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Stochastic dynamics for reinfection by transmitted diseases
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The use of stochastic models to study the dynamics of infectious diseases is an important tool to understand the
epidemiological process. For several directly transmitted diseases, reinfection is a relevant process, which can be
expressed by endogenous reactivation of the pathogen or by exogenous reinfection due to direct contact with an
infected individual (with smaller reinfection rate σβ than infection rate β). In this paper, we examine the stochastic
susceptible, infected, recovered, infected (SIRI) model simulating the endogenous reactivation by a spontaneous
reaction, while exogenous reinfection by a catalytic reaction. Analyzing the mean-field approximations of a
site and pairs of sites, and Monte Carlo (MC) simulations for the particular case of exogenous reinfection, we
obtained continuous phase transitions involving endemic, epidemic, and no transmission phases for the simple
approach; the approach of pairs is better to describe the phase transition from endemic phase (susceptible,
infected, susceptible (SIS)-like model) to epidemic phase (susceptible, infected, and removed or recovered
(SIR)-like model) considering the comparison with MC results; the reinfection increases the peaks of outbreaks
until the system reaches endemic phase. For the particular case of endogenous reactivation, the approach of pairs
leads to a continuous phase transition from endemic phase (SIS-like model) to no transmission phase. Finally,
there is no phase transition when both effects are taken into account. We hope the results of this study can be
generalized for the susceptible, exposed, infected, and removed or recovered (SEIRE

I ) model, for which the state
exposed (infected but not infectious), describing more realistically transmitted diseases such as tuberculosis. In
future work, we also intend to investigate the effect of network topology on phase transitions when the SIRI
model describes both transmitted diseases (σ < 1) and social contagions (σ > 1).
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I. INTRODUCTION

Since the beginning of the last century, the mathematical
modeling is a tool for studying transmitted diseases [1,2]
such as childhood diseases (measles, whooping cough, chicken
pox, etc.) as well as vector-borne diseases (malaria, dengue,
etc.) [3,4]. More recently, due to the complex circulation of
people around the world, many effects are enlarged, increasing
the propagation of transmitted diseases. For instance, the
cocirculation of interacting infections [5,6] is very frequent
for transmitted diseases such as tuberculosis and AIDS; the
reinfection effect [7] seems to become more relevant for some
transmitted diseases such as tuberculosis and viral hepatitis for
which patients acquire partial immunity.

For analyzing these complex situations, it would be neces-
sary to make use of different methods. Two complementary
approaches add trust to the traditional deterministic models
based on population-wide random mixing, leading the mod-
els from population level to individual level: the network
theory [8] and the stochastic dynamics strictly connected
to percolation theory [9]. Recent results indicate that, for
scenarios of cooperativity such as in interacting epidemics,
hybrid first order transitions may occur on epidemic models
in Erdós-Renyi networks and on d-dimensional lattices with
d � 4 but do not occur on d = 2 lattices [10,11]. For some
other situations, such as a model for vertically and horizontally
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transmitted infection, a discontinuous phase transition may
occur even for d = 2 lattices [12].

Assuming an individual can be susceptible (S), infectious
(I), and recovered (R), the SIS and SIR deterministic models
are the basic models for describing the dynamics of endemic
and epidemic processes, respectively. Meanwhile, the SIR
model is suitable to describe the transmitted diseases with
permanent immunity such as childhood diseases, and the
SIS model is appropriate to describe diseases where repeated
infections are common such as sexually transmitted diseases.

In the literature, some deterministic population-based mod-
els are analyzed to investigate the relevance of reinfection
effect [13,14] of some transmitted diseases, such as tuberculo-
sis, for which the individuals are temporarily protected but can
be reinfected. However, the reinfection occurs with probability
smaller than one. In this work, we analyze a stochastic discrete
version [15,16] of a basic epidemiological model on a lattice
with coordination number ζ (ζ = 2 and 4), called the SIRI
model (susceptible, infected, recovered, infected) [17–19],
considering the probability of changing the state of a site i

depending on its neighborhood. The SIR model with recurrent
infection is presented in [20], wherein an infected individual
may, spontaneously, become recovered, that is, acquire a
permanent immunization. We intend to investigate the role
of reinfection parameter, concerning the dynamical evolution
to no transmission, epidemic, or endemic state.

