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Abstract
Nonsystematically collected, a.k.a. opportunistic, species observations are accumulat-
ing at a high rate in biodiversity databases. Occupancy models have arisen as the main 
tool to reduce effects of limited knowledge about effort in analyses of opportunistic 
data. These models are generally using long closure periods (e.g., breeding season) for 
the estimation of probability of detection and occurrence. Here, we use the fact that 
multiple opportunistic observations in biodiversity databases may be available even 
within days (e.g., at popular birding localities) to reduce the closure period to 1 day in 
order to estimate daily occupancies within the breeding season. We use a hierarchical 
dynamic occupancy model for daily visits to analyze opportunistic observations of 71 
species from nine wetlands during 10 years. Our model derives measures of seasonal 
site use within seasons from estimates of daily occupancy. Comparing results from our 
“seasonal site use model” to results from a traditional annual occupancy model (using 
a closure criterion of 2 months or more) showed that our model provides more de-
tailed biologically relevant information. For example, when the aim is to analyze occur-
rences of breeding species, an annual occupancy model will over- estimate site use of 
species with temporary occurrences (e.g., migrants passing by, single itinerary pros-
pecting individuals) as even a single observation during the closure period will be 
viewed as an occupancy. Alternatively, our model produces estimates of the extent to 
which sites are actually used. Model validation based on simulated data confirmed that 
our model is robust to changes and variability in sampling effort and species detecta-
bility. We conclude that more information can be gained from opportunistic data with 
multiple replicates (e.g., several reports per day almost every day) by reducing the time 
window of the closure criterion to acquire estimates of occupancies within seasons.

K E Y W O R D S
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1  | INTRODUCTION

The occupancy of sites by species is a fundamental entity in macro-
ecology, landscape ecology, and metapopulation ecology (Hanski, 

1999; Royle & Dorazio, 2008). From a practical perspective, the 
probability of occurrence of a species is a commonly used measure of 
habitat suitability (Boyce & McDonald, 1999) and knowing the distri-
bution of a species is basic knowledge needed to make management 

www.ecolevol.org
http://orcid.org/0000-0001-7681-2812
http://creativecommons.org/licenses/by/4.0/
mailto:aleruete@gmail.com


     |  5633RUETE ET al.

decisions. Knowledge about the occurrence of species can be gained 
from systematic surveys where detection/nondetection data of 
species is recorded (MacKenzie et al., 2006), but also from nonsys-
tematically collected (a.k.a. opportunistic) species observations that 
are accumulating at a high rate in biodiversity databases (especially 
for birds; Graham, Ferrier, Huettman, Moritz, & Peterson, 2004). 
Opportunistic data offer benefits in the form of a wide coverage at 
spatial and temporal scales (Suarez & Tsutsui, 2004) and often a large 
number of repeated observations. However, opportunistic data are 
not collected in a standardized way and there are several potential 
sources of bias (Lukyanenko, Parsons, & Wiersma, 2016); absences of 
species are often not available as nondetections are frequently not 
reported, and corrections for variation in sampling effort are needed 
(Szabo, Vesk, Baxter, & Possingham, 2010). Other issues include spa-
tial biases (e.g., more reports close to where people live: Fernández 
& Nakamura, 2015; Mair & Ruete, 2016), trends in recording inten-
sity (Jeppsson, Lindhe, Gärdenfors, & Forslund, 2010; Snäll, Forslund, 
Jeppsson, Lindhe, & O’Hara, 2014), and differential recording rates 
among species (Jeppsson et al., 2010; Snäll, Kindvall, Nilsson, & Pärt, 
2011) that makes it difficult to compare distribution, occupancy, or 
abundance patterns among species. These biases have to be consid-
ered when analyzing opportunistic data in order to reduce the risk of 
inferring spurious patterns (Isaac, van Strien, August, de Zeeuw, & Roy, 
2014; van Strien, van Swaay, & Termaat, 2013).

Occupancy models are popular in ecology because they enable 
disentangling the occurrence status from the probability of detection 
(Kéry, 2010; MacKenzie et al., 2006; Royle & Dorazio, 2008). These 
models require replicated data on the detection or nondetection of spe-
cies at multiple sites within a period for which the sites can be assumed 
closed to colonization and extinction in order to estimate both probabil-
ity of occupancy and probability of detection (MacKenzie et al., 2006).

