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Microalgae, as potential biodiesel feedstocks, have been widely reported to accumulate
oil via genetic engineering techniques, or environmental stress regulation. Recently,
the utilization of fuel cell technology to convert biomass into electricity has attracted
much more attention due to its high efficiency, low pollution, low noise by microalgae
as feedstocks. Normally, platinum and analogous noble metals as catalysts have
been already demonstrated although they still exist lots of shortcomings. This mini
review presents an overview of various fuel cell technologies with phosphomolybdic
acid as catalysts for sustainable energy by using microalgae. Trends from literatures
demonstrate that algal-based fuel cells could efficiently generate electricity, and
concurrently produce high value-added products. This critical review can provide
guiding suggestions for future study of algal-based energy conversion by fuel
cell techniques.

Keywords: microalga, fuel cell, biomass, electricity, solar

INTRODUCTION

In this resource-exhausted era, the imminent need is to develop sustainable and renewable energy
sources since the immoderate fossil fuels extraction and usage which have already caused economic
and environmental loss (Li D. W. et al., 2019). Currently, renewable energy sources include
solar energy, wind energy, water energy, biomass energy, tidal energy, geothermal energy, and
ocean energy, etc. Amongst, biomass energy can be considered as major renewable energy source
(Potoènik, 2007). Thus, many efforts focus on the conversion techniques of biomass into electrical
energy to reduce the consumption of fossil energy.

Hybrid fuel cell technique, as a typical conversion technology, can generate electrical energy
from biomass, however, it still exists several obstacles to be solved. For instance, high working
temperature (500–1000◦C) should be applied to gasify feedstock (Choudhury et al., 2013;
Ruiz et al., 2013). Additionally, energy generation efficiency is relatively low by using fuel
cell technique (Ahmad et al., 2013). Furthermore, noble metals which are utilized as catalysts
occupy approximately 80% of the total cost (Wee, 2007; Bianchini and Shen, 2009). Recently,
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polyoxometalates are found to be low-cost catalysts to efficiently
generate electrical energy under low temperature by light
treatment (Liu et al., 2014). Polyoxometalates also exhibit suitable
oxidizing ability which can be recyclable to reduce the catalyst
cost (Gaspar et al., 2007). Specifically, the feedstock can be
firstly oxidized by polyoxometalates, afterward, polyoxometalates
will be recovered by redox reaction with oxygen. In addition,
polyoxometalates possess great potential as electron reservoirs
because of its typical kegging structure (Mizuno and Misono,
1998). Nowadays, many efforts have been made on the
microbial feedstock selection of microbial fuel cell (MFC) system.
Microalgae are regarded as an ideal microbial feedstock for
MFC, owing to excellent characteristics in biomass production,
lipid accumulation, environmental tolerance, etc. (Duffy et al.,
2009; Jasny, 2017). Srivastava et al. reported that CaCl2 triggered
lipid accumulation which reached 45% of dry cell weight in
freshwater microalgae (Srivastava and Goud, 2017). The marine
diatom Phaeodactylum tricornutum exhibits a 2.4-fold increment
of neutral lipid under nitrogen-deficiency treatment (Yang
et al., 2013). In microalgal-based MFC system, the electricity
can be generated by the electrons which is released to the
anode during the degradation of microalgae. Furthermore,
CO2 can be captured by microalgal photosynthesis. Meanwhile,
substrates in the anodic compartment can be supplied by
microalgae. Therefore, microalgae can be used as a novel type of
feedstocks for MFC system.

This mini review not only summarizes the recent study of
MCF using microalgae as feedstocks, but also points out the
limit factors that affect the power output of fuel cells and the
advantages of microalgae-MFC. This review critically provides
some promising applications that using microalgae in MFC.
One is waste water treatment, that nitrogen and phosphorus in
wastewater can be effectively removed by microalgae. The other
is reducing the greenhouse effect, that the greenhouse gas carbon
dioxide can be captured by microalgae.

ALGAL-BASED MFC

The basic working principle of MFC is: the organic compound
in anode chamber is decomposed by microorganisms to release
electrons and protons under anaerobic environment. Previous
studies demonstrated that the pivotal step of power generation
in MFC is oxygen reduction rate. Several protocols are already
updated to enhance the oxygen reduction activities (i.e., stronger
reducing salt to catholyte, or continuously pump oxygen to the
cathode chamber, apply a catalyst at the cathode). For example,
the polyaniline (PANI)-graphene nanosheet (GNS) modified
cathode MFC possesses a higher electrical generation capacity
than ordinary cathode, due to that PANI has the ability of
catalytic oxidation of oxygen at room temperature (Ren et al.,
2013). Potassium ferricyanide can effectively improve the power
generation of MFC, meanwhile, it can act as an electron acceptor
in the cathode chamber to improve oxygen reduction rate (Lay
et al., 2015). He et al. (2007) mentioned that the addition
of rotating electrodes could improve oxygen utilization in the
cathode chamber and result in a higher power production

(49 mW/m2) compared to a normal cathode system (29 mW/m2).
In the bacterio-algal microbial system, algae grown in the cathode
chamber can continuously release oxygen via photosynthesis
under light treatment. Except oxygen reduction rate, electrolytic
pH value could also affect the power generation of the MFC.
Most MFCs are defined at a neutral pH value which could allow
microorganisms to grow efficiently. The real algal-based MFC are
shown in Figure 1.

