
ORIGINAL ARTICLE

New Generalized Poisson Mixture Model for Bimodal
Count Data With Drug Effect: An Application to Rodent
Brief-Access Taste Aversion Experiments

Y Sheng1,2*, J Soto1, M Orlu Gul1, M Cortina-Borja3, C Tuleu1 and JF Standing1

Pharmacodynamic (PD) count data can exhibit bimodality and nonequidispersion complicating the inclusion of drug effect.
The purpose of this study was to explore four different mixture distribution models for bimodal count data by including both
drug effect and distribution truncation. An example dataset, which exhibited bimodal pattern, was from rodent brief-access
taste aversion (BATA) experiments to assess the bitterness of ascending concentrations of an aversive tasting drug. The two
generalized Poisson mixture models performed the best and was flexible to explain both under and overdispersion. A sigmoid
maximum effect (Emax) model with logistic transformation was introduced to link the drug effect to the data partition within
each distribution. Predicted density-histogram plot is suggested as a model evaluation tool due to its capability to directly
compare the model predicted density with the histogram from raw data. The modeling approach presented here could form a
useful strategy for modeling similar count data types.
CPT Pharmacometrics Syst. Pharmacol. (2016) 5, 427–436; doi:10.1002/psp4.12093; published online 29 July 2016.

Study Highlights

WHAT IS THE CURRENT KNOWLEDGE ON THE

TOPIC?
� Pharmacometric models for unimodal count data

have been published. However, mathematical models

for bimodal count data, including both drug effects and

truncated features, are less well developed.
WHAT QUESTION DOES THIS STUDY ADDRESS?
� Are there any pharmacometric models that can

include drug effects and nonequidispersion for bimodal

count data?

WHAT THIS STUDY ADDS TO OUR KNOWLEDGE
� This is the first time a pharmacometric model has
been introduced for analyzing bimodal count data with
drug effect. A new diagnostic plot, predicted density-
histogram, was recommended for mixture distribution
models.
HOW THIS MIGHT CHANGE DRUG DISCOVERY,
DEVELOPMENT, AND/OR THERAPEUTICS
� This modeling approach could be used for analyzing
bimodal data in other PD studies.

Count data can be encountered in both preclinical and

clinical pharmacodynamic (PD) studies.1,2 It consists of

non-negative integer values that record the number of dis-

crete occurrences often linked to explanatory variables. The

Poisson model is widely used in analyzing count data but,

when the count number is larger than 10, normal approxi-

mation with continuity correction is usually more conve-

nient.3 The restriction for a Poisson distribution that its

mean and variance will coincide is not always met in real

PD data. Thus, the negative binominal distribution, which

can handle overdispersion, and the generalized Poisson

model, which can treat both under and overdispersion,

have been used.4,5

Count data collected in pharmacological studies are not
always unimodal.6 A wide range of shapes from underdis-
persion to overdispersion and from unimodal to bimodal
can be observed in a real count dataset. Sometimes, none-
quidispersion and bimodality occur simultaneously, thus
increasing data analysis difficulties. Moreover, although
there is no upper limit for count data, a maximum bound is

often observed in biological studies for physiological or
pathological reasons.7 This limitation should also be care-
fully considered in the analysis.

In dose-response studies, drug effect is usually of the

most interest to researchers. Because there is only one
peak in unimodal count data, it would be straightforward to
add drug effect to the centering parameter (e.g., see k1 in
Eq. 2 below).1 However, when the data exhibit bimodal
peaks, incorporation of drug effect is not so straightforward
because there may not exist a unique parameter character-
izing the distribution. Furthermore, although some diagnos-
tic tools have been developed for the count model,2,8 most
of them are built for unimodal data. The evaluation of the
bimodal model is therefore a challenge.

The purpose of this article was to explore and implement

different mixture distribution models by including both drug
effects and truncated feature for bimodal count data. Under-
dispersion and overdispersion patterns were investigated
and different evaluation methods were also tested and
compared.
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METHODS
BATA experiment data
This investigation is motivated by an exploratory data analy-

sis of the lick numbers obtained from the rodent brief-

access taste aversion (BATA) experiments. The taste of an

oral medication is a critical quality attribute for therapeutic

adherence and successful treatment in patients, especially

children. Palatability studies with human taste panels are

carried out at the latter stages of formulation development if

at all. There is a great need to develop a means to assess

the taste of drugs and drug formulations at the early stages

of drug development so that taste aversive compounds are

highlighted early, formulations are optimized, and taste mask-

ing approaches are put in place. BATA model is an emerging

in vivo screening tool with great promise in providing taste

assessment of drugs at an early stage of oral drug product

design. The details of this experiment have been described

previously.9 Briefly, 10 trained rats were tested in this study.