Occupancy models were quickly adapted to deal with variation in 
recording effort in opportunistic citizen- science data (van Strien et al., 
2013). Recently, Isaac et al. (2014) highlighted the usefulness of apply-
ing occupancy models to opportunistic data, including measures of ef-
fort to partly overcome the problems with several sources of sampling 
bias. A common approach is to construct absences of species by com-
piling species lists for individual observers visiting sites. The length of 
species lists corresponding to observer visits to specific sites is then 
used as covariates for detection probability, as a proxy for sampling 
effort and tendency to report species (Isaac et al., 2014; van Strien 
et al., 2013; Szabo et al., 2010).

So far, in order to gather sufficient replicate visits per sample unit 
(space and time units) to get robust estimates of occupancy probabil-
ities, ecologist has defined appropriate grid square sizes (e.g., 1 km2; 
van Strien et al., 2013; or 100 km2; Kamp, Oppel, Heldbjerg, Nyegaard, 
& Donald, 2016) or selected habitat patches (Cruickshank, Ozgul, 
Zumbach, & Schmidt, 2016) and closure periods, often a breeding 
season of 2 months or more (Cruickshank et al., 2016; Kamp et al., 
2016; Kendall, Hines, Nichols, & Grant, 2013; van Strien et al., 2013). 
In such an annual occupancy model, occupancy is then defined as the 
proportion of occupied sites or grid squares at a landscape or regional 
scale during each season. Some previous studies relaxed the closure 

assumption by defining the period over which the species is available for 
detection (Kendall et al., 2013; Roth, Strebel, & Amrhein, 2014), but still 
assume that the species is always present during a consecutive period 
within the season and is still restricted to few (e.g., 1- 4) sampling peri-
ods within the season. In this way, short- term dynamics in site use (e.g., 
as stop- over for migratory individuals; vagrants) will be oversimplified.

For some taxonomic groups, such as birds, there are often multiple 
opportunistic observations reported within very short time windows 
at certain sites. For example, at especially popular birding localities, 
many different observers visit and report birds within the same day. 
Using frequent reports to narrow down the length of closure periods 
in occupancy models of opportunistic observations may enable us to 
address more detailed questions about within- season population dy-
namics, as well as investigating how such dynamics change over time 
within biologically relevant spatial units holding subpopulations. For 
example, using a daily closure period, we could estimate the number 
of days during the season for which a site is being used, which may be 
more informative than a binary annual occupancy only providing infor-
mation about whether or not the species was present in a given year. 
Here, we define “site use” sensu lato, that is, including stop- overs, daily 
feeding, etc. in order to keep the term occupancy to be defined for the 
season or year as has been performed so far in the literature. Then, 
occupancy can be summarized per season including criteria based on 
each species biology, and a seasonal site use model could potentially 
help to disentangle whether the species is using a site as a stop- over 
or as a breeding site, and between- year variation and trends can be 
estimated for individual sites.

Here, we introduce a seasonal site use model that exploits data- 
rich opportunistic citizen- science databases (e.g., GBIF www.gbif.org; 
Swedish Species Gateway www.artportalen.se) to narrow down the 
within- season closure assumption to within- day closure. The model is 
based on a dynamic, daily colonization- extinction occupancy submodel 
within each season that copes with known sources of bias in opportu-
nistic data. We use the model to analyze opportunistic reports from 
citizen- science data of 71 wetland bird species from nine wetlands 
collected during 2005- 2014 to estimate species- specific patterns in 
site use within and between seasons. Then, we compare patterns of 
dynamics produced by our seasonal site use model based on daily oc-
cupancy estimates to the patterns of dynamics produced by the annual 
occupancy model with a 3 months closure period. To validate and fur-
ther test to what extent our model is able to correct for variation in 
effort and reporting, we simulate data under nine scenarios displaying 
different patterns in expected levels of occupancy and temporal trends 
in persistence/colonization rates, number of visits per day and in de-
tection probabilities (see Table 1). With this, we investigate whether 
model predictions were sensitive to systematic biases in the data.

