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ABSTRACT

Objective Externally validated pretest probability

models for risk stratification of subjects with chest pain
and suspected stable coronary artery disease (CAD),
determined through invasive coronary angiography or
coronary CT angiography, are analysed to characterise

the best validation procedures in terms of discriminatory
ability, predictive variables and method completeness.
Design Systematic review and meta-analysis.

Data sources Global Health (Ovid), Healthstar (Ovid) and
MEDLINE (Qvid) searched on 22 April 2020.

Eligibility criteria We included studies validating pretest
models for the first-line assessment of patients with chest
pain and suspected stable CAD. Reasons for exclusion:
acute coronary syndrome, unstable chest pain, a history of
myocardial infarction or previous revascularisation; models
referring to diagnostic procedures different from the usual
practices of the first-line assessment; univariable models;
lack of quantitative discrimination capability.

Methods Eligibility screening and review were performed
independently by all the authors. Disagreements were
resolved by consensus among all the authors. The quality
assessment of studies conforms to the Quality Assessment
of Diagnostic Accuracy Studies (QUADAS-2). A random
effects meta-analysis of area under the receiver operating
characteristic curve (AUC) values for each validated model
was performed.

Results 27 studies were included for a total of 15 models.
Besides age, sex and symptom typicality, other risk

factors are smoking, hypertension, diabetes mellitus and
dyslipidaemia. Only one model considers genetic profile. AUC
values range from 0.51 to 0.81. Significant heterogeneity
(p<0.003) was found in all but two cases (p>0.12). Values

of 1> >90% for most analyses and not significant meta-
regression results undermined relevant interpretations. A
detailed discussion of individual results was then carried out.
Conclusions We recommend a clearer statement of
endpoints, their consistent measurement both in the
derivation and validation phases, more comprehensive
validation analyses and the enhancement of threshold
validations to assess the effects of pretest models on
clinical management.

Strengths and limitations of this study

» This is the first meta-analysis summarising the most
up-to-date data on the discrimination capability of
pretest probability models of stable coronary artery
disease.

» The systematic review pays careful attention to the
whole validation procedures.

» The majority of included studies were considered to
be of high methodological quality.

» We considered pretest models developed in cohorts
of patients referred for an anatomical test.

» The meta-analyses have a low reliability due to the
small number of included studies and the very high
heterogeneity.

PROSPERO registration number CRD42019139388.

INTRODUCTION

The leading cause of mortality and morbidity
worldwide in 2019 was represented by
cardiovascular disease with 523 million prev-
alent cases and 18.6million deaths." Among
these, coronary artery disease (CAD) was
reported in 197million subjects and caused
9.14million deaths. Stable CAD is typically
caused by the build-up of plaques that limit
blood flow and is characterised by reversible
myocardial demand/supply mismatch usually
inducible by exercise, emotion or other stress,
and commonly associated with transient chest
pain (stable angina pectoris).*”

Stable CAD diagnosis is supported by
non-invasive functional and/or anatomical
testing,”” and invasive coronary angiography
(ICA).* To limit the risk of inappropriate
examinations and their consequences on
patients’ and healthcare professionals’ safety,
and economic sustainability of healthcare
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systems,”™ eligibility to diagnostic testing is established
through models that provide a risk stratification of
subjects based on a pretest probability (PTP) of CAD.
Since the introduction of the Diamond-Forrester model
(DFM)® and the Duke Clinical Score (DCS),’ several
alternative PTP models have been developed in cohorts
of patients referred for ICA or coronary CT angiography
(CCTA). Indeed, due to its very high sensitivity and nega-
tive predictive values, CCTA can substantially contribute
to ruling out CAD." The DFM and its more recent
updates have been recommended in guidelines for stable
symptomatic subjects.” " Recent debates within scientific
societies broach the question of the overestimation flaw
of such models. The UK National Institute for Health and
Care Excellence (NICE) has preferred no longer to resort
to a probabilistic risk-stratification approach and adopt
a simpler identification of anginal chest pain to decide
for further testing.'” The European Society of Cardiology
(ESC) updated guideline that determines PTPs from the
stratified prevalence of CAD in a contemporary cohort,
instead of recurring to a prediction model as in the past.
These new estimated risks are noticeably lower compared
with the previous ones and then underestimation of the
disease prevalence can be obtained in different popula-
tions."” US experts are debating on whether adopting the
NICE diagnostic approach or keeping on using PTP.'* °
To face the flaws on widely recognised PTP models high-
lighted by NICE and ESC, these organisations clearly
underline the need for more information on the various
risk factors acting as modifier of the PTP, especially in the
low probability range,'" and for the development and vali-
dation of new scores addressing outstanding uncertain-
ties in the estimation of the PTP of CAD."

