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Abstract

As a promising research direction in recent decades, active learning allows an oracle to

assign labels to typical examples for performance improvement in learning systems. Exist-

ing works mainly focus on designing criteria for screening examples of high value to be

labeled in a handcrafted manner. Instead of manually developing strategies of querying the

user to access labels for the desired examples, we utilized the reinforcement learning algo-

rithm parameterized with the neural network to automatically explore query strategies in

active learning when addressing stream-based one-shot classification problems. With the

involvement of cross-entropy in the loss function of Q-learning, an efficient policy to decide

when and where to predict or query an instance is learned through the developed frame-

work. Compared with a former influential work, the advantages of our method are demon-

strated experimentally with two image classification tasks, and it exhibited better

performance, quick convergence, relatively good stability and fewer requests for labels.

Introduction

In recent decades, machine learning has attracted increasing attention from both industry and

academia and shown its great power in universal applications, such as pattern analysis [1],

knowledge discovery and discipline prediction. As acknowledged in this domain, data

resources are crucial in learning tasks. A direct strategy to process data and incorporate

human experience is to formulate labels for examples. In small-scale datasets, precise annota-

tion based on expert knowledge is acceptable. However, when large-scale datasets are used for

complicated tasks, complete and perfect annotations are no longer viable, due to the reality

that labeling process for these datasets is labor-intensive, costly in terms of time and money,

and dependent on domain experience. With the increase of dataset volume, the learning sys-

tem tends to generalize better, but the cost of annotation dramatically increases [2].
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Meanwhile, former studies have revealed that obtaining the ground truth label of a dataset not

only requires the participation of a large number of experts in the field, but also takes more

than 10 times longer to label the instance as to collect it [3]. In contrast, accessing a massive

number of unlabeled instances is relatively easy. The availability of a massive number of unla-

beled examples as well as the potential task-beneficial information buried in them has led to

enlightenment through some effective paradigms employed in the learning domain, including

semi-supervised learning and active learning. The goals of these emerging paradigms are to

take advantage of the unlabeled datasets for performance promotion and to reduce workloads

of human experts. Semi-supervised learning has developed quickly in recent years, exploiting

statistical or geometrical information in unlabeled examples to enhance the generalization.

Notably, however, the involvement of the unlabeled examples in a semi-supervised framework

may be inappropriate and degrade the original accuracy in certain scenarios. Another powerful

learning paradigm-active learning is significantly distinct from semi-supervised learning in

theory and practice. The difference is that the active learning algorithm simulates the human

learning process to some extent: selects part of instances to label and join the training set, and

iteratively improves the generalization performance of the classifier. Therefore, this algorithm

has been widely used in information retrieval [4], image and speech recognition [5–11], and

text analysis [12–14] in recent years.

The core of traditional active learning methods is to formulate criteria for selecting samples,

and commonly-used methods include uncertainty sampling [15], query-by-committee [16],

margin [17], and representative and diversity-based sampling [18]. However, determining

which approach is better is difficult since each approach starts from a reasonable, meaningful,

and completely different motivation. To the best of our knowledge, no universal method that

performs best on all datasets currently exists. These limitations drive us to explore new frame-

works to address the sample-selecting problem. Observing that human beings can learn new

concepts from a single example [19], we sought to design an artificial intelligence agent that

can inherit a similar capability and pose fewer requests for labeling new examples during the

training process [20]. An ideal case in active learning is one in which labeling of critical exam-

ples is still required, but the frequency can be minimized. We preferred a model that learns

active learning algorithms via reinforcement learning [21, 22], rather than a hand-design crite-

rion. More specifically, the selection or design of a new example labeling strategy can be per-

formed automatically.

Therefore, we propose a novel learning method, that can not only learn to classify instances

with little supervision but also capture a relatively optimal label query strategy as well. Our

method is mostly inspired by the work of Mark Woodward et al. [23] and can be viewed as a

practical extension of that work. Our model falls into the class of stream-based active learners,

which is based on the online setting of active learning. The use of reinforcement learning by

an active learner to solve a continuous decision problem is a natural fit since each query action

affects the next decision (when and which instance to query based on the state of the basic

learner). Accordingly, the active query system trained by the reinforcement learning can learn

a cogent, non-myopic strategy [24], and make effective decisions with little supervision.