2  | MATERIALS AND METHODS

2.1 | Observational data for wetland bird species

We obtained a total of 39,384 observations of 71 wetland bird 
species (Table S1) from nine wetland sites (Table S2 and Fig. S1) in 
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Uppland Province, Sweden, recorded between April 1 and June 30 
over the years 2005–2014. Data were obtained via the Swedish 
Species Gateway (www.artportalen.se), a national gateway for stor-
age of mainly voluntarily reported (opportunistic) biodiversity data. 
The selected wetland bird species are mainly migratory species that 
are nesting or foraging in the wetlands (including open waters, reeds, 
meadows, and areas adjacent to the wetlands) during the investigated 
time period. The species include swans, ducks, geese, waders, gulls, 
terns, and passerine birds associated with wetlands and surround-
ing wet grasslands. Nomenclature follows the dynamic taxonomic 
database of the organisms of Sweden (http://www.slu.se/dyntaxa). 
Subspecies were not analyzed, and observations with uncertain spe-
cies determination were excluded from the analyses.

2.1.1 | Nondetection Records

Each observation consisted of a report of a single species, but there 
was no information about species that were not seen. In order to con-
struct artificial data on nondetections, we first considered each unique 
observer reporting at least one species at a site on a specific day to 
constitute a replicate visit within that day, following Kéry, Gardner, 
and Monnerat (2010) and van Strien, Termaat, Groenendijk, Mensing, 
and Kéry (2010). Then, for each visit j, in day d, year t, and site i, any 
observation of the focal species was considered as a detection if the 
species was reported during the visit (yj,d,t,i = 1) and as a nondetection 
if it was not reported (yj,d,t,i = 0). A nondetection then corresponds to 
the focal species not being reported by an observer reporting at least 
one other species at the wetland in that day. This procedure was re-
peated for all study species. Observations were recorded as “miss-
ing value” for days and sites without visits (i.e., when no observations 
were reported from the site in that day).

2.1.2 | List length as a proxy for effort

We calculated the length of the list of observed species for each visit 
(Species List Length; SLL hereafter), later to be used as a measure of 
effort (Szabo et al., 2010). For computational reasons, we restricted 
the maximum number of visits to 40 per day and site, prioritizing vis-
its with the longest species lists. SLLs ranged from 1 to 45 species. 

Around 60% of all visits consisted of single observations (SLL = 1), 
although this proportion decreased over time (Fig. 1). In Fig. S3, we 
compare the results of the model using the full dataset and only visits 
with long species lists (SLL ≥ 10).

2.2 | Seasonal site use model: Daily site occupancies 
using daily- based replicated observations

For each species, we use a dynamic state- space occupancy model 
(MacKenzie et al., 2006; van Strien et al., 2013) to estimate daily 
occurrence status, adjusted for detection and reporting probability 
(hereafter simply called detection probability). The occupancy model 
consists of two submodels coupled hierarchically: a process model (for 
the daily occurrence status) and an observation model (for the sto-
chasticity of species detections); the latter being conditional on the 
process submodel. In this way, each observation yj,d,t,i is modeled as.

where ud,t,i is the (binary) occurrence status of the species in day d, 
year t, and site i, and pj,d,t,i is the detection probability of the species 
in each visit j, given that the species is present. The occurrence status 
u depends on the occurrence probability ψ per day d, year t, and site 
i recursively through:

Thus, whether site i that is occupied in day d− 1 is still occupied 
in day d is determined by the persistence probability (φ), whereas 
whether site i that is unoccupied in day d− 1 is occupied in day d 
depends on the colonization probability (γ). Because we expect per-
sistence and colonization probabilities to vary along the season, we 
further modeled these parameters as

(1)yj,d,t,i∼Bernoulli
(

ud,t,i×pj,d,t,i
)

(2)ud,t,i∼Bernoulli
(

ψd,t,i

)

,

(3)ψd,t,i=ud−1,t,i×φd−1,t,i+ (1−ud−1,t,i)×γd−1,t,i,

(4)
probit

(

φd−1,t,i

)

=pCoef1+pCoef2×JDayd−1+pCoef3×JDay
2

d−1

+ϵpIi+ϵpTt,

(5)
probit

(

γd−1,t,i

)