After a 22-hour water-deprived period, each rat was placed

in the lickometer and was presented randomly with different

sipper tubes containing either deionized water or one of the

six concentrations of a bitter drug, quinine hydrochloride

dihydrate. The trial began when the rat took its first lick from

the sipper tube, and ended 8 seconds later when the shutter

closed. Each trial was intercepted by a water-rinse of 2 sec-

onds to minimize carry over effects from the previous solution

tested. Each quinine hydrochloride dihydrate concentration

was presented four times and deionized water was presented

six times per 40-minute session. The number of licks was

electronically recorded by the lickometer. Experiments were

repeated on eight different weeks intercepted by a 1-week

washout period. A total of 5,400 records of lick numbers

were taken from seven different quinine hydrochloride dihy-

drate concentration groups obtained from 10 rats. The lick

number distribution followed neither a normal nor a unimodal

pattern (Table 1 and Figure 1).
Because all the rats were only presented with the solu-

tions for a very short period (8 seconds), physiologically,

there would be a maximum limitation of lick numbers. In

addition, the histograms of the lick numbers from the lowest

four concentrations exhibited bimodal behavior and con-

sisted of two distributions as observed. It seemed that the

drug effect may influence the proportion of the different dis-

tributions but not affect each distribution itself.

Figure 1 Box plot (a) and histogram (b) for the brief-access taste aversion (BATA) results from seven quinine concentrations.

Table 1 The summary of data from BATA experiments obtained from 10 rats

Quinine concentration (mM)

0 0.01 0.03 0.1 0.3 1 3

No.a 1,080 718 720 722 720 720 720

Mean 6 SD 43.8 6 16.1 32 6 22.3 31.8 6 21.2 17.6 6 17.9 8.0 6 10.2 3.9 6 4.7 3.0 6 3.1

CV% 36.7 69.6 66.7 101.8 126.7 119.4 100.4

Median 49.5 44 41 9 4 2 2

Q1/Q3 46/53 4/51 6/50 2/33 1/10 1/5 1/4

Min/max 0/60 0/60 0/61 0/60 0/51 0/50 0/24

BATA, brief-access taste aversion; CV%, coefficient of variation.
aNo. is the length of lick numbers.
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Data analysis
Data modeling and simulation was performed with NON-

MEM version 7.3 (ICON, Ellicott City, MD) in conjunction

with a gfortran (64-bit) compiler using Pirana version

2.9.010 as an interface. The first order conditional estima-

tion with interaction method was the starting algorithm

for analyses. Consequently, the Laplace integral approxi-

mation with stochastic approximation expectation-

maximization and Monte Carlo importance sampling and

the likelihood option was used throughout the model anal-

yses. The R environment11 for statistical computing ver-

sion 3.2.2 was used for plots.

Models for the two distributions
Four different mixed distribution models were investigated:

two Poisson mixture model (2PS), Poisson-normal mixture

model (PSND), two negative binomial mixture model (2NB),

and two generalized Poisson (2GP) mixture model. Except

for the normal approximation in the PSND model, all the

models consisted of the Poisson distribution or its exten-

sions. All the mixture distribution models consisted of two

distributions and a mixture probability (p) that indicated

whether an observation was to belong to one of the two

distributions:

PðYi 5nÞ5p � P11ð12pÞ � P2 (1)

P1 is the probability of the observation arising from the first

distribution and P2 is the belonging probability for the sec-

ond distribution.

