrosilybin 61 was more active than its dimer
(61 dimer). The authors rationalized the finding that dimerization of 2,3-dehydrosilybin
61 reduces its biological potential, whereas it enhances the potential of silybin A (60a),
by the planarity of the flavonoid moiety of the 2,3-dehydrosilybin (61), which is much
greater than that of silybin A. This planarity favors π-electron delocalization, leading
to π-stacking within the dimeric molecule. Hence, the two flavonoid cores of the 2,3-
dehydrosilybin dimer (61 dimer) are much more prone to stacking than the monomeric
units of dimer 60aa, which can block some hydroxyl groups that are key components in the
reactivity and antioxidant activity of these compounds, such as the resonance stabilization
they can induce. Nonetheless, more assays are needed to grasp the importance of the
stereochemistry of these flavonolignans dimers on their biological activity.

In another study, Gavezzotti et al. proceeded to dimerize the flanovolignans silybin A
(60a), silybin B (60b), and silydianin (63) [58–60] at position C-21. In each case, the key step
of the dimerization (Figure 14c) involves an enzymatic oxidative coupling using laccase
from Trametes versicolor. The DPPH scavenging activity of the three dimers 64aa, 64bb,
and 65 was tested, along with their corresponding precursors [60]. All the dimers show a
better DPPH scavenging activity than their precursors, the most active compound being
the dimer 65 with an IC50 of 7.92 ± 0.05 µM, a significant improvement compared with the
substrate 63, which showed an activity of 27.4 ± 0.7 µM. However, none of the activities of
the compounds tested in this study surpassed the DPPH scavenging activity of the known
antioxidant Trolox, which displays an IC50 of 4.18 ± 0.1 µM [61].

In order to enhance the solubility of silybin while retaining the properties of flavono-
lignans dimers, a series of three silybin dimers with phosphate linkers was developed [62].
The dimers were fabricated independently using a five-step reaction sequence involving
phosphoramidite chemistry (Figure 14d) [63]. Three dimers, 66, 67, and 68, were tested for
antioxidant activity by DPPH tests. Every dimer was more active than the silybin 60a/60b
(IC50 of 1.40± 0.06 mM), the best one being dimer 68 with an IC50 of 0.34 ± 0.07 mM. How-
ever, all of the silybin derivatives were less active than the reference drug quercetin (IC50
of 0.18 ± 0.01 mM). Furthermore, the novel compounds were found to be non-cytotoxic
against HepG2 cells and the solubility of the dimers was found to be around 20 mg/L at
circumneutral pH values, which is a considerable improvement compared with silybin
60a/60b that possesses a solubility around 0.4 mg/L. These results prove that polyphenol
dimers are promising compounds in the field of synthetic antioxidants.

Curcumin (69) has been proven to be one of the best antioxidants discovered in
nature [64] but is known to decompose under physiological conditions [65]. Its degradation
products mainly consist of vanillin (70a), dehydrozingerone (70b), and ferulic acid (73)
(Figure 15) [65]. Following this discovery, a new research avenue was undertaken that
involves the modification of these degradation products to create new antioxidants stable
under physiological conditions [66]. These compounds are shown in Figure 15. Note that
the dehydrozingerone dimer 74 was fabricated from dehydrodivanillin that was treated
with an aqueous solution of LiOH in acetone [66], and that ferulic acid (73) and its dimer
77 were extracted from saponified maize bran and grass samples [67,68].

The curcumin derivatives were evaluated for their antioxidant properties [68]. The
kinetic study of the autoxidation of triacylglycerols of sunflower oil showed that curcumin
(69) and the C2-symmetric dimers 74 and 75 displayed stronger antioxidant efficiency and
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inhibition degrees than the other compounds and were more active than their correspond-
ing monomers. However, an oxygen radical absorbance capacity assay with fluorescein
was also performed, and with this model, dimers and monomers presented similar activity.
Nonetheless, the monomers and dimers (74–77) showed superior activity to the reference
Trolox at a similar concentration (0.63 µM). This assay was performed in water, which
can greatly impact the results, since hydrogen bonding may affect the radical scaveng-
ing potential of the molecules. Structure–activity studies showed that the presence of an
α,β-unsaturated chain seems to be a key component in the chain-breaking antioxidant
activity of the compounds, since this moiety can scavenge the generated radicals. This
effect also seems to be stronger when the α,β-unsaturated chain is located in para-position
to a hydroxyl group on an aromatic ring. The authors concluded that since curcumin
(69) and the compound 74 are two dimers originating from the monomer 70b, the type of
linkage that unites both phenolic units of these dimers does not change the reactivity or
antioxidant efficiency of this type of molecule.