This review provides several new contributions to the
actual debate on how to ameliorate the PTP models
developed for anatomically defined outcomes. It mainly
focuses on external validation,16 carries out a meta-
analysis to identify the best results and characterises the
best procedures in terms of discriminatory ability, signif-
icant predictive variables and method completeness.
By highlighting some key issues that could be further
improved on the development and validation phases, this
work aims at stimulating more rigorous procedures for
the comparison of different pretest models.

METHODS
This systematic review conforms to the Preferred
Reporting Items for Systematic Reviews and Meta-Analyses

statement.'’'®

Study inclusion and exclusion criteria

We identified studies that validated pretest models
intended for the first-line assessment of patients with chest
pain and a suspect of stable CAD. The disease was consid-
ered as a binary outcome determined through either ICA
or CCTA. Reasons for exclusion were: (1) acute coronary
syndrome, unstable chest pain, a history of myocardial

infarction or previous revascularisation; (2) models that
included a diagnostic procedure that does not reflect the
usual practices of the first-line assessment’ ''; (3) models
based on a single predictive variable; and (4) lack of
clearly stated discrimination capability. Unlike previous
works,'? external validation was primarily considered. We
also included internal validation but limited it to k£fold
cross-validation as a technique inspired by the same
purposes of external validation. Moreover, papers refer-
ring to machine learning (ML)-based PTP models have
been excluded as considered in a recent review focusing
on CAD diagnosis by ML with aims close to ours.*’

Only full papers were retained because other publica-
tions, for example, letters to editors, conference proceed-
ings, etc, are usually not assessed for study quality. Only
articles published in English and Italian were considered.

Searches

The databases Global Health (Ovid), Healthstar (Ovid)
and MEDLINE (Ovid) were systematically searched (CGL,
PM) on 22 April 2020 using several keywords including:
angina pectoris, chest pain, coronary artery disease, coro-
nary heart disease, coronary stenosis, stratification score,
likelihood function, predictive model, pre-test proba-
bility, coronary angiography, cardiac catheterisation and
computed tomography angiography. The same full elec-
tronic search strategy was applied to the three databases
(no filter was used), and is reported in online supple-
mental file 1c. Citation searches were also performed on
reference lists of definitively included studies.

Study selection

Eligibility screening was performed independently by all
the authors. Preliminary screening was performed using
Abstrackr®' based on title and abstract with each paper
assessed by two randomly assigned reviewers among the
authors. Selected papers were assessed based on full text.
Disagreements were resolved by consensus among all the
authors.

Data extraction strategy

A data collection form was developed by three authors
(AB, CGL, PM) and filled in by reviewers independently.
Each selected paper was assigned for data extraction to
the statistician (AB) and two randomly selected reviewers.
Correspondence with the authors of the included studies
was initiated if necessary. The reviewers worked inde-
pendently and in plenary session meetings. Disagree-
ments were resolved by consensus among all the authors.
AB, CGL and PM reviewed the final form for internal
consistency.

Study quality assessment

The quality assessment of included studies conforms to
QUADAS-2 and was performed by four reviewers (AB,
CGL, PM, MRT).? Due to the previously described
features (1-4), we considered that the eligible works did
not raise applicability concerns.
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Data synthesis and statistical analysis

The discriminative performances of prediction models
can be summarised using several methods and indices,
and the area under receiver operating characteristic
(ROC) curve (AUC) or c-statistics is certainly the best
known and more suitable.? Then, it has been chosen as
the main index for the purposes of this review. Sensitivity
and specificity also describe the discrimination capability
of the model for a given cut-off and thus provide an
indication of clinical usefulness. However, the bivariate
nature of this index is not suitable for direct comparisons
and then we resorted to the associated AUC.

For the purposes of generalisation of a PTP model
to populations that differ from the development popu-
lation study, the computation of performance indices
is not sufficient because a lower performance is usually
expected.'® ** Therefore, we also noted whether more
extended validation procedures were performed in order
to properly apply a model to new populations.