Our primary contribution in this work is improvement of the influential active one-shot

learning (AOL) model introduced by Mark Woodward et al. [23]. Woodward’s work is known

to be the first practice of reinforcement learning with deep recurrent models in the task of

active learning. With additional metric cross entropy involved in the loss function of Q-learn-

ing, we significantly accelerate the convergence speed, avoid the gradient vanishing problem,

improved the stability, reduce the number of requested labels, and improve the level of accu-

racy in comparison with the former work of Mark Woodward et al. [23]. Meanwhile, we evalu-

ate the model on Omniglot [19, 25, 26](“active” variants of existing one-shot learning tasks

An improvement active learning algorithm via reinforcement learning and cross entropy

PLOS ONE | https://doi.org/10.1371/journal.pone.0217408 June 19, 2019 2 / 17

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0217408


[27]), and the experimental results show the efficiency of our model in exploring label query-

ing strategies. We empirically demonstrate that our model can achieve better performance

with fewer iterations and learn a query strategy based on uncertainty [28] of instances in an

end-to-end fashion. Accordingly, the workload of human experts can be partially reduced dur-

ing the learning process.

Related work

The setting of active learning is mainly based on three scenarios: (i) membership query synthe-

sis, (ii) pool-based sampling, and (iii) stream-based selective sampling [29]. In the membership

query synthesis scenario, the learner can select a new instance to label from the input space, or

it can generate a new instance. In the pool-based scenario, the learner can request labels for

any instance from a large amount of historical data. Finally, in the stream-based active learning

scenario, instances can be continually obtained from the data stream and presented in an exog-

enously-determined order. The learner must instantly decide whether to request a label for the

new instance [30]. Various practical scenarios have benefited from the idea of active learning,

including movie recommendation [31–33], medical image classification [34], natural language

processing.

In recent years, reinforcement learning has gained considerable attention. Due to its capa-

bility of interacting with the environment and providing a good approximation of the objective

value based on relevant feedback, this method is theoretically suitable for online, real-time

forecasting and decision-making. Particularly for specific complex tasks, in the unknown envi-

ronment, reinforcement learning can learn the optimal strategy by exploration and exploita-

tion. This learning framework has also been successfully applied to solve complex predictive

and control problems in virtual environments [21].

In this article, we mainly consider the setting of the third scenario, single pass stream-based

online active learning. Many studies have focused on active learning based on data streams

[35–37], and a common opinion is that the choice of a proper instance to label should be based

on maximizing the expected informativeness of the labeled instances [30]. In general, most of

these methods rely strongly on heuristics, such as similarity measures between former

instances and current instances [38] or the extent of uncertainty in label prediction [36, 38,

39]. To move away from engineered selection heuristics, we introduce a model learning active

learning algorithm end-to-end via reinforcement learning. The premise of active learning is

that costs associated with requesting labels and making false predictions exist [23]. Reinforce-

ment learning can optimize these costs by explicitly setting them and directly identifying an

action strategy. Therefore, we believe that combining reinforcement learning with active learn-

ing is a reasonable and appealing approach. Some recent studies have been based on a similar

inspiration. Woodward and Finn [23] first applied reinforcement learning with deep recurrent

models to the task of active learning. Bachman et al. [27] and Pang et al. [24] investigated a

pool-based active learning algorithm via meta-learning. The same idea emerged in the artificial

intelligence classification systems developed by Puzanov and Cohen [20]. Recent approaches,

such as meta-learning and one-shot learning, are closely related to our model. Santoro et al.

[25] proposed a supervised learning model using meta-learning with memory-augmented

neural networks, which approached the same task as ours. The practical applications of these

methods show that they are good solutions to the cold start problem [31, 40–42]. In our work,

a deep recurrent neural network [43] function approximator is used to represent the action-

value function and the cross entropy [44] term is introduced to the loss function to improve

the performance of the algorithm.

An improvement active learning algorithm via reinforcement learning and cross entropy
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Model description

In this section, we present a novel model based on the reinforcement one-shot active learning

(ROAL) framework, which can monitor a stream of instances and select an appropriate action

(classify or query the label) for each arrival instance. Our model metalearns a query strategy,

which intelligently captures the time and population of instances that are worth to query. In

present study, a long short-term memory (LSTM), which is connected to a linear output layer,

is used to approximate the action-value function.