Molecules 2021, 26, x FOR PEER REVIEW 19 of 32 
 

 

an α,β-unsaturated chain seems to be a key component in the chain-breaking antioxidant 

activity of the compounds, since this moiety can scavenge the generated radicals. This 

effect also seems to be stronger when the α,β-unsaturated chain is located in para-position 

to a hydroxyl group on an aromatic ring. The authors concluded that since curcumin (69) 

and the compound 74 are two dimers originating from the monomer 70b, the type of link-

age that unites both phenolic units of these dimers does not change the reactivity or anti-

oxidant efficiency of this type of molecule. 

O O
H

O

HO

O

OH

O

HO

O

HO

R

O

O

HO

O

O

HO

OH

O

OEt

O

O

O
H

O OH

OHO

O

O

O OH

OHO

O

O

O OH

OHO

HO

O

OH

O

O OH

OHO

O

O

O

EtO

O

OEt

O

H

H

O

69

70a; R = H
70b; R = CH3

71 72 73

74 75 76 77

MTBAP
DCM

1. EtONa
   TFH
   Diethyl oxalate

2. HCl 10%

 

Figure 15. Representation of curcumin (69) and related compounds 70–77. 

6. Terpenoid Dimers 

Terpenoids are an important class of natural products with diverse biological prop-

erties (e.g., anti-inflammatory, antioxidant, and anticancer) and are often used in tradi-

tional herbal medicine. Several dimers of ursolic and oleanolic acid (78a and 79a) were 

recently reported by Hoenke et al. [69]. They were formed with the goal of improving 

their anticancer potential. The symmetric dimers were linked by an α,ω-diaminoalkyl 

chain of various lengths leading to derivatives 80b and 81b (Figure 16). The acids were 

initially acetylated (78b and 79b, R = Ac), linked with relevant diamine chain to produce 

80a and 81a (R = Ac) and hydrolyzed to the final dimers 80b and 81b (R = H). Despite 

acelytated ursolic and oleanolic acid as well as some carboxamides showing better cyto-

toxic activity than the parent acids [70–72], none of the dimers were active when tested on 

human cancer cell lines (A375, HT29, SW1736, MCF-77, A2780, FaDu, and A549) and non-

malignant mouse fibroblasts (NIH 3T3). The authors are now investigating skin penetra-

tion, stability, and bioavailability of the dimers to be used as slow-release system for trans-

dermal applications. 

Figure 15. Representation of curcumin (69) and related compounds 70–77.

6. Terpenoid Dimers

Terpenoids are an important class of natural products with diverse biological proper-
ties (e.g., anti-inflammatory, antioxidant, and anticancer) and are often used in traditional
herbal medicine. Several dimers of ursolic and oleanolic acid (78a and 79a) were recently re-
ported by Hoenke et al. [69]. They were formed with the goal of improving their anticancer
potential. The symmetric dimers were linked by an α,ω-diaminoalkyl chain of various
lengths leading to derivatives 80b and 81b (Figure 16). The acids were initially acetylated
(78b and 79b, R = Ac), linked with relevant diamine chain to produce 80a and 81a (R = Ac)
and hydrolyzed to the final dimers 80b and 81b (R = H). Despite acelytated ursolic and
oleanolic acid as well as some carboxamides showing better cytotoxic activity than the
parent acids [70–72], none of the dimers were active when tested on human cancer cell
lines (A375, HT29, SW1736, MCF-77, A2780, FaDu, and A549) and nonmalignant mouse
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fibroblasts (NIH 3T3). The authors are now investigating skin penetration, stability, and
bioavailability of the dimers to be used as slow-release system for transdermal applications.
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Limonoids are categorized as highly oxidized tetranortriterpenoids, which mainly
come from the plant families Meliaceae, Rutaceae, and Cneoraceae [73]. These compounds
are also well-known for their important biological activity [74]. In 2017, Li et al. re-
ported the discovery of the first limonoid dimer, named krishnadimer A (87′) (Figure 17),
a C2-symmetric dimer linked by an axially chiral C15–C15′ central bond possessing an
M-configuration. This compound was isolated from the mangrove Xylocarpus moluc-
censis [75]. Following this discovery, Li et al. synthesized a series of limonoid dimers,
analogues of krishnadimer A (87′) [76]. Starting from moluccensin A (82′) [77] and 6R-
hydroxymoluccensin A (82), the dimers 83, 83′, 84, 84′, 85, 85′, 86, 86′, and 87 were formed
via oxidative carbon–carbon radical coupling. Krishnadimer A (87′) was also synthesized
in order to obtain a sufficient quantity for biological assays.