Moreover, even for transmitted diseases that individuals
acquire total immunity against the pathogen, due to its genetic
variation, the reinfection may be associated with partial
immunity against the mutant pathogen [21,22]. It has occurred,
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FIG. 1. Schematic representation of the SIRI model: the pa-
rameters β, σβ, γ , and α are, respectively, infection, exogenous
reinfection, recovery, and endogenous reactivation rates.

for instance, for whooping cough outbreak that was triggered
again in the United States in 2012, mainly in Washington, Iowa,
and Colorado, reaching the older population [23]. Moreover,
it is known that the vaccination efficiency is reduced when the
recovered individual from a prime infection interacts with a
mutant pathogen [24].

According to the mean-field approximations for the
stochastic SIRI model, depending on the recovered rate and
on the difference between the infection and reinfection rates,
in this paper we obtain a continuous phase transition between
epidemic and endemic regions of phase space, neglecting the
endogenous reactivation. The paper is organized as follows: in
Sec. II we introduce the stochastic SIRI model and its transition
rate. In Secs. III and IV we present and discuss the results of the
one-site and pair mean-field approximations for the particular
cases of SIRI model, without endogenous reinfection (Sec. III)
or without exogenous reinfection (Sec. IV). Finally, in
Sec. V, we make a summary of our concluding remarks and
perspectives. Among the perspectives, we call the attention
to the effect of topology network on discontinuous phase
transitions observed when the SIRI model describes social
contagions (σ > 1) [17], mimicking a cooperative behavior
analogous to coinfections in the SIR model.

II. STOCHASTIC SIRI MODEL

The SIRI model is defined on a regular lattice of N sites
(see Fig. 1). A stochastic variable ηi , associated with every
site i, can assume three values ηi = {0, 1, 2} that correspond
to susceptible, infected, and recovered states, respectively. The
dynamics is asynchronous and the population is constant, that
is, there is no vital dynamics. At each time, one site is randomly
chosen and the following local rules are applied:

(1) A susceptible individual can become infected with a
probability of infection b if at least one of its nearest neighbors
is infected. The probability (0 → 1) is given by bn/ζ , where n

is the number of infected neighbors and ζ is the coordination
number of the network.

(2) An infected individual spontaneously recovers with
probability of recovery (2 → 0) given by c.

(3) A recovered1 individual can be reinfected in two ways:

1Note that the “recovered” individual corresponds, in this model, to
an individual that may be reinfected; therefore, it may be considered
a susceptible individual of type 2.

(a) by exogenous reinfection with probability (0 → 2)
given by σbn/ζ , if at least one of his first neighbors is
infected, where σ is the reinfection coefficient;

(b) by endogenous reactivation, which occurs with
probability (0 → 2) given by a.
In this work, since we are interested in analyzing the effect

of reinfection for infectious diseases, whose action is smaller
than prime-infection action, we consider a particular case of
the stochastic SIRI model, for which the reinfection rate σβ is
linked to the infection rate β and it is smaller, i.e., σ < 1. Note
that, in the context of social networks, it is also interesting to
analyze the case σ > 1 as it was done by us and two coauthors
in [17] for α = 0.

Thus, we can understand that σ < 1 depicts the situation
where the recovered individual does not acquire full immunity.
Therefore, we assume σ varying in the interval [0,1]. Note that,
for the special case where there is no reinfection (α = 0 and
σ = 0), we recover the SIR model [25,26]. Still, with α = 0,
for the limit σ = 1, the dynamic resembles the SIS model
[27,28] because the recovered individual becomes susceptible
to the disease with the same probability of infection (σb = b).

Thus, there are four external parameters linked to this
process: infection rate (β), endogenous reactivation rate (α),
exogenous reinfection coefficient (σ ), and recovery rate (γ ).
The rates are related to the probabilities as follows:

α = a

ε
; β = b

ε
; γ = c

ε
, (1)

with ε = α + β + σβ + γ .
Since it is a Markov process continuous time, we can

conveniently rescale the time so that the rates satisfying the
following condition:

ε = 1. (2)

Thus, α, σβ, β, and γ are reduced rates.
The local rules may be written through transition proba-

bility per site, in which the ith site has its state ηi is updated
according to the expression

wi(η) = β

ζ
δ(ηi,1)

∑
j �=i

δ(ηj ,2) + αδ(ηi,0)

+σβ

ζ
δ(ηi,0)

∑
j �=i

δ(ηj ,2) + γ δ(ηi,2), (3)

for which the notation δ(r1,r2) represents the Kronecker delta.
The summations of Eq. (3) are made on the first neighbors j

of the site i. The first term on the right side of Eq. (3) describes
the process of infection, the following two terms represent the
endogenous reactivation and exogenous reinfection, respec-
tively, while the fourth term represents the recovery of an
infected individual.