Algal-based MFCs have many advantages, however, they
are still required continuous and stable electron donors and
acceptors for commercial applications (Mateo et al., 2014).
Generally, oxygen serves as an electron acceptor at the cathode,
meanwhile the organic compound serves as an electron donor
at the anode. In this situation, microalgae in the cathode
chamber continuously release oxygen via photosynthesis using
carbon dioxide, which can provide a way to solve global
greenhouse gas emission (Yabe et al., 2012). In algal-based
MFCs, solar energy could easily store as biological energy in
primary metabolites and finally convert into electrical energy.
Recently, there mainly exists three types of algal-based fuel cells,
including single, two and three chambered fuel cells. In single
chambered fuel cells, microalgae and other microorganisms are
grown in the same chamber which is equipped with an air
cathode. In two chambered fuel cells, microalgae and other
microorganisms are grown in two different chambers connected
with a proton exchange membrane under light source. Similar
with two chambered fuel cells, three chambered fuel cells possess
an additional middle chamber with salt water, that the power
generation was lower than two chambered MFCs (Kokabian
and Gude, 2013). Amongst, single chambered fuel cells are
the easiest to operate in the laboratory with low-cost. The
application of microalgae in MFCs can not only improve its
performance, but also have many benefits. In MFCs, microalgae
mainly play roles in providing reaction substrates for anode
anaerobic microorganisms, and supplying oxygen for cathode
reactions through photosynthesis (Baicha et al., 2016). Lobato
et al. (2013) has developed a new type of MFCs with microalgae,
unlike conventional MFCs system, oxygen no longer have been
pumped into the cathode chamber of new system, and cell
voltage of new fuel cell has been observed to be the same
as conventional MFCs, that means this new system can be
performed as well as conventional system. MFC using green
microalga Scenedesmus quadricauda as a substrate could produce
much higher power density than other substrates, owing to
dry algae biomass have been used as the substrate in MFC,
meanwhile, ultrasonic treatment of S. quadricauda is inversely
related to power generation capacity (Rashid et al., 2013).
Khandelwal et al. (2018) also found that lipid extracted from
green microalga Chlorella vulgaris as substrate could enhance
the power generation of this new MFC at 2.7 W m−3 without
additional carbon source. Hence, we can infer that the lipids in
microalgae are the key to the conversion of biomass energy into
electrical energy. P. tricornutum with high lipid content and rapid
growth can be used as a suitable feedstock for fuel cells. The
dissolved oxygen value release was achieved at the maximum
value during the 12-h illumination treatment with the similar
trend of voltage values (Del Campo et al., 2013). Interestingly,
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FIGURE 1 | The structure of algal-based MFC. (A,E) acrylic plastic end plate, (B,D) graphite bipolar plate, (C) Nafion polymer exchange membrane, (F) pump, and
(G) microalgae cells.

TABLE 1 | Electricity production of algal-based MFCs.

Cathodic
contents

Anodic contents Power density
(mw/m2)

References

Chlorella vulgaris Aerobic wastewater
sludge

151 Kokabian and
Gude, 2013

Mixed algal culture Municipal
wastewater

12.6 Lobato et al., 2013

Scenedismus
obliquus

Activated sludge 1780 Rashid et al., 2013

Chlorella vulgaris Pre-treated cow
manure

67.07 Khandelwal et al.,
2018

Chlorella vulgaris Activated sludge 13.5 Del Campo et al.,
2013

Spirulina platensis / 10 Lin et al., 2013

Blue green algae Anaerobic
wastewater sludge

114 Yuan et al., 2011

the proton exchange membrane replaced by a biofilm made
from Spirulina platensis improved strong competitiveness in
energy output (Lin et al., 2013). Cyanobacteria as a raw
material for MFCs could efficiently produce electricity, and
remove microcystins to remediate the microcystin-contaminated
environments (Yuan et al., 2011). The power output of the MFCs
using several typical microalgal species as feedstocks is shown
in Table 1.