A random-effects meta-analysis of AUC values from vali-
dations of each identified model was performed using R
Statistical Software (R Project for Statistical Computing,
RRID:SCR_001905)% by meta® and auctestr®’ packages.
Meta-regression was planned to explore the possible
sources of unexplained heterogeneity by considering the
following factors: (1) sample size, (2) prevalence and (3)
anatomical test for outcome assessment.

Patient and public involvement
Patients and the public were not involved in this review.

RESULTS

Study selection

A total of 5711 studies were identified (three through
reference lists of included studies) and 2685 different
abstracts were screened. Out of the 71 relevant full-texts
assessed for eligibility, 27 were finally included (figure 1).

Study characteristics

Table 1 summarises the selected studies in terms of model
name, geographical location and population recruitment
criteria. Sometimes the same model is referenced with
different names across the papers, then table 1 indicates
the original name and the one we adopted here.

Studies are mainly conducted in North America® or
Europe.‘%_46

The updated DFM (uDFM) |28 3840 4250 o 1d the CAD
Consortium Clinical model (CADC-Clin)?® 3! 3439-42465051
are the most assessed models.

The quality of included studies is generally high due to
the specific review question and adopted eligible criteria.
Nevertheless, a risk of bias arises from a few specific issues.
A few validation studies® ** ¥ *3°! do not declare that they
enrolled only consecutive or random samples of patients.
With respect to the index test, only one work adopted an
optimal discriminating threshold in addition to prespeci-
fied ones.” Application of CCTA as a reference test yields

. e - 30313643 45 47 48 51 5
a risk of bias in many studies *% that do

not report measures against misclassification of the test
results. Finally, in four works,” * ** 5" patients did not
receive the same reference test for the diagnosis of stable
CAD. A graphical summary of the risk of bias is reported
in online supplemental file 3.

Predictive variables

As shown in table 2, the identified models can be classi-
fied into two broad classes: basic models, including the
DFM (based on age, sex and chest pain) and its updates,
and clinical models, including the DCS and the models
that extend the DFM by adding a few, mainly tradi-
tional,sg risk factors. Within this quite classic framework,
the Corus CAD model is distinguished by relating CAD to
patients without diabetes to the expression levels of a set
of genes. All the models were derived by logistic regres-
sion. Exceptions are: DFM, derived by a conditional prob-
ability analysis in the late 1970s; Corus CAD, obtained
through Ridge regression; CONFIRM score, developed
to predict adverse clinical events by fitting a Cox propor-
tional hazards model and subsequently validated for diag-
nosis of CAD.

Cross-validation® and split sample™ ** have been used
in a few cases only.

Predictors were classified into four macro-areas:
demography, medical history, clinical presentation/phys-
ical examination and biochemistry. The demographic
macro-area is present in all models with the variables
age and sex, while race is only included in the Expanded
clinical model and PROMISE Minimal Risk model. The
most used variables in the medical history macro-area are
diabetes mellitus and hypertension. The clinical presen-
tation/physical examination macro-area is present in all
but the Corus CAD models. Only the Corus CAD and
PROMISE Minimal Risk models do not include chest
pain. The most used variable in the biochemistry macro-
area is dyslipidaemia. The other risk factors are model
specific: gene expression (Corus CAD), oestrogen status
(Morise score), high-density lipoprotein cholesterol
(PROMISE Minimal Risk model) and the high-sensitivity
cardiac troponin (uUDFM-cTn).

Discrimination capability

All the papers presented ROC curves and/or AUC values.
In Adamson et al,'” fixed thresholds only were analysed
and the c-statistics associated with sensitivity and spec-
ificity reported. Table 3 reports the AUC values and
their 95% ClIs, while the summary of the meta-analyses
conducted for the models with more than one validation
is shown in figure 2, where models with a single validation
are also considered for the sake of completeness. To carry
out meta-analyses as complete as possible, the missing
information about the SE of estimated AUC values was
filled in by the ‘se_auc’ command of the auctestr package.
Then, the (Gaussian) 95% CIs are reported in table 3.
This computation only requires to know the study sample
size and the prevalence, and is as better as the size of the
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Figure 1 Flow diagram of the study selection process.

study is larger. For a small sample size, the computed SE
is generally larger than the exact one and then CIs are
more conservative. For only two papers, the conditions
for inclusion in the meta-analyses are not met.”*

AUC values range from 0.51*7 (almost failing) to
approximately 0.81°" (almost excellent). The statistical
heterogeneity of the AUC values among the studies
validating each PTP model was assessed by using the
Cochran Q test and the I? statistic.”* In all but two cases
(CONFIRM score and Morise score), a statistically signif-
icant heterogeneity has been obtained, as expected
(p<0.003). On the one hand, the lack of heterogeneity
is unreliable, due to the low number (<5) of included
studies and the low power of the Cochran Q) test. On the
other hand, significant heterogeneity exceeds 0.90 for
most analyses and even 0.95 undermining significant

interpretations (® and references therein). Then, in
the following the discussion of the pooled values is
complemented by a detailed discussion of the indi-
vidual results.