Models for the first distribution
Three models, Poisson, NB, and GP were tested for the first

distribution in which most most of the lick numbers were less

than 20 from Figure 1b: the probability of observation Yi

equal to n counts from Poisson model5 is expressed as:

P1ðYi 5nÞ5e2k1 � k
n
1

n!
(2)

where the mean and variance of Yi are equal to k1.
The NB5 has a further parameter (a1) to handle overdis-

persion and the probability mass function is as follows:

P1ðYi 5nÞ5
Cðn1 1

a1
Þ

n! � Cð 1
a1
Þ

" #
� 1

11a1 � k1

� � 1
a1

� k1
1
a1

1k1

 !n

(3)

where the mean of Yi is k1, but the variance is

k1 � ð11a1 � k1Þ.
The GP12 also has a dispersion parameter (d1) to

describe both underdispersion and overdispersion.

P1ðYi5nÞ5 k1 � ðk11nd1Þðn21Þ � e2k12nd1

n!
(4)

The mean of GP is k1=ð12d1Þ and the variance is

k1=ð12d1Þ3, d1 can be negative or positive within the range

of [max(21,2k1/m),1], m�4; the case d150 corresponds to

the Poisson model.

Truncated models for the second distribution
Although there is no upper limit on the Poisson distribution

and its extensions, all the models for the second distribu-

tion, in which most of the lick numbers were within 40–60,

were truncated to the observed maximum lick number of 61

in the results due to physiological reason. Truncated distri-

butions ensure the sum of all the possible probabilities will

be equal to 1.7

P2ðYi 5nÞ5Ptruncated 5

PðYi5nÞXmaxðYi Þ

m50

PðYi 5mÞ
Yi 2 ½0;maxðYiÞ�

0 otherwise

8>>>><
>>>>:

(5)

The probabilities of second distribution P2ðYi5nÞ were

obtained from the truncated distribution. Besides the new

set of parameters (k2, a2 and d2), the formula for probabili-

ties of the nontruncated second distribution P2ðYi5nÞ from

PS, NB, and GP models were the same as in the first one.
In general, the Poisson distribution can be approximated

by a normal distribution with parameters (l,r2) when the

count numbers <10. Therefore, the truncated normal model

with the parameters l and r was also investigated for the

second distribution. When using the normal approximation

to the Poisson distribution, a continuity correction13 should

be introduced to the probability calculation.

PPðYi 5nÞ � PNðYi � n10:5Þ2PNðYi � n20:5Þ (6)

where PPðYi5nÞ is the probability of Yi5n from Poisson

distribution and PNðYi � n10:5Þ represents the probability

of Yi � n10:5 from a normal distribution. The probability of

Yi 5n from a Poisson distribution is approximately equal to

the probability difference between Yi � n10:5 and Yi � n2

0:5 from a normal distribution. The PHI function of NON-

MEM can be used for calculating the normal probability

from its cumulative distribution.
Similarly, right truncation of the normal distribution can

be directly calculated by PHI function.

XmaxðYi Þ

m50

PPðYi5mÞ � PNðYi � maxðYiÞ10:5Þ

5PHI
maxðYiÞ10:52l

r

� � (7)

Model for the drug effect
From the histogram plot, there was the smallest proportion

of the first distribution and a largest proportion of the sec-

ond distribution in the water group. As the quinine concen-

tration increased, the first proportion increased and the

second proportion decreased. Meanwhile, the shape of the

two distributions did not change appreciably. Therefore, the

sigmoid Emax model with logistic transformation was exam-

ined for the effect on the mixture probability (p).
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E5E01
Emax � Cc

ICc
501Cc

(8)

p5logisticðEÞ5 eE

11eE (9)

where logisticðE0Þ is the minimum proportion(p0) of the first
distribution and logisticðE01EmaxÞ is the maximum propor-
tion (pmax) of the first distribution. c is a slope coefficient. It
should be noted that the IC50 here is not the true concen-
tration producing half-maximal effect and is a hybrid param-
eter. Because the drug effect was assumed to affect only
the mixture probability (p), the half-maximal effect (E50) can
be calculated as:

p505
p01pmax

2
5

logisticðE0Þ1logisticðE01Emax Þ
2

(10)

E505ln
p50

12p50

� �
(11)

Then, the real IC50 (RIC50), which producing half-maximal
effect, can be expressed as the transformation of the Emax

model.

RIC505e
ln ðE502E0 Þ�IC

c
50

Emax 1E02E50

� �
c (12)

IC50 in the Emax model can also be transformed as:

IC505e
ln ðEmax 1E02E50Þ�RICc

50
E502E0

� �
c (13)

RIC50 was used as an estimated parameter instead of IC50

in modeling, the new format of Emax model is as following:

E5E01
Emax � Cc

Emax 1E02E50
E502E0

� RICc
501Cc

(14)

Except for the slope coefficient c, interindividual variability
on all the model parameters was assumed to be log-normal
distribution. In addition, the log-normally distributed interin-
dividual variability was also added to the drug effect (E).