Of all the dimers studied, only the compounds 83, 83′, 87, and 87′ possess C2-
symmetry. Every molecule was tested for cytotoxic activity against several human breast
cancer cell lines. Compounds 84, 84′, 85, 85′, 86, and 87 were found to be inactive on all
cell lines and compounds 83 and 83′ were poorly soluble in DMSO and therefore could not
be tested. Compound 82′ and 86′ were tested during a previous study and they showed
no cytotoxic activity against eight human tumor cell lines [75]. Derivative 87′ was further
tested on seven human breast cancer cell lines (MDA-MB-231, MDA-MB-453, MCF-7,
MCF-7/ADR, MT-1, SK-BR-3, and ZR-75-1) [76]. Although it showed no activity on the
last four cell lines, it displayed weak cytotoxic activity against MCF-7 cells (with an IC50 of
34.05 ± 7.35 µM) and showed potent activity against MDA-MB-231 (IC50 of 5.57± 1.48 µM)
and MDA-MB- 453 cells (IC50 of 3.93 ± 0.75 µM), slightly exceeding the activity of cisplatin
for this cell line (IC50 of 4.37± 0.32). The mechanism of action of 87′ was studied and it was
discovered that this dimer induces cell-cycle arrest at G2/M phase and apoptosis. More-
over, an accumulation of reactive oxygen species (ROS) in MDA-MB-231 and MDA-MB-453
cell was measured. In vivo studies involving the transplantation of MDA-MB-453 cells
into nude mice were conducted and 87′ successfully inhibited the growth of MDA-MB-453
tumors by 21.17% and 61.83% at doses of 10 and 30 mg/kg, respectively. It appears that
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C2 symmetry and the stable M-configuration of the C15–C15′ central axis are of utmost
importance for the medicinal activity of 87′.
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starting compounds 6R-hydroxymoluccensin A (82) and moluccensin A (82′).

7. Dimers of Known and Synthetic Antibacterial Agents

Salinomycin (88) is a polyether ionophore with a wide range of biological activities,
primarily used in veterinary medicine as a coccidiostatic agent and growth promoter [78].
It was discovered that this natural product shows selective targeting of breast cancer stem
cells [79] and anticancer potential against several human cancer cell lines [80]. These
reports caught the interest of researchers and numerous semi-synthetic analogues were
fabricated with the goal of obtaining compounds with better biological activity. Amongst
this work, an early report of salinomycin dimers, linked by a triazole linker, displayed
higher cytotoxicity against breast cancer cells than the corresponding monomer [81]. Hence,
Antoszczak et al. prepared two different types of C2-symmetric salinomycin dimers by
a rather expeditious and efficient method [82]. Four different salinomycin dimers were
formed using a copper(I)-catalyzed Glaser-type reaction (general structure 89) (Figure 18).
These dimers were fabricated via the propargyl ester or amide of salinomycin with 83% and
88% yield, respectively, before the dimerization step using copper (I) chloride (CuCl). The
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C20 alcohol was either left intact or was protected as a carbamate using ethyl isocyanate
as the reagent leading to two additional dimers. The C20-O-terephthalate dimer 90 was
produced by a three-step reaction sequence with 36% overall yield. Of note, the Glaser
reaction was achieved simultaneously in the presence of ethyl isocyanate used for the
carbamoylation reaction.
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Figure 18. Synthesis of C2-symmetric salinomycin dimers 89 linked at C-1 and 90 linked at C-20 by a diyne chain and a
terephthalate ester, respectively.