From the meta-analyses, uDFM-cITn and CONFIRM
show the best performances (AUC=0.757and pooled
AUC=0.7554, respectively). In slightly more detail, the
extension of uDFM with the use of high-sensitivity cardiac
troponin I (uDFM-cTn) has been validated in only one
population where it showed a significantly higher AUC
than uDFM alone (0.757 vs 0.738, p=0.025) and better
calibration (Hosmer-Lemeshow (HL) p=0.0001 vs HL
p=0.1123)." The substantially steady results of the
CONFIRM score on several data sets are also confirmed
on a validation data set consisting of subjects at the low
extreme of traditional cardiovascular risk factor burden.”
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DFM, its DFM/Coronary Artery Surgery Study (CASS)
version, uDFM and Morise score show the lowest pooled
AUC values <0.70. In slightly more detail, DFM/CASS
has the lowest pooled AUC value (0.61) due to the two
threshold-based validations reported in.*” By excluding
these values from the meta-analysis, the pooled AUC
value becomes closer to 0.70 (0.6861, 95% CI: 0.6312 to
0.7409) and heterogeneity decreases to a non-significant
level (I°=41.9%, p=0.19). With regard to the DFM and its
DFM/CASS version, overestimation is usually reported,
especially in women.*” However, the DFM’s inferior result
is also due to the fact that usually it was not carefully vali-
dated but only used as a usual reference model® *** or
as a basis to establish the performances of the Corus CAD
model.” ** ¥ The only deep validation is presented in *.
The Morise score and the Corus CAD are the only two
models explicitly considering a female-specific factor (the
oestrogen status and a sex-specific score, respectively):
when directly compared with the same validating popu-
lation, the Corus CAD had significantly higher AUC than
the Morise score (0.79 vs 0.65, p<0.001).35

The uDFM and the CADC-Clin are the two most vali-
dated models with completely different performances
(pooled AUC values: 0.6866 vs 0.7406). The uDFM
updated and extended the traditional DFM to a contem-
porary cohort that included subjects 70 years and older.
The CAD Consortium Basic model (CADC-Basic) can be
considered as a further update on a different contempo-
rary population (see table 2). The most complete valida-
tion of the uDFM, considering calibration-in-the-large,
recalibration and eventually re-estimation, has been
performed by the developers themselves* who obtained
a valid overall effect of predictors. The other validating
procedures limit themselves to AUC computation and to
a rough assessment of under/overestimation, mainly by
the HL goodness-of-fit test and related calibration plots
(calibration-in-the-large is applied in one study™).

The CADC-Clin model shows good performances on
validating populations by reaching estimated AUC values
even >0.80, and this high performance level is generally
confirmed in other validations by taking into account
estimation uncertainty (95% CIs including 0.80).% **
Moreover, its performances significantly improve with
respect to the related CADC-Basic.® > **°! The pooled
AUC value (0.7406) is only slightly lower than the highest
ones. It could even have been the best one if three highly
performing validations”® had presented all the data (ie,
SE) for their inclusion in the meta-analysis. The gener-
alisability of the CADC-Clin model to external popula-
tions was analysed by deep validation procedures.” ***! #°
Results on miscalibration analysis could be considered
quite consistent across papers. This finding indicates
smaller than expected effects of the diagnostic charac-
teristics, chest pain typicality in particular.’’ ***' Model
calibration can be worse in women compared with men,
a situation that also arises from the validation of other
models (eg, DFM*). Despite different pooled AUC
values, direct comparisons of either uDFM or CADC-Clin

uDFM-
cTn
Log

Log

PROMISE
Minimal
Risk model uDFM

Log

Morise
score
Score

derived derived by
alog

variable

HRA
score
Score
by a
multi
log

K-
score
0g

Expanded

clinical
model
score
Log

DFM/
CASS
o

Conditional
probability
analysis*

DCS DFM

Score derived Log

by a Ridge
regression

CORSCORE Corus CAD
Log

proportional

CONFIRM
hazards
models

score
Cox

Model/score
CADC-
Clin
Log

CADC-
Basic
Log

Predicting
CAD, coronary artery disease; CADC-Basic, CAD Consortium Basic model; CADC-Clin, CAD Consortium Clinical model; CASS, Coronary Artery Surgery Study; DCS, Duke Clinical Score; DFM, Diamond-Forrester (DF) model; HDL, high-density