=gCoef1+gCoef2×JDayd−1+gCoef3×JDay
2

d−1

+ϵgIi+ϵgTt,

Scenario Occupancy Level
Trend in 
Occupancy No. of visits Detection probability

1 High None Constant Observed

2 Medium None Constant Observed

3 Low None Constant Observed

4 Medium Positive Constant Observed

5 Medium Negative Constant Observed

6 Medium None Positive trend Observed

7 Medium None Negative trend Observed

8 Medium None Constant Positive

9 Medium None Constant Negative

TABLE  1 Description of the nine 
simulated datasets (scenarios), each 
featuring a known combination of patterns 
in occupancy levels and sampling effort

http://www.artportalen.se
http://www.slu.se/dyntaxa
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where JDay is the Julian date. We modeled the effect of the Julian 
date as a quadratic function to allow the colonization and persistence 
parameters to increase, decrease, or both within the season. In this 
way, the model may be suitable for a wider range of species with dif-
ferent phenology. We also added random effects for site (εpI and εgI) 
and year (εpT and εgT) (see Appendix S1 for commented scripts).

The annual average use of site i by the focal species can be defined 
from the derived quantity zt,i=

�
∑n

d=1
ud,t,i

�

∕n where n is the number 
of days during the season. In the same way, a regional annual site use 
(Zt) can be defined as the average number of occurrence across all 
days and sites.

The observation submodel contains a detection probability p per 
visit j. Because we expected detection to vary between visits, we mod-
eled it as a saturation function of each visit’s SLL,

where δt,i is a real positive number defining the SLL required to ob-
tain a detection probability equal to 0.5 for a visit. Consequently, the 
shorter the list, the lower the assumed observation effort or the like-
lihood to report an observed species (van Strien et al., 2013; Szabo 
et al., 2010). With this function, pj,d,t,i converges asymptotically to 1 
as SLLj,d,t,i gets closer to ∞; however, note that pj,d,t,i will be lower than 

(6)pj,d,t,i=1−δt,i∕
(

SLLj,d,t,i+δt,i

)

,

F IGURE  1 Mean number of visits and mean species list length (SLL) per day (a,b), year (c,d), and site (e,f). Dots show means through 
years (or sites when years are in the x axis), and the shades of gray differentiate dots by years (or sites; e.g., white dots are year 2005, or site 
Dannemorasjön). Red dashes show overall means of the data. Dotted lines show the SLL threshold used for long species lists
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1 even when SLL is equal to the local species richness. We further 
modeled δt,i as

where dCoef1 is a site- specific parameter accounting for detect-
ability varying among sites. The variable PLLt is the proportion of 
long species lists (≥10 of the study species) over the total num-
ber of lists each year among the nine sites (Fig. S2) and serves as 
a proxy to account for potential changes in reporting behavior 
among observers over time. Preliminary results showed that this 
model cannot estimate variability in probability of detection as a 
function of Julian date because it interfered with the estimation 
of the persistence and colonization parameters in the occurrence 
submodel. Therefore, detectability is assumed to be constant within 
the season (see the Discussion section for pros and cons of this 
model feature).

2.3 | Annual site- occupancy model using within- 
season replication of observations

We also fitted a dynamic occupancy model to estimate annual occu-
pancy probability (i.e., using a closure period of 90 days; see, e.g., van 
Strien et al., 2013), in order to directly compare our results to previ-
ous methods adopted for opportunistic data. Given the abundance of 
replicated visits, we only used visits with SLL ≥ 10.

All models were fitted within the Bayesian framework using 
JAGS (Appendix S1; Plummer, 2012). We chose conventional vague 
priors for all parameters, using Normal distributions centered at 
zero and with standard deviation (SD) 1,000 for effect parame-
ters. We assumed random effects to follow a normal distribution 
centered at zero with independent standard variation defined as 
σ = (1/τ)1/2, where τ is a precision parameter following a Gamma 
distribution with shape and scale parameters equal 0.001. We used 
sufficient MCMC iterations to achieve convergence of the models 
(burn- in = 5,000, update = 15,000). We used 95% quantiles as cred-
ible intervals to describe the precision of parameter estimates (Kéry, 
2010).

2.4 | Goodness of fit through prediction

To investigate goodness of fit, we checked if the model was able to 
reconstruct the original data given the estimated parameter values 
(Chambert, Rotella, & Higgs, 2014; Gelman & Hill, 2007; Kéry, 2010). 
To do so, we replicated observation events of a species given its es-
timated daily occupancy status, and the effort spent in each visit (i.e., 
data replicated from the posterior distributions). We summarized 
daily observations (both observed and replicated data) into mean 
observed annual site use by keeping the maximum detection status 
among the daily visits (1 if detected at least once during the day, 0 
otherwise) and averaging these values across the seasons (90 days) 
at each site. We then graphically compared observed and replicated 
data of mean annual site use on a 1:1 discrepancy plot for all sites 
together.