Task description

In the stream-based online active learning scenario, obtaining the ground truth label of a data

instance is costly; therefore, an algorithm is required to judiciously determine the population

of instances to label [29, 45]. In this setting [29, 46], the algorithm takes an action and chooses

whether or not to request the ground truth at the time that the instance arrives. The classifica-

tion task that we focus on is a stream of images, in which a decision must be made to either

query or predict the label. Similar to works on one-shot learning [25, 26], the behavior of our

model is refined over short training episodes and a small amount of examples per class to max-

imize the performance of the test episodes for instances that are not encountered in training.

The structure of our active learning task is shown in Fig 1. At each time step of the episode, the

model receives an instance xt, and need to decide to execute an action. Assume that in each

episode, up to M possible classes exist. Let at be the action at time step t; then, the action space

is defined as follows:

A≜fc1; . . . ; cM; areqg ð1Þ

Action at = ci is taken when the model classifies the instances under category i without

requiring the true label at time t. Action at = areq is taken when the model requests the true

label y. Here we set the action at as a one-hot vector consisting of the optionally predicted label

ŷ that is followed by a bit for requesting the label. The model can either make a label prediction

or request the label since only one bit can be 1. If the model requests the label of instance xt,
then no prediction will be made, and the true label yt of the instance will be sent into the

model at the next observation ot+1 along with a new instance xt+1. If the model decides to pre-

dict, then no request will be made and a! 0 will be included in the next observation instead

of the true label.

rt is the reward received after action at in state st, and γ represents the discount factor for

future rewards. At each time step, one of three rewards is given depending on the chosen

action: Rcor for correctly predicting the label, Rinc for incorrectly predicting the label, or Rreq

for requesting the label. The aim is to maximize the sum of the rewards received in this epi-

sode.

rt ¼

Rcor; if predicting and ŷt ¼ yt
Rinc; if predicting and ŷtyt
Rreq; if a label is requested

ð2Þ

8
><

>:

Methodology

Reinforcement learning aims at seeking practical and superior strategies in complicated con-

trol and prediction tasks by interacting with environment. Through explorations as well as

An improvement active learning algorithm via reinforcement learning and cross entropy
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exploitations, it can estimate the goodness of a policy and perform improvements based on

experience information. The basic structure of reinforcement learning can be seen in Fig 2.

And an efficient model-free reinforcement learning method Q-learning is employed in this

paper to learn an optimal strategy that can maximize the expected sum of discounted future

rewards. Q-learning has been widely used in a variety of decision-making problems [47],

mainly because it can estimate the expected utility from the available operations and adapt to

stochastic transitions without prior knowledge of the system model [48].

Reinforcement learning requires a definition of an objective function to show the benefit of

an action in the long run. The idea of Q-learning is not to estimate the environmental model,

but to optimize a Q function that can be directly calculated. The Q function reflects the gain

obtained after performing action at under state st, and then accumulates the reinforcement

value according to the discount of the best action sequence performed later:

Qðst; atÞ ¼ rt þ g maxatþ12A
Qðstþ1; atþ1Þ ð3Þ

Here let π(st) be a policy which is taken at st, and outputs an action at at time t. A policy that is

Fig 1. Task structure diagram. For images in the dataset, the classes and their labels and the specific samples are

shuffled and randomly presented at each episode. At each time step, the input of the model is an image along with a

vector which depends on the output of the previous instance. The output of the model is a one-hot vector of length k
+ 1, where k is the number of classes per episode. If the model requests the label of xt, it sets the final bit of the output

vector to 1. Thus, the reward for this label request action is Rreq. The true label yt of image xt is then provided at the

next time step along with the next image xt+1. Alternatively, if the model makes a prediction of xt, it sets one of the first

k bits of the output vector, representing ŷ . The reward for this action is Rcor if the prediction is correct or Rinc if not. If a

prediction is made at time step t, then no information regarding its true label yt is supplied at the next time step t +1.

https://doi.org/10.1371/journal.pone.0217408.g001
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better than or equal to other policies always exists, and this policy is called the optimal policy

π�(st). The optimal policy is the strategy that maximizes the optimal action-value function Q�

(st, at). In other words, the action that the model selects is given by the optimal policy π� which

is calculated by maximizing the optimal action-value function Q(st, at)

at ¼ p
�ðstÞ ¼ argmaxatþ12A

Q�ðst; atÞ ð4Þ

According to Bellman equation, the optimal action-value function can be derived as follows:

Q�ðst; atÞ ¼ Estþ1
½rt þ g maxatþ12A

Q�ðstþ1; atþ1Þ� ð5Þ

Normally, a function approximator is used to represent Q(st, at), and its parameters are

optimized by minimizing the Bellman error. Woodward et al. [23] derived the loss function as

follows:

LðyÞ≔
X

t
½Qðot; atÞ � ðrt þ g maxatþ12A

Q�ðstþ1; atþ1ÞÞ�
2

ð6Þ

Where θ represents the parameters of the function approximator, and ot represents the obser-

vations, such as images, that the agent receives.