*In Genders et al,*® to unravel the implicit coefficients of the predictors in this model, the authors performed a weighted linear regression on the log odds of the DF predictions per subgroup
lipoprotein; HRA, High Risk Anatomy; Log, logistic regression; MI, myocardial infarction; uDFM, updated DFM; uDFM-cTn, updated Diamond-Forrester model - high-sensitivity cardiac troponin.

Table 2 Continued
Macro model/
score categories variables

Derivation
method
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MODEL pooled AUC 95%ClI ?  Q-test p-value
CADC-Basic 0.7172 (0.6706, 0.7638) : —— . 90.3% <0.0001
CADC-Clin 0.7406 (0.7083, 0.7730) ' —e— 1 94.6% <0.0001
CONFIRM score 0.7554 (0.7459, 0.7648) ! PN © 0.40%  0.40
CORSCORE 0.727* (0.6836, 0.7704) ' e !
Corus® CAD 0.7196 (0.6625, 0.7766) , —_e— . 752%  0.0029
DCS 0.7233 (0.6868, 0.7597) | —e— . 93.7% <0.0001
DFM 0.6602 (0.6009, 0.7194) — 1 92.8% <0.0001
DFM/CASS 0.6089 (0.5255, 0.6922) ' N v 941% <0.0001
Expanded Clinical model 0.732* (0.6857, 0.7783) ' N '
HRA score 0.71* (0.69, 0.74) H o H
K score 0.712* (0.6536, 0.7704) 1 D 1
Morise score 0.6743 (0.6419, 0.7067) e 0% 092
PROMISE minimal risk model 0.713* (0.684, 0.742) ! o !
uDFM 0.6866 (0.6449, 0.7283) ! e 1 97.2% <0.0001
uDFM-cTn 0.757* (0.706, 0.808) : ——

0.5 0.85

Figure 2 Summary of the meta-analyses. Models that were validated by one study only are denoted by area under receiver
operating characteristic curve (AUC)* and a grey colour in the graphic. CAD, coronary artery disease; CADC-Basic, CAD
Consortium Basic model; CADC-Clin, CAD Consortium Clinical model; CASS, Coronary Artery Surgery Study; DCS, Duke
Clinical Score; DFM, Diamond-Forrester model; HRA, High Risk Anatomy; uDFM, updated DFM.

with the CONFIRM history-based score do not lead to a
clear evaluation of the advantages of one over the other
in terms of AUC,40 *2 while the CONFIRM score proves
to be better than the DFM.” Figures 3 and 4 show the
forest plot of the meta-analyses for uDFM and CADC-
Clin model, the two most validated models. The hetero-
geneity for the uDFM model is not significantly reduced
by removing the two threshold validations in Adamson et
al'” (1?=95% vs 1°=97.4%). For the uDFM and CADC-Clin
models, a meta-regression analysis was also conducted
which did not lead to any significant result.

The traditional DCS generally overestimates prevalence
and shows a lack of fit by the HL test. Moreover, miscal-
ibration results from a reduced effect of sex and chest
pain typicality and an increased effect of diabetes and
dyslipidaemia.”

The Corus CAD model stands out from the other
models because it defines an age-specific and sex-specific
gene expression score. Validation is performed by AUC
comparisons, HL test and additivity to DFM and other

models. The validation procedures show significant AUC
improvement when the score is added to other models
(eg, 0.81 vs 0.65 when added to Morise score, with non-
overlapping CIs™; 0.721 vs 0.663 when added to DFM,
p=0.003"; not shown in the table). Testing the Corus
CAD model on different data sets from an extension of
the original validation population provides results very
similar to the original ones.*’

Finally, the Minimal Risk model upsets the usual point
of view because it aims to directly identify patients with
chest pain and normal coronary arteries. Unfortunately,
the only other external validation published up to the
date of our search® cannot be considered here because
it was based on a former version of Fordyce et al’ that
included some computational errors.”