The time evolution of the probability distribution P (η) of
configuration η = {ηi} is governed by the master equation of
Markov processes:

d

dt
P (η) =

∑
i

{wi(A
−
i η)P (A−

i η) − wi(η)P (η)}, (4)

where A is an operator and Ai is the operator A acting on
the ith site of the configuration η, that is, on the site that
suffered transition, changing its state in the following order:
(1 → 2, 2 → 0 and 0 → 2). A− is the inverse operator A and
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wi corresponds to the transition probability of the site changes
the site i state from η to η′ = Aiη. The average of state function
f (η) on the distribution of probabilities P (η) is defined by
〈f (η)〉 = ∑

η f (η)P (η).
The average of time evolution of 〈f (η)〉 is obtained from

the master equation, written as

d

dt
〈f (η)〉 =

∑
i

〈[f (Aiη) − f (η)]wi(η)〉. (5)

The equations of evolution for the probability Pi(1) and
Pi(2) (the densities of susceptible and infected individuals,
respectively) can be obtained from the master equation (4)
using the transition probability by site of the SIRI model given
by Eq. (3). Remember that Pi(1) = 〈δ(ηi,1)〉 and Pi(2) =
〈δ(ηi,2)〉. Thus, the time evolution equations for the first
moments of the probability distribution are

d

dt
Pi(1) = −βPi,j (12),

d

dt
Pi(2) = βPi,j (12) − γPi(2) + σβPi,j (02) (6)

+αPi(0),

for which the joint probabilities Pi,j (12) and Pi,j (02) are given,
respectively, by Pi,j (12) = 〈δ(ηi,1)δ(ηi,2)〉 and Pi,j (02) =
〈δ(ηi,0)δ(ηi,2)〉 with j as the neighboring site of i.

The equation of time evolution for Pi(0), the density
of recovered individuals, can be obtained from Eq. (6),
due to the following normalization condition: Pi(1) + Pi(2)
+ Pi(0) = 1.

A. Mean-field approximation of one site (SMFA)

In the simplest approximation, we treat each site as if it
was independent of other sites, that is, we decorrelate the joint
probability as follows:

Pi,j (ηiηj ) = P (ηi)P (ηj ). (7)

Using a simplified notation x = Pi(1), y = Pi(2), and
z = Pi(0) = 1 − x − y, we rewrite the system of Eq. (6):

ẋ = −βxy,

ẏ = σβ(1 − x − y)y + βxy − γy + α(1 − x − y). (8)

The system of differential equations (8) presents the following
fixed points E(x∗,y∗):

E0 = (1,0); E∓ = (0,y∓),

where y∓ = (C ∓
√

C2 + 4γ σβ)/2σβ and C = σβ − α − γ .
The first fixed point E0 represents the no transmission state,

where there are neither infected individuals nor recovered
individuals. The second fixed point E− has no epidemiological
sense. The third fixed point E+ represents the state for which
the transmission of the disease occurs, in other words, the
density of infected individuals is not null in the steady state,
featuring an endemic state.

Performing the local stability analysis of the fixed points,
the trivial fixed point E0 is a saddle point and the fixed point
E+ is a stable node, for any positive values of rates α, β, σβ,
and γ . Therefore, for the SIRI model with α ∈ (0,1) and σ ∈
(0,1), based on the SMFA stability analysis, there is no phase
transition. Thus, the absorbing state of susceptible, represented
by E0, can only be observed if the system’s initial configuration
is (x0,y0) = (1,0). If the initial system configuration is (x,y) �=
(1,0), the disease transmission occurs and the system evolves
to a fixed point E+.