However, in the early stages of training, this loss function tends to be inefficient and prone

to encounter the gradient vanishing phenomenon, because the loss function here only consid-

ers the maximum value of Q. In order to avoid these shortcomings and accelerate the training

to advance the efficiency of our model, we introduce the cross-entropy of Q values and labels

in the loss function. Cross-entropy is an important concept in Shannon’s information theory

that is mainly used to measure the difference information between two probability distribu-

tions. The intuition is that we want to increase the similarity of the label prediction probability

distribution output by the model to the probability distribution of the real label. This method

has been applied in many fields of machine learning. Inspired by this idea, we design our loss

Fig 2. Basic reinforcement learning model. When the Agent performs an action, the state of the environment is changed, and a reward signal is

feedback to the Agent. The Agent selects the next action according to the reward signal and the current state of the environment, and the selection

principle is to increase the probability of receiving positive reinforcement (maximizing rewards). The actions selected affect not only the immediate

rewards, but also the state of the environment at one point and the final values.

https://doi.org/10.1371/journal.pone.0217408.g002
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function as follows:

LðyÞ≔

P
t

½Qyðot; atÞ � ðrt þ g maxatþ12A
Q�ðstþ1; atþ1ÞÞ�

2

� pðQðot; atÞÞlogðqðlabelðtÞÞ

0

@

1

A if predicting

P
t ½Qðot; atÞ � ðrt þ g maxatþ12A

Q�ðstþ1; atþ1ÞÞ�
2 if a label is required

ð7Þ

8
>>><

>>>:

Where p(Q(ot, at)) represents the probability distribution of Q(ot, at) and q(label(t)) represents

the probability distribution of the true label at time step t.
We use an LSTM network [43] connected to a linear output layer to implement the action-

value function Q(ot, at) in Q-learning, as shown in Fig 3. Q(ot) outputs a vector, in which each

element corresponds to an action:

Qðot; atÞ ¼ QðotÞ � at ð8Þ

QðotÞ ¼Whqht þ bq ð9Þ

Where bq is the action-value bias, ht is the output of the LSTM, Whq represents the weights

mapping from the LSTM output to the action-values. A basic LSTM is used in our model, and

the equations are as follows:

ĝ f ; ĝ i; ĝ o; ĉt ¼Woot þWhht� 1 þ b ð10Þ

gf ¼ sðĝ f Þ ð11Þ

gi ¼ sðĝ iÞ ð12Þ

go ¼ sðĝ oÞ ð13Þ

ct ¼ gf � ct� 1 þ gi � tanhðĉtÞ ð14Þ

ht ¼ go � tanhðctÞ ð15Þ

Here, ĝ f ; ĝ i; ĝ o respectively represent the forget gates, input gates and output gates. Where ĉt is

the candidate cell state and ct represents the new LSTM cell state. Wo and Wh respectively rep-

resent the weights mapping from the observation to the gates and candidate cell state and the

weights mapping from the hidden state to the gates and candidate cell state. b is the bias vector.

σ(�) is a sigmoid function.� represents element-wise multiplication, and tanh(�) represents

the hyperbolic tangent function.

Experiments

We examined our proposed ROAL model under an AOL set-up for two image classification

tasks and compared the experimental results of present study with the results from previous

study. Our goal is to further study the following points through experiments: 1) whether the

model we proposed can learn a practical strategy that knows how to label instances and when

to instead request a label, and 2) whether the model effectively uses its uncertainty of instances

to make decisions.

An improvement active learning algorithm via reinforcement learning and cross entropy
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Omniglot

Setup. We performed our first experiments on the Omniglot dataset [19], consisting of

1623 classes of characters from 50 different alphabets each hand-written by 20 different per-

sons, for a total of 32460 instances. Following Woodward et al [23], we randomly divided the

dataset into 1200 characters for training and kept the remaining 423 characters for testing.