Model development and evaluation
Because the records were count numbers and presented a
bimodal pattern, the two Poisson mixture model was

Table 2 Parameter estimates of the base 2PS, PSND, 2NB, and 2GP population models

Parameter 2PS PSND 2NB 2GP

OFV 39714 36892 34414 34123 Bootstrapa

DOFV 0 22902 25380 25671 (2.5th, 97.5th)

Emax 29.3 (21.6) 7.58 (58.7) 14.5 (39.9) 21.7 (2) (16.9, 35.8)

RIC50 0.0798 (1.3) 0.0787 (2.1) 0.0497 (3.9) 0.0423 (0.3) (0.0358, 0.0551)

E0 21.46 (12.9) 22.57 (38.6) 21.73 (5.2) 21.57 (0.1) (21.60, 21.55)

k1 3.39 (16.7) 2.56 (7.4) 5.46 (8) 1.8 (2.1) (1.4, 2.27)

k2 47 (7.3) 49.7 (2.1) 75 (0.9) (65.6, 85.4)

l 53.7 (10.9)

r 21.8 (19.8)

a1 1.08 (135.2)

a2 0.00214 (10.9)

d1 0.693 (2.8) (0.655, 0.742)

d2 20.479 (3.9) (20.697, 20.303)

c 0.543 (19.9) 0.544 (1.8) 0.711 (1.2) 0.701 (1.2) (0.705, 0.715)

x2
Emax 75.2% (0.1) 23.8% (4.7) 20.8% (0) 14.8% (0) (18%, 59%)

x2
RIC50 5% (28.2) 3% (7.3) 2.4% (25.2) 1% (35.6) (0.3%, 2%)

x2
E0 68.3% (7.4) 56.3% (14.3) 5.8% (13.8) 2.2% (8.8) (0.2%, 3%)

x2
k1 48.6% (55.5) 52.6% (1) 39.7% (14.3) 42.9% (4.8) (16%, 60%)

x2
k2 8.9% (27.9) 8.2% (16.2) 18.4% (5.4) (10%, 33%)

x2
l 25.6% (9.2)

x2
r 20.7% (13.8)

x2
a1 56.4% (37.1)

x2
a2 46.7% (0.8)

x2
d1 11.4% (26.3) (2%, 14%)

x2
d2 56.3% (0.9) (22%, 82%)

x2
E 40.9% (89.8) 58.7% (123.3) 25.4% (140.5) 27.2% (34.8) (28%, 42%)

IC50 11.57 0.23 0.64 1.18

2GP, two generalized Poisson mixture model; PSND, Poisson-normal mixture model; 2NB, two negative binomial mixture model; 2PS, two Poisson mixture

model; OFV, objective function value. All fixed effect parameters are represented with the relative standard error (%) in parentheses. All random effect parame-

ters are represented as CV% (coefficient of variation) with the relative standard error (%) in parentheses. IC50 is derived from E0, Emax, and RIC50.
aBootstrap confidence intervals were obtained from 1,000 simulated datasets.
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regarded as a basic model. Model selection was based on
the difference in the objective function value (DOFV )
between all other models and the basic model. The accura-
cy of the final model parameters was evaluated by compar-
ing the 90% confidence interval of the parameter estimates
from the 1,000 bootstrap datasets with those obtained from
the original dataset.14

Four kinds of visual assessment graphics were also
explored during the modeling: (1) visual predictive check
plot.15 One thousand datasets were simulated and then
5,400,000 lick numbers with seven quinine hydrochloride
dihydrate concentrations were generated for each mixture
model. Results were divided into 14 equally spaced inter-
vals based on the range of lick number. Because the count
of numbers in each interval was considerably different, nine
equal count intervals were also used for the assessment.
Model evaluation then proceeded graphically through observ-
ing how the raw data are overlaid on the simulations. (2) Mir-
ror histogram plot.16 A randomly selected one of 1,000
simulated datasets from the visual predictive check (VPC)
was used for producing the mirror plot. Histograms for each
concentration were compared with them from the raw data.
Agreement between the simulated and original histograms
was assessed. (3) Suspended rootogram plot.17 It is from the
histogram but in square root scale. The bar of each bin repre-
sents the difference between the model predicted and the
observed frequencies (