The anti-proliferative activity of the dimers was evaluated using the SRB assay on
human colon carcinoma (LoVo, doxorubicin-sensitive LoVo/DX, and doxorubicin-resistant)
on three breast cancer cell lines (JIMT-1, MCF-7, and SKBR-3) and on the normal-like breast
epithelial cell line (MCF-10A). Unfortunately, the four dimers (see 89) were essentially
inactive. However, dimer 90 displayed activity similar to that of salinomycin (88) and was
more active than cisplatin. To illustrate its activity, the IC50 reported for MCF-7 breast
cancer cells are: salinomycin, 1.5 µM; 90, 1.8 µM; cisplatin, 7.7 µM; and doxorubicin,
0.26 µM. Interestingly, the dimer 90, with an IC50 of 21 µM, was much less toxic than
doxorubicin with an IC50 of 0.58 µM on normal-like breast epithelial cell line MCF-10A.
Furthermore, 90 displays an IC50 of 2.8 µM in comparison with 10 µM for doxorubicin on
LoVo/DX.

In the aim of enhancing the antibacterial properties of hydantoin type drugs [83],
Furutachi et al. synthesized a series of seven hydantoin derivatives (42, 95–100), with
three of these compounds possessing a C2-symmetry axis (42, 95, 96) [84] (Figure 19). The
compounds were all produced by the reaction of a β-aminoalanine derivative 91 with
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various aryl isocyanates 92 leading to general structures 93 and 94 (Figure 19) [31]. The
new compounds were tested on a Gram-positive (S. aureus) and a Gram-negative (E. coli)
strain for antibacterial activity. Of all these compounds, the three most potent candidates
are the C2-symmetric dimers (42, 95, and 96), the best one being compound 42, which
exhibited a minimum inhibitory concentration of 24 nM against S. aureus and 95 nM against
E. coli. Furthermore, every compound tested was more active against the Gram-positive
strain S. aureus than the Gram-negative E. coli, for reasons that remain to be elucidated.
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Compounds containing the β-lactam ring, such as penicillin or cephalosporin, are
known to possess antibacterial activity due to their capacity to inhibit the synthesis of
bacterial cell walls [85]. More recently, these compounds were also proven to possess
certain antitumor activity [86]. A series of symmetric β-lactam dimers were produced
by reaction of an aromatic dialdehyde with various amines 101 to yield a series of Schiff
bases 102 (Figure 20) [87]. These imines were then treated with chloroacetyl chloride,
or the corresponding acyl chloride, in order to form compounds 103 to 114, illustrated
in Figure 20. Those novel molecules were exposed to nine different bacterial strains to
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examine their antibacterial activities. The results varied from low to medium, the most
active dimer being molecule 109, which notably showed an inhibition zone of 26 mm for
the strains Proteus vulgaris, Salmonella typhi, and Staphylococcus aureus. However, some
intermediate compounds involved in the formation of dimers 113 and 114 were more active
than the dimers, and none of the novel compounds were more active than the reference
drugs amoxicillin and ceftriaxone, which had an inhibition zone of 30 mm in every tested
strain. Tested for their in vitro anticancer activity, the compounds showed variable results.
The best results was obtained with dimer 104 with IC50 values of 0.41, 0.42, and 0.45 µM
against cervical HeLa, breast MDA-MB-231, and renal ACHN cell lines, respectively. These
results are even higher than that obtained for doxorubicin, which highlights the biological
potential of β-lactam dimers in the discovery of new anticancer drugs.
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8. Recently Isolated Dimeric Natural Products

Three natural products possessing two trans-epoxyamide were isolated from the deep-
sea fungus penicillium chrysogenum (115–117) [88]. The structures of the compounds were
characterized by IR, 1H-, and 13C-NMR spectroscopy and by mass spectrometry. X-ray
diffraction analysis of compounds 115 and 116 was performed, confirming the spectral
analysis. Interestingly, two of the dimers (115 and 116) feature a center of symmetry
(Figure 21).