B. Pair mean-field approximations (PMFA)

Let us assume a more realistic approximation, in which
triples are uncorrelated, but we keep the correlation of the pairs.
In this case, there are only three independent probabilities of
pairs: Pi,j (01), Pi,j (02), and Pi,j (12). Thus, the differential
equations of first and second moments of the probabilities
distribution are

d

dt
Pi(1) = −βPi,j (12),

d

dt
Pi(2) = βPi,j (12) + σβPi,j (02) + αPi(0) − γPi(2),

d

dt
Pi,j (01) = − (ζ − 1)

ζ
[βPi,j,k(012) + σβPi,j,k(201)] + γPi,j (12) − αPi,j (01),

d

dt
Pi,j (12) = −β

(ζ − 1)

ζ
[Pi,j (12) − Pi,j,k(112) + Pi,j,k(212)] + σβ

(ζ − 1)

ζ
Pi,j,k(102) − γPi,j (12) + αPi,j (12),

d

dt
Pi,j (02) = β(ζ − 1)

ζ
Pi,j,k(012) − γ [Pi,j (02) − Pi,j (22)] + σβ(ζ − 1)

ζ
[Pi,j,k(002) − Pi,j,k(202)]

− σβ(ζ − 1)

ζ
Pi,j (02) + α[Pi,j (00) − Pi,j (02)].

The second moment’s equation of the distribution is dependent on the third-order msd10oment’s equations. Applying the pair
mean-field approximations (PMFA) to truncate the dependence of the correlation between the probabilities of second order, the
triple correlations are approximated to

Pi,j,k(ηiηjηk) = Pi,j (ηiηj )Pj,k(ηjηk)

Pj (ηj )
. (9)
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Using a simplified notation x = Pi(1), y = Pi(2), u = Pi,j (01), v = Pi,j (12), w = Pi,j (02) and applying PMFA, we can
rewrite the previous system as follows:

ẋ = −βv,

ẏ = βv + σβw + α(1 − x − y) − γy,

u̇ = −β(ζ − 1)

ζ

uv

x
+ γ v − σβ(ζ − 1)

ζ

wu

(1 − x − y)
− αu,

v̇ = −
(

β

ζ
+ γ − α

)
v + β(ζ − 1)

ζ

v(x − u − 2v)

x
+ σβ(ζ − 1)

ζ

uw

(1 − x − y)
,

ẇ = β(ζ − 1)

ζ

uv

x
− γ (2w − y + v) − σβ

ζ
w + σβ(ζ − 1)

ζ

w(1 − x − y − u − 2w)

(1 − x − y)
+ α(1 − x − y − u − 2w), (10)

where x �= 0 and if y = 0, necessarily, x �= 1.

Solving the system of the equations (10), we find an infinite
number of fixed points:

E∗ = (x∗,y∗,0,0,w∗),

wherein y∗ and w∗ are

y∗ = (x∗ − 1)[γ ζ − σβ(ζ − 1)]

σβ(ζ − 1) − γ
,

w∗ = γ (x∗ − 1)[γ ζ − σβ(ζ − 1)]

σβ[σβ(ζ − 1) − γ ]

for any value of 0 < x∗ < 1.
Differently from SMFA, in site pairs there is no trivial

fixed point. The system (10) does not allow the density of
susceptible individuals (x) to be zero. Analyzing the fixed
point E∗, the stationary density of infected (y∗) will only be
positive if σβ(ζ−1)

ζ
< γ < σβ(ζ − 1). Note that if the density of

susceptible individuals is equal to one (x = 1), it implies that
y = 0, which is not possible [see system (10)]. Thus, to study
pair approximation we have to have at least one recovered or
infected individual in the initial configuration.

In order to understand the influence of the effects of
exogenous reinfection and endogenous reactivation in the
dynamical transmission of infectious diseases, we will study
each effect separately.

III. EXOGENOUS REINFECTION

In the particular case of the SIRI model, wherein α = 0
and 0 < σ < 1, we neglect spontaneous reactivation of the
pathogen, i.e., the reinfection only occurs if the individual,
due to directed contact with infected neighbors, acquires a
new pathogen. Note that the rate of reinfection (σβ) is smaller
than the primary infection rate (β): so, it differs from the SIS
model (σ = 1) and from the SIR model (σ = 0).

With the aim of illustrating a comparison between the SIRI
model with SIS and SIR models, in terms of the reinfection
effect, we simulate the SMFA and PMFA of the SIRI model
for α = 0 and different values of σ , keeping fixed the value
of β. In Fig. 2(a), we show the time series of infected
individuals resulting from the numerical integrations of system
(8); the simulations of SMFA make evident that the reinfection
effect increases the size of outbreaks in relation to the SIR
model, leading from epidemic to endemic behavior until the
limit case of the SIS model. This effect is also observed in

Fig. 2(b) resulting from the numerical integrations of system
(10) indicating that PMFA of the SIRI model leads to smaller
peaks of outbreaks than its SMFA. In general, the threshold
value of σ is smaller for SMFA than for PMFA; for that set