We also evaluated goodness of fit of the models using site- specific 
Bayesian p- values, a.k.a. “posterior predictive checks” (Chambert et al., 
2014; Kéry, 2010). Bayesian p- values quantify the probability that the 
lack of fit of data replicated under the fitted model is smaller than 
the lack of fit of the observed data. p-values close to .5 indicate the 
model fits the data adequately and values close to 0 or to 1 indicate 
under-  or overfitting (Kéry, 2010). The measure of discrepancy cho-
sen in this case is the sums of squares of Pearson’s residuals (Kéry 
et al., 2010; SSQ; eqn 8) between observed mean annual site use 
(wt,i=

�
∑n

d=1
maxj yj,d,t,i

�

∕n; and w.newt,i for replicated data) and the 
model prediction of observed mean annual site use (i.e., the average of 
the daily probabilities of detecting the species at least once if present; 
wt,i=

�

∑n

d=1
ud,t,i×

�

1−
∏

j

�

1−pj,d,t,i
�

��

∕n, as follows:

2.5 | Validation through simulations

We tested the assumptions and performance of our model under dif-
ferent scenarios by fitting it to simulated data with known occurrence 
and sampling patterns. We simulated data using the same sampling 
structure as for the real data, that is, daily replicates of visits during ten 
90- day seasons at five sites, and using the observed increasing propor-
tion of long lists through time (PLLt, Fig. S2). The number of visits per 
day was drawn from a Poisson distribution constrained to [1, 50] and 
with a mean varying over time and with additional among site vari-
ability (see Appendix S2). The length of each visits` species lists was 
randomly drawn according to the observed proportion of single, short, 
and long species lists (see Appendix S2 for more details). That is, there 
is at least one visit and no more than 50 visits at each day and site. We 
fitted the model to nine simulated datasets, each representing a differ-
ent scenario with patterns in occupancy level and effort that are likely 
present in opportunistic data and may influence model performance, 
but which are not explicitly accounted for in the model (Table 1):

1. High, medium, or low overall occupancy levels with variability 
among lakes in all other parameters but stable occupancy through 
time;

2. Positive or negative trends over time on the persistence and colo-
nization rates

3. Increasing or decreasing number of visits over time (maintaining the 
variability in effort among sites)

4. Positive or negative trends in detection (and reporting) probabili-
ties, on top of the observed trend in PLLt that is common to all 
scenarios.

For more details about the simulation procedure and parameters 
settings, read Appendix S2. We evaluated the goodness of fit of the 
models in the same way as described above, and the ability of the 
models to estimate the known occurrence data.

(7)log
(

δt,i

)

=dCoef1i+dCoef2×PLLt,

SSQ
obs

i
=
∑

t

(

wt,i−wt,i

)

∕

√

wt,i ∗
(

1−pt,i
)2
;

(8)SSQ
new

i
=
∑

t

(

w . newt,i−wt,i

)

∕

√

wt,i ∗
(

1−pt,i
)2
.
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3 | RESULTS

3.1 | Analyses with real data on wetland birds

The model estimates daily occupancy by correcting for false ab-
sences based on each day’s effort (both number of visits and each 
visit’s SLL) and on the assumed species colonization/extinction dy-
namics at a site and year (Fig. 2). Estimated mean annual site use 
(summarized from estimated daily occupancy) varies from year to 
year, displaying large between- year changes for some species (Fig. 3, 

exemplified with nine selected bird species). Estimates of occupancy 
probability were in general precise (i.e., small credible intervals) even 
for rare species, as long as some of the sites were well sampled (i.e., 
enough to confidently separate occupancy and detection probabili-
ties) and if the species occurred regularly at those sites (i.e., consist-
ently during the same periods across all years it was present; e.g., 
Asio otus). The probability of detection depended on the visits’ SLL 
and on the proportion of long lists, PLLt. Estimates of the probability 
of detection were less precise for species with lower site use (Fig. 4). 
We observed low discrepancy between observations and predicted 

F IGURE  2 Observed and estimated daily occupancy of nine species (filled green and empty circles, respectively). The black lines show the 
daily mean occupancy probability. Red and blue lines show the mean daily persistence and colonization probabilities, respectively (shades show 
the 50% and 95% CI). Example data from site Hjälstaviken in 2014
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observations of mean annual site use, and no systematic bias was 
observed for 64 of 71 investigated species (Appendix S3). However, 
deviations from the 1:1 line between observations and expectations 
(to either side) were noted for seven species with anecdotic occur-
rences in some sites. Bayesian p- values (posterior predictive checks) 
were useful to corroborate if the observed local daily dynamics ad-
just to the overall daily dynamics estimated from all sites. Bad fit 
was then only observed on individual sites with little data were the 
local dynamics did not match the dynamics observed in other sites 
(Appendix S3).