The compounds were tested for their anticancer activity against K562, A549, and
HUH7 cancer cell lines and were inactive at 30 µM. They were also tested for their antibac-
terial activity against three bacteria (Staphylococcus aureus, Escherichia coli, and Salmonella
sp.) and were inactive. Interestingly, compound 117 showed anti-inflammatory activity,
inhibiting the production of pro-inflammatory cytokine IL-17, with an inhibitory rate of
40% at 1 µM. Compounds 115 and 116 did not display any inhibitory effects at 50 µM.
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Figure 21. Natural products with two nitrophenyl trans-epoxyamides, chrysamides A−C (115–117)
isolated from the deep-sea fungus Penicillium chrysogenum.

Although the medicinal properties of diketopiperazine produced by marine microor-
ganisms have been extensively studied in the past few years [89,90], the biological and
biochemical interest in diketopiperazine dimers (Figure 22) produced by those same mi-
croorganisms is lacking. One of such compounds is WIN 64821 (118), a molecule that can
be extracted from Aspergillus sp. [91]. Even though WIN 64821 presents a certain cytotoxic
activity on 37 human cancer cell lines [92], the biological interest in this molecule is because
it exhibits the capacity to compete with Substance P (SP) to act as an antagonist of NK-1
receptor with an IC50 of 0.24 µM [93]. Derivatives of WIN 64821 were also synthesized by
Barrow et al. before being tested for binding activity with the NK-1 receptor, and none of
them showed affinity for the receptor nearly as potent as WIN 64821, which shows that the
symmetry of this molecule is a key component in its biological activity [93].
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Another pair of interesting dimers are Verticillin A (119) and 11,11′-dideoxyverticillin
A (120). Both of these compounds are found in Penicillium sp., a marine-derived fun-
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gus [94]. Both of these dimers exhibit a diketopiperazine moiety along with an interesting
disulfide bridge inside the piperazine skeleton. Although both of these dimers share
a similar structure, they do not possess the same biological activity. Verticillin A (119)
demonstrates an interesting anticancer activity against pancreatic ductal adenocarcinoma
(PDAC) and colon carcinoma due to its ability to inhibit the following histone methyl-
transferases (HMTases): SUV39H1, SUV39H2, G9a, GLP, NSD2, and MLL1 [95,96]. Fur-
thermore, in vitro and in vivo assays demonstrated that Verticillin A has the capacity to
suppress metastatic colon carcinoma that displays chemoresistance to 5-fluorouracil [95].
The same study showed that Verticillin A also has the potential to overcome colon carci-
noma that expresses resistance to FasL-induced apoptosis and can increase death receptor
5 (DR5), which leads to an effective suppression of resistance to DR5 agonist drozitumab-
induced apoptosis [95]. The cell-free ELISA tyrosine kinase assay demonstrated that
11,11′-dideoxyverticillin A (120) has the capacity to inhibit the activity of vascular endothe-
lial growth factor receptor-1 (VEGFR-1) and epidermal growth factor receptor (EGFR)
with an IC50 of 1.645 ± 0.885 nM and 0.136 ± 0.109 nM, respectively [97]. Those results
demonstrate that 11,11′-dideoxyverticillin A has potent antitumor activity.

Another molecule of interest is chaetocin (121). Although its structure is similar to
those of Verticillin A and 11,11′-dideoxyverticillin A, chaetocin is from marine-derived
fungus Nectria inventa [98]. A unique property of this mycotoxin is its ability to act as a
competitive inhibitor of S-adenosylmethionine by inhibiting SU(VAR)3–9 with an IC50 of
0.6 µM [99]. Chaetocin also has the ability to inhibit SUV39H1, which has led some research
teams to combine chaetocin with other epigenetic drugs to develop new therapeutic
strategies against certain types of cancer, notably leukemia [100]. Moreover, it was also
proved that chaetocin may induce cellular oxidative stress, mainly by inhibiting the redox
enzyme thioredoxin reductase. An NCI-60 screening demonstrated that chaetocin can
effectively inhibit cellular proliferation in solid tumor along with inducing apoptosis in
every solid tumor tested by an oxidative damage mechanism [101].