FIG. 2. Time series of infected individuals of SIRI model (α = 0)
with β = 0.5 and γ = 0.05 for mean-field approximations; σ = 0,
SIR model (solid line), σ = 0.05 (dashed line), σ = 0.6 (dotted-
dashed line), and σ = 1, SIS model (dotted dotted-dashed line).
(a) For SMFA, the threshold value is σ = 0.1 (dotted line); (b) for
PMFA: the threshold value is σ = 0.1/0.85 ≈ 0.118 (dotted line).
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FIG. 3. Comparison between SIRI model (α = 0) and its par-
ticular cases in terms of the primary infection rate β. Assuming
γ = 0.05, (a) the density of infected individuals versus β: in case of
SMFA for σ = 0.8 (solid line) and σ = 1 (dashed line) generating
βth = 0.05 and βth = 1, respectively; in case of PMFA, for σ = 0.8
(dotted line) and σ = 1 (dotted-dashed line) generating βth = 0.1
and 2, respectively; (b) in case of SMFA the density of recovered
individuals versus β for σ = 0.2 (dotted line), σ = 0.8 (dashed line),
and σ = 0 (solid line) (SIR model) generating βth = 0.04, βth = 0.4,
and βth = 0.05, respectively.

of parameters, the threshold value of σ is 0.1 and 0.118 for
SMFA and PMFA, respectively.

Moreover, keeping fixed the reinfection effect of the SIRI
model, we choose two non-null values of σ (σ = 0.8 and 0.2)
for comparison of the threshold value of primary infection rate
β (set up as the control parameter) as well as the intensity of
endemics (for SIS and like-SIS models) for the larger value
of σ and the intensity of outbreak (for SIR and like-SIR
models) for the smaller value one. In the first case, looking
at the density of infected individuals as the order parameter
[see Fig. 3(a)], we set up that the SIRI model generates
stronger endemics than the SIS model. It also presents a smaller
threshold value of primary infection parameter β than for the
SIS model in both cases: SMFA (βth = 0.05 in contrast to

βth = 1 for the SIS model) and PMFA (βth = 0.1 in contrast
to βth = 2 for the SIS model). In the second case for which
the density of recovered individuals is the order parameter [see
Fig. 3(b)], the SIRI model presents a smaller threshold value
of primary infection parameter β than for the SIR model in
SMFA (βth = 0.4 in contrast to βth = 0.5 for the SIR model).
In pairs the density of recovered individuals only depends on
the coordination number for the SIR model [26].

A. SMFA (α = 0)

In the simple approximation, we made α = 0 in the system
of differential equations (8), and we obtain the fixed points

E∗
0 = (x∗,0); E∗

1 =
(

0,1 − γ

σβ

)
,

with 0 < σ < 1.
The fixed point E∗

0 corresponds to the infinite number of
absorbing states [29], i.e, for which we can find a disease-free
population. If the stationary density of infected individuals
(y∗) is null, the transmission of the disease ceases (or even not
happens). The point E1 represents a population for which the
density of infected and recovered individuals is non-null, i.e.,
the transmission of the disease persists in the population.

Based on the local stability analysis, E∗
0 will be unstable

if x∗ > (γ − σβ)/[β(1 − σ )]. At the initial phase (t = 0), in
order to observe the disease spreading, i.e., E∗

1 stable, we must
have ẏ > 0 and ẋ < 0, or x0 > x∗ > (γ − σβ)/[β(1 − σ )],
wherein x0 is the initial number of susceptible individuals.

The phase diagram is constructed using only two pa-
rameters; with this aim, we made a change of variable by
transforming

σβ = (1 − γ )

2
− p,

β = (1 − γ )

2
+ p,

γ = γ, (11)

wherein the parameter p = β(1 − σ )/2 with p ∈ [0,1/2], σ ∈
[0,1], and satisfying the condition (2). Performing this trans-
formation, we can design the parameter space defined on the
surface R3 to a plane p × γ .

The critical threshold of the epidemic for this particular
case in the SMFA is

pc = 1 − 3γ

2 − 4x∗ . (12)

For the infinite number of fixed points that represent a
disease-free population, we can highlight the following:

(1) The trivial fixed point E∗
x=1 = (x∗,y∗) = (1,0) rep-

resents the absorbing susceptible state, wherein there is no
disease transmission, and it is stable if γ > β, i.e., the critical
threshold of transition between no transmission and epidemic
states is given by the line p = (3γ − 1)/2.