Our model interacted with classes of characters that it did not encounter during training to

measure its test performance. To reduce the computational time of our experiments, images

were downscaled to 28×28 pixels, and the pixel values were normalized between 0.0 and 1.0.

In each episode, 30 Omniglot images were randomly selected from 3 randomly sampled

classes, without replacement. Here, the number of samples from each class may not have been

balanced. Each selected class in the episode was assigned to a random label which was

Fig 3. Model structure. A basic LSTM connected to a linear output layer is used here to implement the reinforcement one-shot active learning (ROAL)

model that we proposed.

https://doi.org/10.1371/journal.pone.0217408.g003
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represented by a slot in a one-hot vector of length 3, giving yt. In order to reduce the risk of

overfitting, we performed data augmentation for each class in the episode by randomly rotat-

ing in all samples from that class in {0˚, 90˚, 180˚, 270˚}. An LSTM with 200 hidden units was

used here. We optimized the parameters of our model using Adam with the default parameters

[49]. A grid search was performed over the following parameters, and the parameters of the

results reported in this article are listed as follows. During training process, epsilon greedy

exploration with � = 0.23 was used for action selection. The discount factor γ was set to 0.5.

Unless otherwise stated, each training and testing step consisted of a batch of 50 episodes, and

the reward values were set as: Rcor = +1, Rinc = −1, and Rreq = −0.05. For every 1000 episodes,

we calculated the average accuracy, request, and precision rate. Notably, in order to achieve a

better convergence effect, the learning rate of the model needs to be adjusted according to the

change of the reward values, and the initial learning rate was set to 0.001. The training was car-

ried out on 100,000 episodes. After that, 200 testing steps were conducted for evaluation.

Results and discussion

This section presents the results of the two experiments with our model. In the first experi-

ment, we implemented both active one-shot learning (AOL) model with the default parame-

ters from Ref. [23], and our ROAL model on the task in Fig 1. During training, the 1st, 2nd, 5th,

and 10th instances of all classes in each episode were identified. Notably, in this analysis, label

requests were treated as incorrect label prediction when calculating the accuracy. After train-

ing on 100,000 episodes, the training is ceased. Then the model was given 10,000 more test epi-

sodes. In these episodes, no further update occurred, and the model was to run on previously

unencountered classes pulled from a disjoint test set. We report the results in Figs 4 and 5.

As shown in Fig 4, first instance accuracy is poor, since the ROAL model that we propose

learns to query the label for early instances of a class. We can also conclude that ROAL results

in more predictions for later instances, since the label request rates of later instances decrease

sharply. At the same time, the accuracy of the model is improved on later instances of a class,

which approaches 90%. Fig 5 shows the average results of 10 repeated experiments. As shown

in Fig 5, compared with AOL, ROAL has higher convergence speed, higher and more stable

classification accuracy, and lower request rate. To evaluate the statistical significance of the

comparison results on ROAL and AOL, Student’s paired two-tailed t-test was conducted.

When the p-value in the hypothesis test was less than 0.05, the result was considered as signifi-

cant. The statistical significance levels that accuracy and prediction are better in the case of

ROAL than for AOL were substantially less than 0.05, suggesting that the results of ROAL are

significantly superior to the results of AOL. These data indicate that ROAL greatly accelerates

the training speed, and effectively avoids the phenomenon of low efficiency and the gradient

vanishing problem in the early training stage, thus saving considerable time and computing

resources by introducing cross entropy into the loss function.

To further compare the performance of the proposed ROAL method with the AOL method,

Fig 6 shows the results of the receiver operating characteristic (ROC) curve analyses in our

multiclassification task. The ROC curve, which is a plot of the true positive rate (TPR) against

the false positive rate (FPR) at various threshold settings, can clearly illustrate the diagnostic

ability of a classifier system. In a ROC plane, the axes range from 0 to 1, where FPR is plotted

on the X-axis and the TPR is plotted on the Y-axis. The diagonal dotted straight line connect-

ing (0,0) to (1,1) represents a random performance of the classifier. Any classifier that appears

in the upper left triangle performs better than random guessing, while curves in the lower

right of the ROC plot have worse classification performances. Since we are faced with the

problem of multiclassification, we present not only the ROC curves of two algorithms for each

An improvement active learning algorithm via reinforcement learning and cross entropy
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class but also the macro-average ROC curves, reflecting the overall classification effect for both

algorithms. As shown in Fig 6, the ROAL method had better upper-left ROC curve results

than the AOL method.

