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Abstract

Rotavirus (RV) vaccine efficacy is significantly reduced in lower- and middle-income coun-

tries (LMICs) compared to high-income countries. This review summarizes current research

into the mechanisms behind this phenomenon, with a particular focus on the evidence that

maternal antibody (matAb) interference is a contributing factor to this disparity. All RV vac-

cines currently in use are orally administered, live-attenuated virus vaccines that replicate in

the infant gut, which leaves their efficacy potentially impacted by both placentally transferred

immunoglobulin G (IgG) and mucosal IgA Abs conferred via breast milk. Observational stud-

ies of cohorts in LMICs demonstrated an inverse correlation between matAb titers, both in

serum and breast milk, and infant responses to RV vaccination. However, a causal link

between maternal humoral immunity and reduced RV vaccine efficacy in infants has yet to

be definitively established, partially due to limitations in current animal models of RV dis-

ease. The characteristics of Abs mediating interference and the mechanism(s) involved

have yet to be determined, and these may differ from mechanisms of matAb interference for

parenterally administered vaccines due to the contribution of mucosal immunity conferred

via breast milk. Increased vaccine doses and later age of vaccine administration have been

strategies applied to overcome matAb interference, but these approaches are difficult to

safely implement in the setting of RV vaccination in LMICs. Ultimately, the development of

relevant animal models of matAb interference is needed to determine what alternative

approaches or vaccine designs can safely and effectively overcome matAb interference of

infant RV vaccination.

Rotavirus vaccine efficacy is reduced in lower- and middle-income

countries (LMICs)

Despite the development of effective vaccines, which have reduced rotavirus (RV)-related

morbidity and mortality by 67% [1], RV is still one of the most common causes of diarrheal

disease in childhood [1,2]. There are currently 4 vaccines endorsed by the World Health
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Organization (WHO) to prevent RV-induced gastroenteritis: Rotarix, Rotateq, Rotavac,

and RotaSiil, but only Rotarix and Rotateq are widely used globally [3]. These vaccines are

orally administered, live-attenuated formulations, each containing different human and/or

bovine serotypes of RV (Table 1). In first-world countries, RV vaccines are highly effica-

cious (80% to 90%), but in LMICs, efficacy plummets to 40% to 60% [4,5]. Due to this dis-

parity in vaccine efficacy, RV infections still cause significant morbidity and mortality in

LMICs [2].

Several reasons for low RV vaccine efficacy in LMICs have been proposed, including higher

RV exposure, greater diversity of RV G and P serotypes, malnutrition, microbiome composi-

tion, maturation stage of the immune system, reduced vaccine replication due to other enteric

pathogens, coadministration of the oral polio virus vaccine, different expression of histo-blood

group antigens, skewed T helper 1 (Th1)/T helper 2 (Th2) balance and antibody response to

vaccination, and higher incidence of maternal antibody (matAb) interference [15–18]. While

it is likely that multiple factors contribute to the reduced RV vaccine efficacy observed in

LMICs, matAb interference is likely a major contributor due to greater RV exposure, leading

to greater maternal immunity, and higher rates and longer duration of breastfeeding in LMICs

[19–21]. This review focuses on current evidence supporting matAb interference as a contrib-

utor, remaining questions, and proposed modifications to increase the efficacy of current vac-

cine regimens.

Evidence supports matAb interference as a mechanism of reduced

RV vaccine efficacy

MatAbs are transferred to the infant via 2 distinct routes: (1) placental transfer of immuno-

globulin G (IgG) into infant circulation; and (2) breast milk transfer of primarily IgA into the

infant gastrointestinal tract [22,23]. Most studies investigating the role of matAb interference

focus on placentally transferred IgG [24]. However, evidence from both population-level

observational and animal modeling studies suggest that breast milk–derived matAb also inter-

feres with RV vaccine efficacy [10,25,26].

Rotavac is a recently developed RV vaccine derived from a naturally attenuated and reas-

sorted neonatal RV strain (116E). A clinical trial of this vaccine in Indian infants identified a

significant inverse relationship between RV-specific maternal IgG and infant Rotavac vaccine

responses. However, matAb inhibition was overcome by increasing the vaccine dose [10].