DISCUSSION
External validation is an indispensable tool for investi-
gating the generalisability of a PTP model to populations

Study AUC AUC 95%-Cl Weight
Adamson PD, 2018a [28]* - 0.51 [0.48;0.54] 6.9%
Adamson PD, 2018a [28]** == 0.59 [0.56;0.63] 6.8%
Adamson PD, 2018b [29] — 0.74 [0.68;0.80] 6.2%
Almeida J, 2016 [31] - 0.66 [0.64;0.69] 7.0%
Baskaran L, 2018 [32] P 0.77 [0.74;0.79] 6.9%
Bittencourt MS, 2016 [33] hoon 0.71 [0.69;0.74] 6.9%
Ferreira AM, 2016 [36] —a 0.70 [0.65;0.75] 6.5%
Genders TSS, 2011 [40] — 0.76 [0.71;0.81] 6.4%
Jensen JM, 2012 [44] . 0.71 [0.67;0.76] 6.6%
Rademaker AA, 2014 [48] —_— 0.61 [0.51;0.71] 5.0%
Winther S, 2019 [55] . 0.65 [0.62;0.68] 6.8%
Yang Y, 2015 [56] - 0.64 [0.62;0.66] 7.0%
Zhang Y, 2019 [57]-M : = 0.78 [0.76;0.80] 7.0%
Zhang Y, 2019 [57]-W : 3 0.68 [0.65;0.70] 6.9%
Zhou J, 2017 [58] 0.76 [0.75;0.78] 7.1%
Random effects model - 0.69 [0.64; 0.73] 100.0%

Heterogeneity: /2 = 97%, 12 = 0.0064, p <0.01 | T

04 05

T T T 1
06 07 08 0.9

Figure 3 Forest plot of the meta-analysis for the updated Diamond-Forrester model. *PROMISE trial; **SCOT-HEART trial.

AUC, area under receiver operating characteristic curve.
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Study

Almeida J, 2016 [31]
Baskaran L, 2018[32]
Bittencourt MS, 2016 [33]
Edlinger M, 2017 [35]
Ferreira AM, 2016 [36]
Genders TSS, 2018 [43]
Teressa G, 2018 [50]
Winther S, 2019 [55]
Zhou J, 2017 [58]

Random effects model

AUC AUC  95%-Cl Weight

—— 0.68 [0.66;0.70] 11.5%
- 0.79 [0.77;0.81] 11.4%

_— 0.79 [0.77;0.82] 11.3%

a2 0.69 [0.67;0.71] 11.8%
—_—— 0.73 [0.68;0.78] 9.5%
. E 0.72 [0.70;0.74] 11.5%
—— 0.80 [0.76;0.84] 10.4%

B E 0.69 [0.66;0.72] 10.8%
L 0.77 [0.76;0.79] 11.8%
_ 0.74 [0.71; 0.77] 100.0%

Heterogeneity: 1% = 95%, v° = 0.0023, p<0.01 I

0.6 0.65 0.7 0.75 0.8 0.85 0.9

Figure 4 Forest plot of the meta-analysis for the CAD Consortium Clinical model. AUC, area under receiver operating

characteristic curve; CAD, coronary artery disease.

that differ from the development population study. This
process can use different approaches, from the computa-
tion of indices to more complex procedures that aim at
understanding how the original model should adapt to
the new population. The papers included in this review
mainly relied on AUC. The advantage of this index lies
in being suitable both for individual evaluations and for
rigorous comparisons. However, the AUC is a summary:
only the whole ROC curve will allow evaluation of the
clinical usefulness of a test by showing the true positive
and false positive fractions that will be obtained for any
eventually chosen cut-off.

Most of the papers included in this review did not
provide a careful assessment of the discriminative perfor-
mances of the validated model with respect to a well-
defined threshold, but limited to compute sensitivity
and specificity with respect to the thresholds suggested
by either European or American guidelines. Studies on
the CAD Consortium models and the Corus CAD model
are exceptions. As far as the CAD Consortium models
are concerned, clinical usefulness is assessed at cut-offs
that vary from 5% to 20%. A cut-off of 14.75 (15 in subse-
quent works) was identified for the Corus CAD model
in the main work,” a value that corresponds to a disease
likelihood of 20% on a validation data set (positivity for
index <15). Notably, Corus CAD recently lost Medicare
coverage in the USA.” The very low AUC values obtained
by Adamson et al'” at the cut-off of 15% in the comparison
of the performance of major guidelines for the assessment
of stable chest pain including risk-based strategies are
representative of a general clinical protection approach
leading clinicians to prefer a very high sensitivity, which
of course implies low specificity.’ *!