The areas under the curve (AUC) of the ROC plot were also computed to quantitatively

evaluate classification performance. The AUC can be calculated by using the trapezoidal areas

created between each ROC point. The AUC value lies between 0 and 1, with a higher AUC

value indicating better classification performance. As shown in Fig 6, the ROAL method had a

higher macro-average AUC of 0.90 and higher AUC values for each class, while the AOL

method had a macro-average AUC of 0.88. As a result, the ROC-AUC analyses show that the

ROAL algorithm effectively improves the classification performance compared with the AOL

algorithm.

In reinforcement learning, the setting of the reward function has a great influence on the

convergence speed and the performance of the algorithm. To explore this, we further trained

models using different reward values. Notably, when training the models of Rinc = −10 and Rinc

Fig 4. (a) ROAL Accuracies and (b) ROAL label requests per episode for the 1st, 2nd, 5th, and 10th instances of all classes. The ROAL gains a higher

accuracy while requests fewer labels on later instances of each class, indicating that the ROAL is performing “educated guesses” for new instances based

on the instances it has already seen. At the 100,000 episode, the training stops and the data switches to test classes withheld from the training set.

https://doi.org/10.1371/journal.pone.0217408.g004

Fig 5. Comparison of overall (a) Accuracy and (b) Label request results between ROAL and AOL. Compared to AOL, ROAL is able to achieve

higher accuracy and lower request rate in fewer iterations. After 100,000 episodes, the data switches to test set without further learning.

https://doi.org/10.1371/journal.pone.0217408.g005
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= −20, for consistency of convergence, we used a batch size of 100. Our experimental setup

was the same as Woodward’s. We used the default parameters from Woodward’s work to

reproduce the results of AOL. At the same time, we show the best results we reproduced with

the default parameters of the AOL model in Ref [23] presented on the same problem. Impor-

tantly, based on previous work, we further explored the impact of different Rreq settings on the

accuracy and request rate of the model. As shown in Table 1, our model obtains higher accu-

racy and a lower request rate with the same reward values setting. The experimental results

also verified that the ROAL model can make trade-offs between high prediction accuracy with

many label requests and few label requests but lower prediction accuracy. Higher prediction

accuracy can be achieved by increasing the penalty value for wrongly predicting labels. Simi-

larly, the request label rate can be reduced by increasing the penalty for the request label action,

at the cost of accuracy. The results also indicate that if the reward value is set improperly, no

label may be requested with random prediction or all the labels may be requested without any

prediction. Therefore, proper setting of the reward value function has an important influence

on the learning effect of the model.

Finally, we performed another experiment to explore whether the model was effectively rea-

soning about its own uncertainty. In previous experiments, samples were randomly arranged

Fig 6. ROC plot with AUC values for AOL and ROAL.

https://doi.org/10.1371/journal.pone.0217408.g006
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in each episode. In this experiment, we artificially provided the order of the sample arrange-

ment to explore the action strategy of model. In this task, experiments were carried out on the

trained model, and two random test classes were selected for each episode. Our experiment

was divided into two groups. In both groups, we ran 1000 episodes without learning and

recorded the request percentage of episodes for each time step. In the first group, we assigned

two instances that came from different classes to the mode at the beginning of each episode.

Then, two instances from each class was given. As shown in Fig 7(a), the request rate for later

instances of the same class was greatly reduced after the model saw an instance of that class.

This result is consistent with the original intention of active learning. If representative samples

can be effectively selected for labeling, then the cost of manual labeling can be greatly reduced.

However, existing experiments still cannot prove whether the model selects actions based on

uncertainty of instances or not, because it is likely to learn only a naive strategy that always

requires labels in the first few steps. For further verification, we set the second group of experi-

ments as: 4 instances from the first class were presented, followed by 2 instances from the sec-

ond class. The results are shown in Fig 7(b). The label request rate at time step 2 was greatly

reduced, and the label request rate at time step 5 was greatly increased. The difference in the

request rate of these two time steps, and the similarity between the percentages of label

requests of the both classes can finally show that the model selects an action based on the

uncertainty of instances, because the model can increase the label request rate when a new

class appears.

In Woodward’s paper [23], a supervised method in the same task was carried out. Com-

pared with supervised learning with a label request rate is 100%, our model can achieve higher

accuracy while using fewer labels at the same time.