3.2 | Comparing patterns of dynamics from the 
seasonal site use vs. the annual occupancy model

Using the visits with long species list, we calculated the correspond-
ing annual occupancy over the nine wetlands between 2005 and 
2014. Although annual occupancy levels are generally higher than 
the mean site use, they frequently display a similar broad pattern 
of temporal dynamics (Fig. 3). However, for some more common or 
widespread species, the annual occupancy model often displayed 
no temporal variation in occupancy, as all sites were determined 

F IGURE  3 Estimated annual occupancy (green) and seasonal site use (black) over the study region (nine sites) for nine selected wetland bird 
species. Solid lines and shaded areas show the median and 95% CI around the estimated occupancy and mean site use, respectively. Black dots 
indicate observed mean site use
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occupied in all years (e.g., A. penelope and C. cyaneus, and C. cygnus 
and H. minutus after 2008, Fig. 3). By contrast, for some of these spe-
cies, the site use model suggested a positive trend (C. cygnus) or a 
possible negative trend (C. cyaneus) in site use. Similarly, large differ-
ences between annual occupancy and mean site use as estimated by 
the annual vs. daily occupancy models, respectively, show that the 
annual model fails to handle the effects of temporary visits by over-
estimating the species annual occupancy during the breeding season 
(e.g., see Discussion).

3.3 | Validation of the seasonal site use model by 
simulated data

The daily occupancy model gave accurate and robust estimates of an-
nual site use for the simulated data regardless of the mean site use 
level (i.e., number of days present in any site in the region; Scenarios 
1, 2s and 3), and trends in occupancy (Scenarios 4 and 5), number 
of visits (Scenarios 6 and 7) or in detectability (Scenarios 8 and 9). 
Most of the simulated yearly site use data points were overlapping 

F IGURE  4 Detection probability for nine selected species, as a function of species list length (SLL), for 2005 (solid lines, dark shades) and 
2014 (dashed lines, light shades). The arrows indicate the direction of the change in detection through time (i.e., the effect of PLLt). On each 
plot, short lines on the top and bottom axis indicate the visits’ SLL for 2005 (black lines on the top) and 2014 (gray lines on the bottom)
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with the site use values estimated from the model (i.e., all simulated 
points were within the 95% CI, but mostly close to the median of the 
estimates) across all scenarios (Fig. 5).

The model uncertainty (95% CI), however, depends on the com-
bined effect of number of daily visits and each visit’s SLL, but also 
on the mean site use level (i.e., number of days present at the site).
When mean site use level is very low (Scenario 3), there are too few 
detections to inform the model, which becomes less accurate and less 
precise at estimating the probabilities of detection and the coloniza-
tion/extinction probabilities (Fig. 5, Scenario 3). This results in high 

uncertainties unless the sampling effort is high enough to detect every 
presence of the species.

The model estimated temporal trends in site use regardless of 
trends in number of observations per day (Scenarios 4 and 5). As ex-
pected, model uncertainty is higher the lower the number of visits 
per day (Scenarios 6 and 7) and the lower the species detectability 
(Scenarios 8 and 9). Regardless of the probability of detection, the 
higher the number of visits per day, the more likely the species is de-
tected if present. Therefore, the higher the number of visits per day, 
the smaller the discrepancy between observations and the occupancy 

F IGURE  5 Estimated (black line) and simulated (blue dots) seasonal site use in the study region (nine sites) over time for nine scenarios of 
simulated datasets (Table 1), each featuring a known combination of patterns in occupancy levels and sampling effort. Black lines and shaded 
areas show the median and 95% CI around the estimated mean site use. Black dots indicate observed mean site use
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status of the species (Scenario 6). Alternatively, even accounting for 
an increase in PLLt in all visits, detections are not guaranteed if the 
number of visits is too few (Scenario 7). Despite an increase in model 
uncertainty, the model correctly estimated the occurrence status of 
the species under both changing number of visits and changing spe-
cies detectability.