Despite the fact that all the models are obtained by
regression techniques, which allow the interpretation of
the effect of the predictor on the outcome of interest, very
few papers” ** "' ¥ address a complete validation proce-
dure without rejecting a model after obtaining a poor
preliminary performance on the new population by some
test. Rather, a different model is developed, without any
further in-depth analysis of the failure reason. Regardless
of the quality of the new developed model, the lack of
adequate consideration of in-depth validation procedures

involves the loss of the information captured by the initial
study and hinders a deep understanding of how effect
size of relevant risk factors can change in a different
geographical or setting framework.** For instance, deep
validation procedures like miscalibration analysis allow
questioning the effect of chest pain typicality in different
data sets.” ***! This finding is consistent with what was
recently noted by Di Carli and Gupta®: angina remains
a common presenting symptom in a high proportion of
patients with cardiac condition who do not show obstruc-
tive lesions in their coronary angiograms.

The diagnostic question is central in the determination
of which diagnostic pathway and test is the most appro-
priate® ® and also affects statistical analysis. A carefully
defined outcome should be required to provide a reliable
basis for the evaluation of the effect of any predictive
variable.”* When referring to validation specifically, the
application of a statistical model to predict an outcome
different from the originally intended one raises some
concerns and, eventually, should be explicitly noted. In
data-driven models, the outcome definition in the popu-
lation study also influences predictor selection. Thus, a
small AUC value in the validation set does not necessarily
indicate a lower performance of the original model on
the new population. Instead, it suggests that the model
may not be appropriate for the context.””

Despite meta-regression not being able to statistically
assess the portion of heterogeneity explained by differ-
ences in sample size, prevalence and choice of the
anatomical reference test, differences between studies in
terms of the way the outcomes are defined and measured
contribute to the methodological heterogeneity we narra-
tively highlighted in this review.” *

The main strengths of this review were the large number
and high quality of included studies, the attention paid
to validation procedures, as well as to AUC values alone
and the careful consideration of different aspects yielding
heterogeneity, as well as statistical heterogeneity alone.

The study had limitations. Most studies mainly refer to
Western populations with a minority of studies referring to
Asian subjects (Japan, South Korea and China).*?%2% o7
Another limitation was that most of the studies did not
investigate the use of any threshold. Pooled AUC values
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from meta-analyses can provide only an approximate
summary of the discrimination capacity of most of the
models, due to the low number of validating studies. This
also affects the analysis of heterogeneity due to the low
power of the test, and the feasibility of meta-regression.”
Although the focus of our meta-analysis was not a measure
of an intervention effect, the meta-analysis was limited in
the consideration of other possible sources of hetero-
geneity, mainly clinical like mean age or proportion of
women. However, a multivariable analysis considering
all the study-related variables together would have been
unreliable, due to the low number of validations for most
of the models.

Finally, in this review, we only considered pretest
models developed in cohorts of patients referred for ICA
or CCTA. Our choice was determined by main guide-
lines and traditional, well-established models. However,
the need of models that are able to predict functionally
significant CAD has been underlined,” for prognostic
purposes as well. Nevertheless, how these alternative
models could be used in a risk-stratification approach to
guide further patient—clinician decision-making has not
been assessed yet.

CONCLUSIONS

Several agencies and scientific organisations empha-
sise the need for increasing the knowledge on how the
prediction of the disease can be modified according to
the risk factors present in any specific study population
or, possibly, in any particular patient. This would indeed
improve the precision of the estimated clinical likelihood
of CAD. However, the increasing availability of large data
sets and the highly improved computational power seem
to have directed large part of recent researches towards
model development rather than model validation.'® First
of all, our review makes an important selection among
the many developed models by mainly considering
those externally validated. Then, it provides insights
into the effects of traditional and emerging risk factors,
biomarkers and comorbidities on the PTP of obstructive
CAD. Finally, our findings lead to the following important
recommendations. To achieve a more robust exploitation
of PTP models in decision-making processes, significant
endpoints should be more clearly stated and consistently
measured both in the derivation and validation phases.
In addition, more comprehensive validation analyses
should be adopted to understand model weaknesses and
variations. Finally, increased efforts are still needed to
threshold validation and to analyse the effect of PTP on
clinical management.
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