The medicinal properties of naphthylisoquinoline alkaloid compounds extracted
from Central African plants have already been well-studied. [102]. Li et al. reported the
discovery of novel naphthylisoquinoline dimers extracted from the roots of the Congolese
plant Ancistrocladus ileboensis (Figure 23) [103]. These dimers are jozilebomines A (122)
and jozilebomines B (123). They were extracted along with the already known dimer
jozimine A2 (124), a C2-symmetric dimer that was isolated in 2013 from a Congolese
Ancistrodadus species, which was the only known dioncophyllaceous dimer discovered
in nature prior to the discovery of jozilebomines A and B [104]. The elucidation of the
structure of jozilebomines A and B was achieved by 1D and 2D NMR, HRESIMS, oxidative
degradation, and ECD data. All three dimers were tested for their cytotoxic activity against
HeLa human cervical cancer cell line. The most potent compound is jozimine A2 (124,
IC50 of 0.22 µM), followed by jozilebomines B (123, IC50, 0.68 µM) and jozilebomines A
(122, IC50, 1.08 µM). The dimers were also tested for their activity against the PANC-1
human pancreatic cancer cell line and again, jozimine A2 (124) was found to be the most
effective compound (IC50 of 0.10 µM), better than jozilebomines B (123, IC50, 0.87 µM)
and jozilebomines A (122, IC50, 2.24 µM). In this case, the activity of jozimine A2 was
even stronger than that of the reference drug arctigenin (IC50 of 0.83 µM). Finally, the
antiplasmodial activity of the dimers was studied on a small series of protozoan parasites
and all the dimers displayed some antiplasmodial activity. The most active molecules were
Jozilebomines A and Jozilebomines B with an IC50 of 0.043 µM and 0.102 µM, respectively.
However, these results are less promising than the antiplasmodial activity of jozimine A2
(IC50 of 1.4 nM), which was evaluated on the strain NF54 of Plasmodium falciparum. These
results demonstrate that C2 symmetry is a key component in the biological activity of these
compounds. With jozimine A2 (124) being the naphthylisoquinoline alkaloids with the best
antiplasmodial activity, its mechanism of action is currently under investigation [105].
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9. Summary and Conclusions

This review presented recent advances in the design of C2-symmetric biologically
active molecules, which is a topic currently attracting the attention of many scientists. The
main goal of designing dimeric drugs is the discovery of a compound with enhanced biolog-
ical activity. A dimer may induce strong biological activity such as the silybin A dimer 60aa,
which was more active than the parent molecule 60a on all cells tested, with the exception of
skin cells (NAK) [54]. In addition, the testosterone dimer 6a tested on three prostate cancer
cell lines displayed activity 12 to 70 times stronger than that of the reference drug, cypro-
terone acetate [10]. Another interesting example is the pyrrolo[2,1−c][1,4]benzodiazepine
dimers 52 and 53, which displayed cytotoxic activity in the picomolar range for all cancer
cell lines tested [41]. Nevertheless, in some cases, dimerization leads to poor activity, such
as for the unsaturated bis-norcantharimides dimers 38 and 39 [29] and for the ursolic and
oleanolic acid dimers 80b and 81b [69]. The main cause for low biological activity is gener-
ally due to low solubility and bioavailability of the resulting compounds; hence, dimers of
highly soluble drugs should be first considered as strong candidates for the likely outcome
of potent new medicine. In this regard, natural products are a good source of hydrophilic
biologically active molecules. Notably, isolation of marine natural products has led to
the discovery of unique dimeric compounds such as the nitrophenyl trans-epoxyamides
and the diketopiperazine [88,93]. Dimers extracted from plants can also lead to promising
compounds, as is the case for jozimine A2 (124) [104,105].

Another important consideration for designing dimeric drugs should be ease of
synthesis. This can be achieved by classic reactions such the formation of ether bonds by
Sn2/Sn1 reactions, ester or amide formation, anhydride chemistry, isocyanate chemistry,
click chemistry, oxidative coupling of aromatic ring systems, etc. There is no doubt that
a dimeric drug can produce higher biological activity, but the synthetic path should be
short, efficient, and readily translated to the pharmaceutical industry. Otherwise, as we
saw in this review, the goal of discovering a potent drug might simply not be attained.
In summary, future developments in this field must be based on (i) careful selection of
monomers, (ii) knowledge of mechanisms of action, and (iii) efficient synthesis leading to
the desired dimeric molecules.

Author Contributions: A.P., C.R.-M. and G.B. contributed to the selection of key references, to the
writing of the manuscript, and to the preparation of the figures. All authors have read and agreed to
the published version of the manuscript.
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