(2) The fixed point E∗
x=0 = (x∗,y∗) = (0,0) represents the

absorbing recovered state, the extreme case where all individu-
als have been infected and are recovered; it is stable if γ > σβ,
i.e., the critical threshold of transition between epidemic and
endemic states is given by the line p = (1 − 3γ )/2.
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FIG. 4. Phase diagram of the SIRI model (α = 0 and 0 < σ < 1)
in the SMFA, wherein p = β(1 − σ )/2. The bold line corresponds to
σ = 0; the dotted line and dashed line are such that pc = (1 − 3γ )/2
and p = (−1 + 3γ )/2, respectively; finally, the dotted-dashed line
corresponds to β = 0.

(3) The fixed point E∗
1 represents the state in which

the transmission of the disease persists in the population;
it is stable if σβ > γ , the critical threshold of transition
between endemic and epidemic states is given by the line
p = (1 − 3γ )/2.

Thus, for SMFA, the phase diagram, shown in Fig. 4,
exhibits a continuous phase transition. Thus, when the reinfec-
tion rate is larger than the recovery rate, σβ > γ , the system
evolves to the endemic state. The line pc = (3γ − 1)/2 defines
the region of costability, wherein the system may present
transmission (epidemic phase) or no transmission.

The endemic region represents a population where the
disease activity persists and the density of infected individuals
is non-null in the stationary state. In the epidemic region, there
are no infected individuals at steady state, but there is recovered
individuals due to the transmission of the disease. In the no
transmission region, there is no activity of the disease at any
time.

B. PMFA (α = 0)

For the two-site approximation, assuming α = 0 in the
system of differential equations (10), we obtain the fixed points
Ei = (x∗,y∗,u∗,v∗,w∗):

E0 = (x∗,0,0,0,0),

E1 = (x∗,0,u∗,0,0),

E2 =
(

x∗,(x∗ − 1)B,0,0, − γ (x∗ − 1)

βσ
B

)
,

wherein 0 < x∗ < 1 and B = [γ ζ − β(ζ − 1)σ ]/[−γ +
β(ζ − 1)σ ].

The fixed point E0 is marginally stable if σ <

γ ζ/(γ − 1 + ζ − 2γ ζ ). Applying the same change of vari-
ables made in the SMFA, we can set up the phase diagram in
terms of the variables p and γ . So, there is a phase transition

FIG. 5. Phase diagram of the SIRI model (α = 0 and 0 < σ < 1)
in the PMFA for ζ = 2 (solid line) and ζ = 4 (dashed line), that
correspond, respectively, to pc = (1 − 5γ )/2 and pc = (3 − 11γ )/6.

for which the critical threshold is given by

pc = γ − 1 + (1 − 3γ )ζ

2ζ − 1
, (13)

such that, above this threshold value, the reinfection is
active. The transition occurs at pc = (1 − 5γ )/2 for a chain
(ζ = 2) and at pc = (3 − 11γ )/6 for a lattice with coordina-
tion number ζ = 4.

In Fig. 5, we represent the phase diagram for PMFA,
showing the continuous phase transition between the endemic
and epidemic regions. Differently from SMFA, we do not
observe costability using pair approximation. We note that
there is disease activity in all regions, without no transmission
region. For PMFA, the endemic region is larger for ζ = 4 than
for ζ = 2, while for SMFA the endemic region does not vary
with coordination number of the lattice as it was expected.

Comparing the phase diagrams for SMFA (Fig. 4) and for
PMFA (Fig. 5), it is easy to see that, for some parameter values,
the reinfection effect for SMFA is able to keep an endemic
state, but not for PMFA as it is illustrated in Fig. 6 where the
value of reinfection parameter σ is fixed. It indicates that the
threshold value of reinfection parameter is higher for PMFA
than for SMFA.

In order to keep working with control parameter p, we
set up the threshold value of p for both approximations and
for Monte Carlo simulations. In Fig. 7(a), we construct the
graphic y × p to show the relationship between the number
of infected individuals and the parameter p. This graphic is
obtained by stationary density of infected individuals y∗ for a
lattice in the SMFA and PMFA. Fixing γ = 0.05(t.u.)−1 using
a generic time unit (t.u.), the critical values obtained for the
approximations are pS

c = 0.425 and pP
c = 0.374 in the SMFA

and PMFA, respectively.
Performing Monte Carlo simulations of the SIRI model

on chains [see Fig. 7(b)], we conclude that PMFA leads to a
better description of the model than SMFA since the threshold
value of p, obtained by the second order cumulant analysis, is
pc = 0.309.
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FIG. 6. Time series of infected individuals of the SIRI model
(α = 0) assuming β = 0.5; γ = 0.05 and σ = 0.11 for SMFA (solid
line) and PMFA (dotted line).