While the Rotavac trial did not investigate breast milk Abs as a contributor to matAb interfer-

ence, modeling of RV infection using the murine RV strain Epizoonotic Diarrhea of Infant

Mice (EDIM) showed that seropositive BALB/c dams conferred Abs to their pups, primarily

through breastfeeding, which impaired pups’ immune responses to live RV inoculation [26].

Table 1. Current RV vaccines.

Vaccine Developer WHO

prequalified

Composition matAb interference

reported?

RotaTeq Merck (United States) 2008 Pentavalent human–bovine reassortant G1–G4 and P[6] [7] Yes [8]

Rotarix GlaxoSmithKline (Belgium) 2009 Monovalent human G1P[6] [6] Yes [9]

Rotavac Bharat Biotech (India) 2018 Monovalent human–bovine reassortant G9P[10] [3,11] Yes [10]

Rotasiil Serum Institute of India

(India)

2018 Thermostable pentavalent human-bovine reassortant G1, G2, G3, G4, and

G9 [12–14]

Noa

aNo references indicating matAb does or does not interfere.

RV, rotavirus; WHO, World Health Organization.

https://doi.org/10.1371/journal.ppat.1009010.t001
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These findings concur with studies of human cohorts in developing countries, such as Zambia

and Vietnam, where babies of mothers with higher titers of anti-RV Abs in breast milk tend to

have reduced responses to RV vaccines [9,20]. These observational studies demonstrate a con-

sistent association between maternal humoral immunity, including both serum IgG and

mucosal IgA, and infant responses to RV vaccines.

Establishing a causal link between matAb interference and low RV

vaccine efficacy in LMICs and defining mechanisms

While observational studies in animal and human populations have established a link between

maternal immunity and infant vaccine efficacy, mechanistic studies demonstrating that

matAb interference causes a reduction in RV vaccine efficacy are still needed. Previous studies

have demonstrated an inverse correlation between serum and breast milk matAb titers and

infant responses [9,27], but these studies do not isolate this effect to matAb alone. Further,

there are several RV G/P serotypes in circulation [28], and maternal exposure to certain sero-

types may impact the degree of matAb interference observed, depending on the level of cross-

reactivity of matAbs between wild-type RV strains and attenuated vaccine viruses. There are

many other potential immune factors conferred from mother to child that may inhibit infant

vaccine responses. One study of Zambian children found that lactadherin, an antiviral glyco-

protein present in breast milk, negatively associated with infant seroconversion after vaccina-

tion with Rotarix [29]. Additionally, genetic host factors, such as expression of histo-blood

group antigens, a cellular receptor for RV, may also influence RV vaccine efficacy and suscepti-

bility to disease [30–33]. Thus, studies in which matAb can be isolated as a variable are needed

to establish a causal link to reduced RV vaccine efficacy. A major impediment to such studies

is the difficulty in modeling human RV infection in animal models due to the limited host

range of RVs [34].

Several mechanisms have been proposed for IgG-mediated matAb interference against dif-

ferent viruses, including neutralization of live-attenuated vaccines, epitope masking, cross-

linking of B cell receptors (BCRs) and inhibitory Fcγ receptor IIB (FcγRIIB), vaccine antigen

removal via antibody-mediated phagocytosis, and downstream inhibition of B cell differentia-

tion into plasma or memory B cells (Fig 1) [24,35]. A study of maternal IgG-mediated interfer-

ence to measles live-attenuated vaccination in the cotton rat model demonstrated that

nonneutralizing monoclonal Abs mediated interference, while neutralizing monoclonal Abs

did not [36]. This study also indicated that the fragment crystallizable (Fc) region is necessary

to inhibit Ab responses to vaccination and that this inhibition is due to interaction with

FcγRIIB [36]. However, studies in mice utilizing sheep red blood cells as a model antigen have

supported epitope masking as a mechanism mediating this inhibition of B cell responses [37–