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Predicted
p

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Observed
p

). Then, the
model performance can be assessed by comparing the devia-
tions from x axis. (4) Predicted density-histogram plot. The
model predicted probabilities of each count number in seven

concentration groups were shown along the relative fre-

quency histogram of the raw data. Relative frequency his-

togram instead of count can display the characteristics of

raw data in the probability scale. The predictive probabili-

ties were illustrated as a curve overlaid on the histogram.

Therefore, this plot provides the direct comparison of the

raw data and the model prediction.
Furthermore, a predictive check was also assessed for

the final model. For each of 1,000 simulated datasets, the

numbers of counts with 0, 1, . . ., 5, and 50, 51, . . ., 55,

which were the maximum 12 numbers and represented

about 60% of the raw data, were calculated for seven con-

centration groups. Then the means and the 5th and 95th

percentiles were obtained from the simulated datasets and

compared with the original dataset.

RESULTS

Initially, the conventional first order conditional estimation

with interaction method was tried, but the minimization

problems occurred frequently. The stochastic approximation

expectation-maximization and Monte Carlo importance

method performed more robustly than first order conditional

estimation with interaction. All four mixture models were

successfully implemented by using stochastic approxima-

tion expectation-maximization plus Monte Carlo importance

algorithm. The 2PS model gave a poor fit according to the

model evaluation techniques described above. Although a

lower objective function value was seen using the PSND
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Figure 2 The effect on logistic vs. quinine concentration (a) and probability (p) of the first distribution vs. quinine concentration (b). Tri-
angle is the proportion of less than 20 count from the original data.
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model, the worse performance was observed in the graphi-
cal check. The 2NB model fitted the data better. However,
the underdispersion, which likely occurred in the right part
of the raw data distribution, was not well-described. Ulti-
mately, the 2GP model, which had a minimum objective
function value, was selected as the final model. Parameter
estimates and objective function value (OFV) changes are
given in Table 2. The raw data distributions of all the qui-
nine concentration groups were best fitted by the 2GP mod-
el. The centers of left and right distributions were located at
1.8/(1-0.693) 5 5.86 and 75/(1 1 0.479) 5 50.7 with the var-
iances of 1.8/(1-0.693)3 5 62.2, and 75/(1 1 0.479)3 5 23.2,
respectively. Meanwhile, the drug effect that was modeled
by sigmoid Emax logistic function, captured the two distribu-
tion’s change from water to highest quinine concentration
(Figure 2b and Figure 5). Except for the slope coefficient
(c) and intervariability of Emax, the bootstrapped confidence
intervals were inclusive of all parameters and relatively nar-
row, which indicated the accuracy and precision of the
parameters estimated from the final model. In addition, rel-
ative standard errors of the interindividual variability for
Emax from the 2NB and 2GP models were estimated to be
negligible.

From Figure 1a, the IC50 appeared to be in the range
0.03 to 0.1 mM, which corresponds with the real IC50

(RIC50) values in all four models. However, the derived IC50

values were not in agreement with the original data plot
and one of them was even larger than the maximum con-
centration tested. Figure 2 illustrates the difference
between IC50 and RIC50 from the final model.

The results of predictive checks for the final model are
listed in Supplementary Table S1. The occurrences of no
lick were overpredicted in low concentrations. For the low
number of counts of 1 to 2, the observed data were under-
predicted in the high concentration groups and overpre-
dicted in the low concentration groups. For the count
number in the range of 50–55, the agreements between
model results and raw data were acceptable for all concen-
trations, although some overpredictions occurred in the
higher concentrations. However, compared to the other
three models, less disagreement was observed in predictive
check (data not shown).