The model identified changes in detectability independently of the 
trends in number of visits and PLLt. Despite that the observed increase in 

proportion of long lists (PLLt, Fig. 1 and Fig. S2) is included in the model 
as a time- dependent variable affecting the probability of detection, the 
model also adjusts the effect parameter for PLLt to nonobserved changes 
in detectability (Scenarios 8 and 9, Figs. 5 and red arrows in Fig. 6). That 
is, even when the proportion of long lists among visits is high (high PLLt), 
detectability can naturally decrease due to, for example, change in hab-
itat conditions. However, for the simulated data, the model is able to 
correct for this trend and estimates of occupancy are not affected.

F IGURE  6 Detection probability as a function of species list length. Known (blue line) and estimated (black lines and shades) functions are 
shown for year 1 (solid lines) and year 10 (dashed line). The arrows indicate the direction of the change in detection through time (i.e., the effect 
of PLLt). Short vertical lines (ticks) on the top and bottom axis indicate the distribution of SLL for 2005 (black lines on the top) and 2014 (gray 
lines on the bottom)
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4  | DISCUSSION

4.1 | Seasonal site use vs. annual occupancy models

Previous annual occupancy models have typically used the breeding 
season (e.g., 2–3 months) as the time window to estimate annual oc-
cupancy at sites (e.g., 1 km2 grid squares) (Isaac et al., 2014; Royle & 
Dorazio, 2008; Royle & Kéry, 2007; van Strien et al., 2013). However, 
using such a long time window may likely violate the assumption of clo-
sure for mobile species with within- season dynamics, thus potentially 
reducing estimates of probability of detection and increase the uncer-
tainty of occupancy estimates (MacKenzie, Nichols, Hines, Knutson, & 
Franklin, 2003). For example, when the aim is to analyze occurrences of 
breeding species, an annual occupancy model will overestimate site use 
of species with temporary occurrences (e.g., migrants passing by, single 
itinerary prospecting individuals) as even a single observation during 
the closure period will be viewed as an occupancy. On the other hand, 
an occupancy model with within- season dynamics, such as our seasonal 
site use model, will produce estimates of the extent to which sites are 
actually used. Two illustrative examples are the little gull (H. minutus) 
and the hen harrier (Circus cyaneus), which we know from careful obser-
vations made by the local ornithological society, attempted to breed in 
only three and none of the nine wetlands, respectively, during 2005 to 
2014 (Annual birds reports from the Ornithological Society of Uppland 
2005–2014). These species regularly stop- over at these wetlands on 
their way to their breeding areas in northern Sweden and Finland, being 
frequently observed for several days during spring and early summer. 
The annual model therefore suggests an occupancy probability close to 
one for most years for this species (Fig. 3). The seasonal site use model, 
on the other hand, suggests a relatively low site use. In this way, the 
site use model may be used to detect these passages of migrants thus 
enabling a separation between potential breeders and migrants or va-
grants (Fig. 3 and Appendix S3). Furthermore, as individuals may move 
in and out of the sites during the study period, daily occupancy of a site 
may indicate how site use is changing during the season. In this way, 
such a seasonal site use model may also be able to estimate the relative 
importance of different sublocalities as foraging or stop- over sites in a 
network of, for example, wetland sites.

Opportunistic data at frequently visited sites offer good opportu-
nities to narrow the time window of the closure period because of 
the large amount of data at specific sites. Several of the localities in 
our study, which include popular birding wetlands with observation 
towers, were visited two or more times per day by different observers 
during the spring 2005–2014. In general, the span of the within- season 
closure period of our model may be optimized to the data at hand. If, 
for instance, multiple visits to sites are common on a weekly but not on 
a daily basis, a closure period of 1 week may be used instead.