39]. Notably, one study demonstrated that interference occurs in FcγR-deficient mice, demon-

strating that BCR–FcγRIIB is not the sole mechanism of B cell inhibition in the presence of

preexisting Ab [39]. Interestingly, RV Abs targeting the middle capsid layer (VP6), which have

traditionally been considered nonneutralizing, are capable of intracellular neutralization, sug-

gesting that the impact of such maternal Abs on neonatal vaccine efficacy may not be limited

to Fc-mediated “nonneutralizing” effector functions [40]. In another recent study using influ-

enza hemagglutinin as a model antigen, researchers found that matAbs do not impact germi-

nal center formation but modulate which antigens are targeted by infant B cells and, in a dose-

dependent manner, inhibit B cell differentiation of plasma and memory B cells through an

undefined mechanism [35]. Together, these results suggest that multiple mechanisms may

contribute to matAb-mediated inhibition of infant vaccine responses, possibly in an antigen-

dependent manner.
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Fig 1. matAb interference to infant RV vaccines [41]. (A) Placentally transferred IgG (red curve) begins reaching the infant as early as 8 weeks of gestation and peaks at

term, approximately 40 weeks [22,42]. Maternally derived IgG wanes in the infant over 12 months after birth [24]. Breast-fed infants receive Abs, primarily IgA, through

breast milk, which peaks in colostrum at a concentration of approximately 12 mg/mL and maintains approximately 1 mg/mL in mature milk (light blue curve) [23].

However, due to the volume of milk consumed by the infant, the absolute amount of matAb transferred via breast milk increases over time until the child can start getting

energy from other kinds of food (dark blue curve) [43]. RV vaccination typically occurs in 2 to 3 doses when the infant is 2 to 6 months old, as indicated by the black

arrows [44]. In breast-fed infants, both types of matAb are present at the time of RV vaccination. (B) RV vaccines are orally administered live-attenuated viruses, which

rely on replication in infant enterocytes to elicit a robust immune response. Microfold (M) cells sample antigens from the gut lumen and present them to antigen-

presenting cells, which stimulate the adaptive immune response in Peyer’s patches [45]. In the presence of matAbs, several mechanisms have been proposed for reduction

of infant immune responses to RV vaccination, including (1) inhibition of vaccine virus replication in enterocytes by matAb neutralization; (2) removal of vaccine antigen

by antibody-mediated phagocytosis; (3) inhibition of infant B cell activation by cross-linking BCRs with inhibitory FcγRIIB; (4) epitope masking, which inhibits infant Ab

responses by hiding recognizable antigens from infant B cells, which may also shift B cell responses toward nonimmunodominant epitopes; and (5) impacting

downstream differentiation of B cells into plasma cells or memory B cells [24,35]. Ab, antibody; BCR, B cell receptor; FcγRIIB, Fcγ receptor IIB; IgA, immunoglobulin A;

IgG, immunoglobulin G; matAb, maternal antibody; RV, rotavirus.

https://doi.org/10.1371/journal.ppat.1009010.g001
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RV vaccines are orally administered, so they may also be affected by Abs at the intestinal

mucosa, primarily IgA delivered to the infant via breast milk. Notably, IgA-mediated interfer-

ence may not follow the same mechanism(s) as IgG-mediated interference due to differences

in Fc characteristics. Additionally, it is noteworthy that while breast milk contains mostly IgA

Abs, breast milk IgG Abs are present and can be transported to the lamina propria and into

circulation [46,47]. However, studies in multiple LMIC populations have shown that abstain-

ing from breastfeeding for a period before and after RV vaccination does not change serocon-

version rates [48–51]. The ineffectiveness of breastfeeding timing on RV vaccination may

indicate that circulating, rather than breast milk, maternal IgG is the primary mediator of the

interference. Further and more in-depth evaluation of Ab characteristics and the relative con-

tribution of serum IgG and breast milk IgA would be informative for design and evaluation of

strategies to overcome matAb interference.

Potential solutions for matAb interference to RV vaccines

Several strategies can help circumvent matAb interference, but each comes with its own risks.