The Advantage of Algal-Based MFCs
Algal-based MFCs have plenty of advantages, such as high
electricity generation, strong wastewater treatment ability,
high valued bioproducts, carbon dioxide assimilation, and
oxygen production (Saba et al., 2017). The concentrations
of nitrogen and phosphorus in wastewater are extremely
high, which often cause water eutrophication. Many studies
mentioned that algal-based fuel cells could be used for
wastewater treatment since wastewater contains large amounts of
degradable organic compounds (Zhang et al., 2011; Commault
et al., 2017). Wastewater contains monosaccharides, sugar
derivatives, polyalcohols, amino acids, organic acids, alcohols,
and nitrogenous heterocyclic compounds, etc., which could serve
as substrates to provide electrons. Compared to conventional
wastewater treatments, algal-based fuel cell system could save
lots of energy and cost. The chemical oxygen demand (COD)
reduction of water is used as an important criterion for
testing the effect of wastewater treatment. As expected, over
70% COD of wastewater could be eliminated in MFC system
(Gadhamshetty et al., 2013; Cui et al., 2014; Mohan et al.,
2014). An algae biofilm microbial fuel cell (ABMFC) was
invented by Yang et al., and its performance was much
better than MFC or AB alone. The COD of ABMFC
reached 80.2%, and the power generation was 18% higher
than MFC (Yang et al., 2018). In addition, the removal
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rates of nitrogen and phosphorus in wastewater was 96.0,
91.5%, respectively.

Constructed wetlands have received widespread attention in
recent years as a green and low-cost way to treat wastewater
(Vymazal, 2011). Srivastava et al. (2020a,b), combined technology
of MFC technique and constructed wetland for improving
wastewater treatment performance (Srivastava and Goud, 2017).
Compared with using MFCs alone to treat wastewater, algal-
based MFCs could use nutrients in wastewater as their nitrogen
and phosphorus sources to produce biomass, thereby effectively
removing nitrogen and phosphorus in wastewater.

Algal-based MFCs could also produce some high value-
added bioactive compounds while generating electricity, such
as polyunsaturated fatty acid (PUFA), carotenoids including
β-carotene, lutein, etc. Carotenoids have been widely used
in antioxidants, pharmaceuticals, and nutraceuticals, as they
have important healthy properties to human, e.g., they can
promote the release of anti-tumor factors by cells (Maiani
et al., 2009). Carotenoids content can be increased significantly
under the light treatment in photosynthetic algae MFC system
(Gouveia et al., 2014).

The Limit Factors Affecting the Fuel Cell
Power Output
Fuel Cell Catalyst
As an important factor affecting the fuel cell power output,
fuel cell catalysts have been increasingly researched in recent
years. Liu et al. (2016) employed polyoxometallates such as
phosphomolybdic acid as catalysts to electrolyze biomass for
hydrogen production consume which is only 16.7% of the
energy consumed for the reported water electrolysis. Hydrogen
is the cleanest fuel in the world, and has the highest energy
density (143 KJ Kg−1), which the energy produced by burning
1 kg of hydrogen is equivalent to the energy produced by
burning 2.63 kg of gasoline (Hoffert et al., 2002; Turner,
2004; Parthasarathy and Narayanan, 2014). Five common
methods, such as thermo-conversion, photo-electrochemical
conversion, fermentation, and electrolysis which can convert
biomass into hydrogen (Turner et al., 2008). Compared with
traditional methods, Deng et al. reported a method which can
generate hydrogen more efficiently and solve some shortcomings.
The high efficiency hydrogen evolution from native biomass
electrolysis are calculated using the following equations:

Biomass+H2O+ POM(OX)
1 or hv
→ Degradation products+

CO2 +H− POM(Red) (1)

H-POM(Red)
Anode
→ POM(OX)+H++e− (2)

H++e− Cathode
→ 1/2H2 (3)

The traditional treatment of wheat straw is in situ burning,
which not only causes a lot of energy loss, but also pollutes the
air. Previous reports showed that phosphomolybdic acid and

ferric ions as high-efficiency electron carriers and oxidants can
assist wheat straw to produce bioethanol and electricity (Ding
et al., 2017). This method is a good solution to the problems
of air pollution and energy waste. Biomass pretreatment is
a key step in the degradation of lignocellulose to produce
ethanol, etc. Compared with traditional biomass pretreatment,
such as alkaline saponification, oxidative delignification, solvent
extraction, and sulfite pulping, pretreatment of wheat straw
by phosphomolybdic acid (PMo12) can effectively improve
cellulose hydrolyzability and ethanol production (Zhao et al.,
2009; Zhu et al., 2009; Singh et al., 2014; Kim et al., 2016).
A polyoxometalate coupled graphene oxide-Nafion composite
membrane for fuel cells was developed to show a 4-fold
higher maximum fuel cell power density (Kim et al., 2015).
When FeCl3 was introduced into the Liquid catalytic fuel
cell as co-catalyst, it could replace 80% of the raw catalyst
(polyoxometalates), and the performance of the fuels could
keep the same level (Xu et al., 2017). Hence, the addition
of Fe3+ can promote the catalytic ability of phosphomolybdic
acid, as the addition of Fe3+ promotes the transfer of electrons
to oxygen. Therefore, we can use phosphomolybdic acid and
other polyoxometalates as fuel cell catalysts to promote the
conversion of chemical energy, solar energy, biomass energy into
electrical energy.