The PSND model can be simply recognized as inappro-
priate for the data from both mirror plot and predicted
density-histogram plot. However, the mirror plots from the
other three models were indistinguishable (Figure 3).
Although some models seemed better than others from the
VPCs based on the equally spaced interval, none per-
formed well in the equally count interval categorical VPC
(Supplementary Figures S1 and S2). Suspended

Figure 3 Mirror histogram plots of two Poisson mixture model (2PS) (a), Poisson-normal mixture model (PSND) (b), two negative bino-
mial mixture model (2NB) (c), and two generalized Poisson (2GP) (d) for seven quinine concentrations.
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rootogram plot seemed more informative than mirror plot

and VPC. The deviations of 2PS and PSND models were

large from the plot. Except in water group (gray bars in 2GP

were closer to x axis than those in 2NB), suspended rooto-

gram plots of all other concentrations were indistinguishable

between 2NB and 2GP models (Figure 4). Nevertheless, the

visual comparisons from predicted density-histogram plots

were manifest and distinguishable (Figure 5). The 2GP mod-

el was the best one from the predicted density-histogram

plots and it also agreed with the OFV comparisons.

DISCUSSION

Although discrete count data often appear in PD studies,

bimodal count data is not so frequently encountered and

appropriate analysis methods are less well developed for

this case. Even if all the data are collected from one concen-

tration, the dispersion and proportion of each distribution will

cause difficulties in modeling and should be carefully consid-

ered. In particular, the drug effect and the maximum number

of limitations should also be appropriately added in the anal-

ysis. This study compared four different bimodal models and

illustrated how to model drug effect for bimodal count data

from BATA experiments. All data from seven concentrations

were well captured by the 2GP mixture model with logistic
transformed Emax model for drug effect.

The two Poisson mixture model was a natural choice
because bimodality had been exhibited in the histograms.
Usually, the Poisson model is used for rare events.18 If the
count of the event during the certain time interval is a small
number, a Poisson model is expected to perform well. In
this study, data were centered in two ranges of 0–20 and
40–60. The two Poisson mixture model could not capture
the high numbers of certain counts due to the equal mean
and variance constraint. A normal distribution with continui-
ty correction is usually considered a useful approximation
for large count numbers. However, the PSND could not
capture the large count distribution, which was possibly
caused by interference from the few data in the middle.
The predicted density-histogram plot from the 2PS model
also suggested that the early peak was overdispersed and
the later peak was underdispersed. As expected, the 2GP
mixture model, which can treat both under and overdisper-
sion, demonstrated superior flexibility and performed best
among all models.

Drug effect was not obviously implied from the original
data. After further checking, the boxplot and histogram of
each concentration, the proportion of the first distribution
where the number were assumed less than 20, were

Figure 4 Suspended rootogram plots of two Poisson mixture model (2PS) (a), Poisson-normal mixture model (PSND) (b), two negative
binomial mixture model (2NB) (c), and two generalized Poisson (2GP) (d) for all seven quinine concentrations. The solid red line is the
model predicted frequencies and the gray area is the deviation between the predicted and the original frequencies, both are in square
root scale.
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calculated for each concentration. As shown in Figure 2b,
the proportion vs. concentration profile strongly suggested

the sigmoid Emax model was a promising candidate. A sig-
moid Emax model can collapse into other drug effect models,

but not vice versa. Therefore, no other drug effect model
was tested. The final model also confirmed our assumption
for the drug effect. Although there were some disagreements

in Figure 2b, in consideration of the fact that the fixed cutoff
value of 20 was roughly estimated before modeling and the
corresponding proportions cannot be regarded as real pro-

portions of the first distribution in observed data, the sigmoid
Emax model with logistic transformation in the final model can

adequately describe the drug effect. Another important notifi-
cation from this analysis is that the IC50 in this kind of mix-
ture model is not the real IC50 anymore and could be larger

than the maximum concentration. The relationship between
the IC50 in the model and the real IC50 had been presented.
More attention should be paid when the maximum likelihood

estimates are used. Consequently, the real IC50 can be used
to assess the taste intensity of different drugs.

Some BATA studies treated the raw data with excluding 0

and 1.19,20 In the water group, the lowest lick number could
be rationally assumed as outliers because all the rats had
been deprived water for 22 hours. Nevertheless, the propor-

tion of lick number less than 2 was still above 5% in the
water group and this would not be explained by the random

chance. Although the experiment was randomized, some
rats would not be thirsty at the end of a 40-minute session

in which each concentration was presented four times. In
addition, when the concentration of the bitter drug was

increased, the low lick numbers should be the real bitter
effect of the drug and could not be considered as the out-
liers any more. Thus, in the high concentration groups, it is

impossible to differentiate the drug effect from the low lick
number outliers. On the other hand, how to choose the cut-
off value for the outliers is also a challenge and it would

potentially affect the analysis. Consequently, keeping the
whole data in the analysis is considered the best choice.