4.2 | Opportunistic data and the robustness of the 
seasonal site use model

The probability of at least one reported observation of a species at a 
site on a particular day is the result of both the probability of detection 

of each visit and the number of visits made. The probability of detec-
tion during each visit depends on effort allocated to observing species 
and the willingness to report them if seen. SLL is an established sur-
rogate for the effort of a visit in opportunistic data (Barnes, Szabo, 
Morris, & Possingham, 2015; van Strien et al., 2013; Szabo et al., 
2010). Even though detection probability and willingness to report an 
observation differ largely among species, it is expected that the longer 
the SLL, the lower the chance of deliberately leaving species out of 
the report (van Strien et al., 2013). However, even “low- quality” ob-
servations (e.g., SLL = 1) may be informative for the occupancy status 
of the few species that are on such a list. If there are sufficient visits 
reporting only one or a few species, they can be useful for estimat-
ing occupancy (e.g., beginning of Scenario 7, where plenty of visits 
each with very short species lists are enough to precisely estimate 
the mean site use). Therefore, as an alternative to the seminal species 
list comparison approach proposed by Szabo et al. (2010) where short 
species list were omitted, we also make use of even single (inciden-
tal) observations that have often been regarded as containing little 
information (Isaac & Pocock, 2015; Szabo et al., 2010). This addition 
does not add noise but rather improves precision in estimates of daily 
occupancy and mean site use of rare species (Fig. S3).

In our site use model, detectability is assumed to be site and year 
specific but constant within the season. This is because trying to esti-
mate daily variations in detectability interfered with the estimation of 
the daily persistence and colonization parameters in the occurrence 
submodel. However, because the probability of detection is deter-
mined by each visit’s SLL that varies among visits and may decrease 
along the season (Strebel, Kéry, Schaub, & Schmid, 2014), the model 
implicitly allows for some variation in the probability of detection 
within the season. Alternatively, in case there are good reasons to be-
lieve that detectability changes during the breeding season (e.g., due to 
increased cryptic behavior), a change in detectability between interme-
diate time windows (e.g., months) could be parameterized and tested 
with this model by adding a time covariate to Equation 7 (see methods).

The seasonal site use model presented here accounts for effects of 
changes in the behavior of observers over time on species detectabil-
ity, using the overall proportion of species lists longer than 10 (PLLt) 
as a proxy. Specifically, PLLt captures a nonlinear increase in the pro-
portion of visits with long lists during the first few years in the data 
analyzed here, suggesting that the overall quality of reports may have 
increased. The effect of PLLt was, however, negative for some species 
(red arrows in Fig. 4) indicating that observers are decreasingly report-
ing certain species. This may suggest a negative trend in the species 
abundance that is not reflected in the species occupancy. Alternative 
proxies, such as temporal trends, could also be used to adjust for 
changes in reporting behavior over time, although when tested in this 
study, the MCMC sampling algorithms did not find a solution for the 
model (i.e., the MCMC sampling chains did not converge into a high 
probability area of the parameter space).

In addition to the assumption that species list length serves as a 
reasonable proxy for sampling effort, site- occupancy models of oppor-
tunistic data rely on additional assumptions. For example, a general as-
sumption of site- occupancy models is that reports from different visits 
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are independent, which may not be the case if observers share their 
sightings. Despite estimates of site use being robust to the deviations 
explored in the simulated scenarios, there is thus no guarantee that 
the model correctly adjusts for variation in effort, observer behavior, 
and observer willingness to report a species. Unfortunately, no fur-
ther conclusion can be drawn without validation against systematically 
collected data. Currently, little is known about variations in observer 
behaviors and the decisions underlying whether observations are re-
ported or not. Some studies comparing analyses of opportunistic data 
against survey data do suggest that occupancy models may handle the 
most serious causes of bias (Isaac et al., 2014; van Strien et al., 2013), 
while other studies suggest a poor fit between opportunistic and sur-
vey data (Kamp et al., 2016).

In conclusion, by making use of dense opportunistic data at pop-
ular localities, we markedly reduce the time interval for the closure 
criterion (here to 1 day periods) and get repeated estimates of occu-
pancy within a predefined time period (here the breeding season of 
3 months) to estimate: (1) daily site occupancy and (2) site use during 
the breeding season (here mean number of days a species is present at 
a site) in contrast to a binary variable produced by an annual  occupancy 
model, and hence (3) the possibility to redefine the criteria for count-
ing a species as present at a site based on its activity within the season. 
Model validation based on simulated data suggests that the perfor-
mance of the seasonal site use model in terms of capturing the species 
mean site use over time is robust to underlying variability and trends 
in effort and species detectability. Furthermore, the seasonal site use 
model has the potential to estimate the relative importance of each 
site in a wetland network in terms of site use.
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