RV vaccination is associated with a slightly increased risk of intussusception, which is gener-

ally outweighed by the immense benefit of reduction in morbidity and mortality, but must be

considered when evaluating alternative vaccination strategies [52]. For example, while increas-

ing the vaccine antigen dose may overcome matAb interference [10], a matAb-exceeding dose

could also lead to pathology due to excessive replication of live vaccine virus or an improper

immune response. This approach was previously tested using a live-attenuated measles vac-

cine, which induced some protection in the presence of maternal IgG but also resulted in

increased infant mortality, especially in girls, who tended to have less maternal IgG compared

to boys [24,53–55]. Serology testing to quantitate preexisting Ab before vaccination is not fea-

sible in LMICs, so it would not be possible to adjust the antigen dose based on matAb level,

which would be an ideal compromise to improve the safety of this approach.

Another alternative strategy is changing the timing of vaccination to wait until matAb levels

in the infant wane. The measles vaccine follows this strategy as administration after 9 months

of age demonstrated reduction of matAb interference [56]. However, later vaccination can also

pose a significant risk because it leaves the infant more vulnerable during the period before

vaccination when matAb levels are low, which is an important consideration in LMICs with

greater RV exposure [19]. However, passive immunotherapy of a breast milk–targeted anti-

body delivered to the mother may keep mucosal matAb at a protective level until vaccination

at a later age. Thus, additional studies are needed to determine the age when RV-specific

matAbs have waned enough to achieve successful vaccination without increasing mortality

due to RV exposure prior to vaccination. However, the risk of intussusception after RV vacci-

nation increases with infant age, so vaccinating later may not be a viable strategy [57,58]. Nota-

bly, a trial in Indonesia of the RV3-BB vaccine formulation (G3P[7], not currently endorsed

by WHO) demonstrated better efficacy when the 3-dose series was administered earlier in life,

starting at birth (75%) rather than at 8 weeks old (51%) [59]. This suggests that better efficacy

can be achieved by vaccinating earlier in life and may circumvent the additional intussuscep-

tion risk associated with RV vaccination in older infants.

Vaccine formulation other than oral exposure to live-attenuated virus is another potential

alternative. For example, a recombinant, truncated VP4 protein was more immunogenic than

live-attenuated formulations and was not inhibited in the presence of matAb in a mouse

model [26]. However, the efficacy of nonreplicating RV vaccines needs to be further validated

with challenge studies using human RV strains. Additionally, a nonreplicating vaccine formu-

lation does not guarantee better infant vaccine response. For example, in a gnotobiotic piglet
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model of human RV disease, boosting an oral live-attenuated vaccine with RV-like particles

resulted in suppression of effector and memory B cell responses [60]. Furthermore, there are

several protein vaccines whose efficacies are affected by matAb interference, including tetanus

and hepatitis B vaccines [24].

Another potential alternative to oral live-attenuated RV vaccines is a viral-vectored vaccine

designed for long-term antigen expression. Continuous expression of antigen through vec-

tored expression, administered early to release antigen for a longer period, could stimulate the

infant immune system after matAbs drop to a noninterfering level [24,61]. However, gene

therapy approaches are held to a higher safety standard due to the potential of vector integra-

tion into the genome [62], and further investigation is needed to determine if such an

approach would be effective in the context of RV vaccination. While there are several possible

approaches, further investigation is needed to determine if their ability to overcome matAb

interference outweighs the risks to the infant.

Prospects for overcoming matAb interference to infant RV

vaccination

Effective RV vaccines currently exist, but efficacy of these vaccines is significantly reduced in

LMICs. While many factors likely contribute to this reduction in efficacy, matAb interference

is clearly associated with reduced vaccine efficacy, but further study is needed to isolate matAb

interference as a contributing factor and fully establish a causal link. Mechanisms of matAb

interference to orally administered RV vaccines may differ from those observed in other vac-

cines due to the importance of mucosal immunity and the potential for breast milk Abs to con-

tribute to interference. Defining the mechanisms of matAb interference in this context will

greatly inform alternative vaccination strategies to avoid or overcome matAb interference.

Several alternative vaccination strategies have been proposed to reduce matAb interference,

but these require further testing to determine the relative safety. Thus, more research into

mechanisms of RV vaccine matAb interference and the safety and efficacy of alternative vacci-

nation strategies is needed to ultimately achieve improved RV vaccine efficacy in LMICs and

further reduce mortality from the leading diarrheal disease worldwide.
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