IV. ENDOGENOUS REACTIVATION

In this particular case, wherein 0 < α < 1 and σ = 0,
we are disregarding the effect of exogenous reinfection. This
means that the individual will not be reinfected if placed in
contact with infected individuals, but there is a chance that
the pathogen acquired in the primary infection reactivates
spontaneously. We study this effect for the SIRI model
behavior, making the endogenous reactivation rate α to vary
in the range [0,1].

A. SMFA (σ = 0)

Assuming σ = 0 in the system of differential equations (8),
we obtain the fixed points E = (x∗,y∗):

E0 = (1,0); E2 =
(

0,
1

1 + γ

α

)
.

The trivial fixed point E0 represents the absorbing state
of susceptible individuals, meanwhile, the fixed point E2

corresponds to a state which there is disease transmission.
Similar to the general model (with endogenous reactivation and
exogenous reinfection), this particular case does not present
absorbing states of susceptible and recovered individuals.
Therefore, if there is, at least, an individual porting the
disease’s pathogen, the transmission persists in the stationary
regime.

We note that, for the stationary state E2, α = γ corresponds
to the state that the density of infected (y∗) and recovered
(z∗) individuals are equal to 0.5; in other words, half of the
population will have the pathogen of the disease in the steady
state. For α � γ , the density of infected individuals tends to
one (y∗ → 1) and the density of recovered individuals tends to
zero (z∗ → 0); for α � γ , the density of infected individuals
tends to zero (y∗ → 0) and the density of recovered individuals
tends to one (z∗ → 1).

Assuming positive values for rates α, β, and γ , the trivial
fixed point E0 is always a saddle point; the point E2,

FIG. 7. In the SIRI model (α = 0): the stationary density
of infected individuals ρ versus p (ρ × p) for a chain, with
γ = 0.05(t.u.)−1, x∗ = 0, and β = (1 − γ )/(1 + σ ), according to the
condition (2); (a) for SMFA (solid line) and PMFA (dotted line);
(b) for Monte Carlo simulations assuming ζ = 2 and different values
of L, L = 20, 40, 80, 160, 320, and 640, with the square symbol
corresponding to the last one.

corresponding to the state of disease activity, is asymptotically
stable.

We construct the phase diagram for the SMFA making the
change of variable

α = (1 − γ )/2 − p,

β = (1 − γ )/2 + p,

γ = γ, (14)

wherein the parameter p = (β − α)/2 is set in the range
[−1/2,1/2].

In this way, we can design the parameter space defined on
the surface R3 on a plane p × γ . In Fig. 8, we observe no
phase transition, i.e., the population remains in the endemic
state. Thus, the density of infected individuals is not zero, and
when t → ∞, the number of susceptible individuals goes to
zero.

062135-7



ALESSANDRO S. BARROS AND SUANI T. R. PINHO PHYSICAL REVIEW E 95, 062135 (2017)

FIG. 8. Phase diagram of the SIRI model (α �= 0 and σ = 0) for
the SMFA, wherein p = (β − α)/2.

B. PMFA (σ = 0)

Assuming σ = 0 in the system of Eq. (10), we obtain
infinite number of fixed points E = (x∗,y∗,u∗,v∗,w∗):

E =
(

x∗,D,0,0,
Dγ

α + γ

)
, ∀ x∗ �= 0, x∗ � 1 (15)

wherein D = α(1 − x∗)/(α + γ ).
We also obtain, for the pair approximation, that the steady

state does not depend on the coordination number ζ . This
behavior is due to the fact that the transition SI → II , that
depends on the neighborhood, for long time, ceases to occur,
remaining only the spontaneous transitions I → R and R → I .
Another difference in relation to the general case (σ �= 0 and
α �= 0) is that the trivial fixed point E0 = (1,0,0,0,0), which
is the absorbing state of susceptible, is a possible solution.