Visual check of the raw data is crucial before conducting

analysis. The boxplot provided the whole concentration-
response profile and the rough estimation for the real IC50. It
also suggested that there were substantially large variation

and outliers in the raw data. To avoid the potential deceptive
information from the boxplot, the histogram for each concen-
tration was also plotted. From histograms, the data from

most concentrations were distributed into two peaks rather
than the one bulk in the boxplot. In addition, most of the out-

liers of the boxplot were not the real outliers anymore;
indeed they carried the most important information of the
dataset, which suggested the bimodal distribution. Thus,

these outliers should not be automatically removed from the
dataset and deserve special consideration.

Figure 5 Predicted density-histogram plots of two Poisson mixture model (2PS) (a), Poisson-normal mixture model (PSND) (b), two
negative binomial mixture model (2NB) (c), and two generalized Poisson (2GP) (d) for all seven quinine concentrations. The solid red
line is the predicted probabilities and the gray area is the relative histogram of the original data.
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Similarly, graphic assessment is also the key to model
evaluation. In this study, four kinds of plots were investigat-
ed. The VPC is a common evaluation approach and had
been successfully introduced for assessing the count model
and categorical model.15 In this study, because there were
62 different count numbers from the raw data and some of
them were seldom observed in all concentrations, VPC
plots for each count number was not reasonable. Conse-
quently, two different VPCs with equal interval and equal
count boundaries were explored for all models. Due to
most of the data being within 0–20 and 40–60 but relatively
few in between, neither VPC captured the raw data satis-
factorily. Besides, the performance of VPC also was dra-
matically influenced by the selection of interval. Although
the 2PS model had the largest OFV, it looked the best
among all four models from equally spaced interval VPC.
Very low proportions in the middle range of lick numbers
across all concentrations occupied near the half of all pan-
els in the equally spaced interval VPC and then concealed
the unsatisfied model performance. However, when the
intervals were modified as equal count, large discrepancies
between observations and simulations appeared. Similarly,
the suspended rootogram plot did not clearly discriminate
in evaluating different models. It exaggerates low counts to
make them more visible whereas peaks are less empha-
sized than in a histogram.17 The mirror plot can deliver a
general message of model prediction but has two main
constraints. First, only one simulated dataset is used in it.
This data only represents uncertainty for the interindivid-
uals. Therefore, even if the model is an excellent fit, this
simulated data may be far from the original data due to the
simulation sampling. Second, it is unlikely to distinguish the
better one from two models even if their OFVs are signifi-
cantly different.

Although the classical goodness-of-fit, which includes
observations vs. predictions, is not suited for the likelihood
results from NONMEM, the model predicted likelihood is
comparable with the relative frequency histogram because
both are within the same range of 0–1. Predicted density-
histogram plots can directly compare the model predicted
density with the histogram from the raw data. Not only can
this illustrate the model’s shape but also it can conveniently
distinguish the different models performances. Hence, the
predicted density-histogram plot displayed its capacity in
appraising such likelihood estimations.

Bimodality is also observed in clinical data. Some perfor-
mance scales such as the walking index for spinal cord
injury II,21 reduction in the depression rating scale after
repetitive transcranial magnetic stimulation treatment22 and
pain tolerance times23 can also illustrate bimodality. Our
proposed link model for drug effect, which introduced effect
on the proportion of each bimodal part, is not limited in
count data. It can be used for all kinds of bimodal data if
necessary.

CONCLUSION

In this study, the 2GP mixture model was introduced for
modeling bimodal count data. Compared to the other three

mixture models, 2GP models demonstrated flexible charac-

teristic to treat both under and overdispersion. Drug effect

was also successfully described by sigmoid Emax model

with logistic link through all seven concentration groups in

BATA experiments. In addition, the relationship between the

traditional IC50 and the real IC50 had been explored. After

comparing with other graphics, the predicted density-

histogram plot can be recommended as an appropriate tool

to evaluate model fitted using likelihood estimation meth-

ods. The modeling strategy presented here could be used

for similar bimodal data analyses in the future.
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