Light and CO2 Influence on Power
Production
It is considered that the oxygen release by microalgae influenced
by light and CO2 concentration in the anode chamber is the main
factor to affect the production of electrical energy. The electricity
generation of bacterio-algal MFCs under 6–12 W light intensity
power exhibits higher than that under 18–26 W. Furthermore,
the anodic chambers have been covered which shows higher
voltage, power density, Coulombic efficiency and specific power
than the uncovered anodic chambers (Juang et al., 2012). Gouveia
et al. (2014) studied the effect of light intensity on photosynthetic
microalgal MFC, the power generation increased by 6-folds when
the light intensity increased from 26 to 96 µE/(m2s), and the
production of carotenoids in the cathode compartment also
increased. It is well known that light is an important factor
affecting photosynthesis, so, finding a suitable light intensity
and light time is the key to the commercialization of microalgal
MFC. In addition, Bazdar et al. (2018) found the light intensity
between 5000 and 6500 lx is the optimal light range for Chlorella
vulgaris photosynthesis and maximum energy production in
the photosynthetic microalgae MFC. Furthermore, this study
showed that increasing the light time has a positive effect on
the output of electric energy, the maximum power density in
the light/dark regimes of 24/00 h was 12.7 and 74.8% higher
than 16/8 and 12/12 h, respectively. CO2 concentration is
another important factor to promote the algal photosynthesis.
Currently, microalgae in the cathode chamber utilize CO2
degraded from the organic substrate to ensure the effective
operation of microalgae microbial fuel cell system (Wang et al.,
2010; Del Campo et al., 2013). Li M. et al. (2019) developed a
new algal-based MFC which 10% CO2 was pumped into cathode
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chamber, and the performance of this new fuel cell was better
than photosynthetic algae MFC and bubbling photobioreactor
in bioenergy production and lipid production. Moreover, the
continuous pumping of CO2 can not only be used as a carbon
source for algae growth, but also adjust the pH of the catholyte.
Compared with other nitrogen sources, the new fuel cell uses urea
as nitrogen source to better capture CO2, generate electricity, and
produce high value-added biological products.

CONCLUSION AND FUTURE
PERSPECTIVES

Algal-based fuel cell has been extensively developed in laboratory
scale with good performance, however, it still cannot be utilized
in industrial applications due to several limited factors. The first
reason is that compared with traditional fossil fuels, microalgae
biodiesel is more expensive, which is the most important factor
limiting the commercialization of biodiesel. Microalgal oil is
almost three to four times more expensive than plant oil
(Rastogi et al., 2018). Compared with traditional plant oils,
the cost of nutrients and substrates required for the growth
of microalgae is high. In addition, the production of biodiesel
and biological products using algae as raw materials requires
pretreatment of algae, which greatly increases the cost (Hoh
et al., 2016). Furthermore, the fuel cell generally requires a nafion
proton exchange membrane, however, it is too expensive, about
$1500/m2 to $3000/m2, and such high cost limits the feasibility in
scaled-up systems. Khandelwal et al. (2020) developed an outdoor
alga assisted MFC, which used low-cost materials including rock
phosphate blended clayware and low-density polyethylene bags
to replace the nafion proton exchange membrane, and the cost
of this fuel cell was only $11.225. The second barrier is how to

effectively balance the growth of algae and energy production,
and find an optimal solution, for example, the carbon source,
nitrogen source, and light intensity which are required for algae
growth. The final barrier is the problem of purification of a large
amount of value-added biological products produced by MFC has
not been solved. Therefore, in order to solve the above obstacles,
a new type of MFCs are needed further innovation, with a view to
achieve commercialization in the future. For example, genetically
engineered microalgae by gene knockout, gene overexpression
or other genetic methods to enhance the overall productivity of
microalgae for MFCs.

In the future, the microalgae will be used as the feedstocks
of fuel cells, and the phosphomolybdic acid (POM) used as
the catalyst, and the structure as shown in Figure 1. Through
this new type of microalgae fuel cell, we can get electricity
efficiently in normal or even low temperature environments.
Some harmful red tide microalgae are used as the feedstocks,
such as Prorocentrium lima and Alexandrium tamarense. This
not only provides a method for controlling red tide, but also
produces electricity.
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