The fixed point trivial E0 will be stable if γ >

(ζ − 2β)/(2ζ ). Making the change of variable (14) and using
the condition (2), we have the critical threshold p in terms
of γ :

pc = 1
2 [γ − 1 + ζ (1 − 2γ )]. (16)

For a chain (ζ = 2) and a square lattice (ζ = 4), the critical
threshold is pc = (1 − 3γ )/2 and pc = (3 − 7γ )/2, respec-
tively, and the stability occurs for values of γ � α. Differently
from SMFA, in pairs we observe a transition between the
endemic and no transmission states, again assuming only
positive values for rates.

We construct the phase diagram doing the same change of
variable as in the SMFA. In Fig. 9, the phase diagram for pair
approximation is shown; for ζ = 2 there is a region of disease
activity that is inactive for ζ = 4 and vice versa.

V. DISCUSSION AND CONCLUDING REMARKS

We use the stochastic SIRI model to investigate the
reinfection effect for directly transmitted diseases. Based on
its master equation and the mean-field approximation analysis,
we conclude that the pair approximation leads to a phase
transition for the particular cases of exogenous reinfection

FIG. 9. Phase diagram of the SIRI model (α �= 0 and
σ = 0) for PMFA, wherein p = (β − α)/2; the lines pc =
1
2 [γ − 1 + ζ (1 − 2γ )] for ζ = 2 (solid line) and ζ = 4 (dotted line).

(endemic-epidemic) or endogenous reactivation (endemic–no
transmission). However, the phase transition is not observed
if both effects are taken into account together; keep only the
endemic state.

The phase diagram for α = 0 is very interesting since it
corresponds to a different phase diagram from the SIS to
SIR model; the control parameter p measures the net effect
of infection and reinfection. However, the endemic region is
larger for ζ = 4 than for ζ = 2. Still for α = 0, another very
interesting phase diagram is observed for one-site mean-field
approximation since there is a subregion of epidemic phase
that coexists with no transmission phase (no transmission due
to infection); its endemic region is larger than the endemic
region for one-site mean-field approximation.

For the exogenous reinfection effect, we set up the threshold
value of control parameter p, related the difference between the
primary infection and reinfection, for both SMFA and PMFA,
as well as for Monte Carlo simulations through the cumulant
analysis. The results emphasize that PMFA is much better
than SMFA to describe the dynamics of exogenous reinfection,
leading to a smaller value of p, that means a larger value of
reinfection parameter σ . Moreover, the arisen comparisons of
the SIRI model with the limit cases of SIR and SIS models
highlight its richness making evidence of the transition from
the epidemic to endemic phases: the reinfection increases the
peaks of outbreaks until the system reaches the endemic phase.
Besides, it also important that, for a fixed non-null reinfection
parameter, for any value of primary infection rate β, the
intensity of the epidemics or endemics is stronger than for
the limit cases, and its threshold values βth are smaller than its
values for the SIS and SIR models.

Concerning diseases such as tuberculosis that are typically
endemic, the SIRI model is able to describe the reinfection
effect. For both particular cases of exogenous reinfection and
endogenous reactivation, the endemic phase is identified for
lower values of both the recovered rate and the net result for
reinfection in relation to infection (0 < p < 1/2).
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The next step, still in the context of stochastic dynamics,
consists in adding a latent compartment in the SIRI model
called the exposed compartment, for which the individual
is infected, but not infectious. In order to describe diseases
with latent period in a more realist way, we intend to analyze
the susceptible, exposed, infected, and removed or recovered
(SEIRI

E) model assuming R → E transition by exogenous
reinfection and R → I transition by endogenous reactivation.
Thus, the SEIRI

E model should describe, in a more realistic
way, diseases with latency period, such as tuberculosis.

Another consequent perspective of this work is to investi-
gate situations for which SIRI model presents discontinuous
phase transitions as we have observed in Erdós-Renyi networks
when σ > 1 to describe the social contagions [17]. We
conjecture that the increasing propagation of ideas may mimic
the cooperative effect analogous to coinfections simulated by
the SIR model with two different probabilities of infection
[10,11] leading to abrupt transitions for Erdós-Renyi networks.
Therefore, we intend to perform a systematic analysis of the

SIRI model, for σ < 1 and σ > 1, on networks with different
topologies.

Finally, that analysis may be extended for d-dimensional
lattices with different values of d. As for the SIS model [28] and
SIR model [30], whose upper dimension to recover the critical
exponents of SMFA are, respectively, dMF = 4 and dMF = 6,
we expect that there is an upper dimension to characterize
the continuous phase transition of the SIRI model for α = 0
and σ < 1.
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