Handwritten alphanumeric characters

Setup. The second dataset included handwritten alphanumeric characters and consisted

of 36 classes of characters, corresponding to digits from 0 to 9 and the letters from A to Z, with

each class consisting of 39 instances. The input corresponds to 20×20 pixels image in binary

format. We randomly divided the dataset into 28 characters for training, and kept the remain-

ing 8 characters for testing.

Similar to the set-up of Omniglot, 30 images were randomly selected from several randomly

sampled classes in each episode, without replacement. Data augmentation for each class in the

episode was also performed. An LSTM with 200 hidden units was used here. Adam with the

default parameters [49] was used here to optimize our model. A grid search was performed

over the following parameters, and the parameters of the results reported in this article are

listed as follows. Epsilon greedy exploration with � = 0.4 was used. The discount factor γ was

0.6. The initial batch size was set to 50 and the reward values were set as: Rcor = +1, Rinc = −1,

and Rreq = −0.3. The initial learning rate was set to 0.002. The method of training and evalua-

tion is the same as that for the Omnigolt data set.

Results and discussion

In this section, we compare our ROAL model to AOL and a supervised learning model on

handwritten alphanumeric characters recognition task. As introduced in Santoro et al. [25],

the loss in the supervised learning model is the cross entropy between the true and predicted

label, and the true label is always presented on the following time step. The same LSTM model

was used in this supervised task for consistency, and the softmax modification is performed on

the output without extra bits for the "request label" action. We expand the experiments by

increasing the number of classes per episode. We report the results of prediction accuracy and
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request rate on the test sets in Table 2. For consistency of convergence, when training the mod-

els of 8 classes, a batch size of 100 was used, and the number of instances in each episode was

changed to 80 in all three models.

According to Table 2, the ROAL model also exhibits better performance than the AOL

model on the handwritten alphanumeric characters dataset. At the same time, compared to

the supervised learning model, the ROAL model significantly reduces the number of requests

for tags while achieving the same or even higher accuracy. By increasing the number of classes

per episode, we further demonstrate the ability of the ROAL algorithm to handle more com-

plex tasks. We may conclude that the ROAL model has broad application prospects.

Conclusions

We introduced a model that learns active learning via reinforcement learning. We evaluated

the model on one-shot learning tasks. The results show that our model can transform from an

engineering heuristic selection of samples to learning strategies from data. Compared to previ-

ous works [23], we substantially accelerated the convergence speed, avoided the gradient van-

ishing problem, improved the stability, reduced the number of request labels, and improved

the accuracy of the model. The proposed model may be a good solution to practical problems

such as movie recommendation [50] and network traffic analysis [20] due to its ability to learn

and generalize new concepts in a short time.

Fig 7. Second experiment results of the trained model. In this task, two random test classes were chosen for each episode. (a) At the beginning

of each episode, we assigned two instances which came from different classes to the model. After that, two instances from each class was given,

respectively. It shows that the request rate for later instances of the same class has been greatly reduced after the model saw an instance of that

class. (b) 4 instances from the first class were presented, followed by 2 instances from the second class. The label request rate at time step 2 is

greatly reduced, and the label request rate at time step 5 is greatly increased.

https://doi.org/10.1371/journal.pone.0217408.g007

Table 2. Results for ROAL and baselines for the handwritten alphanumeric characters classification.

% 3 classes 5 classes 8 classes

Accuracy Requests Accuracy Requests Accuracy Requests

Supervised 89.1 100 78.9 100 76.2 100

AOL

prediction

86.78 8.02 78.05 14.35� 72.23 11.06�

ROAL

prediction

89.58� 6.8� 79.17 15.15 79.05� 15.36

(Results with statistical significance at the 0.05 level with respect to the Student’s paired t-test are marked with �.)

https://doi.org/10.1371/journal.pone.0217408.t002
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In future work, we plan to evaluate our model on practical problems. For this, we may need

a more sophisticated learning approach. Due to time and resources limitations, the parameters

of our experiment may not be optimal; they can be optimized further to improve the perfor-

mance of the algorithm.

Supporting information

S1 Table. Statistical test results of test episodes on Omniglot dataset (3 classes with Rcor =

+1, Rinc = −1, and Rreq = −0.05).

(DOCX)

S2 Table. Statistical test results of test episodes on handwritten alphanumeric characters
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