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Identification of potential therapeutic 
targets for atherosclerosis by analysing the gene 
signature related to different immune cells 
and immune regulators in atheromatous 
plaques
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Abstract 

Background:  Atherosclerosis is a chronic inflammatory disease that affects multiple arteries. Numerous studies have 
shown the inherent immune diversity in atheromatous plaques and suggest that the dysfunction of different immune 
cells plays an important role in atherosclerosis. However, few comprehensive bioinformatics analyses have investi‑
gated the potential coordinators that might orchestrate different immune cells to exacerbate atherosclerosis.

Methods:  Immune infiltration of 69 atheromatous plaques from different arterial beds in GSE100927 were explored 
by single-sample-gene-set enrichment analysis (presented as ssGSEA scores), ESTIMATE algorithm (presented as 
immune scores) and CIBERSORT algorithm (presented as relative fractions of 22 types of immune cells) to divide these 
plaques into ImmuneScoreL cluster (of low immune infiltration) and ImmuneScoreH cluster (of high immune infiltra‑
tion). Subsequently, comprehensive bioinformatics analyses including differentially-expressed-genes (DEGs) analysis, 
protein–protein interaction networks analysis, hub genes analysis, Gene-Ontology-terms and KEGG pathway enrich‑
ment analysis, gene set enrichment analysis, analysis of expression profiles of immune-related genes, correlation 
analysis between DEGs and hub genes and immune cells were conducted. GSE28829 was analysed to cross-validate 
the results in GSE100927.

Results:  Immune-related pathways, including interferon-related pathways and PD-1 signalling, were highly enriched 
in the ImmuneScoreH cluster. HLA-related (except for HLA-DRB6) and immune checkpoint genes (IDO1, PDCD-1, 
CD274(PD-L1), CD47), RORC, IFNGR1, STAT1 and JAK2 were upregulated in the ImmuneScoreH cluster, whereas FTO, 
CRY1, RORB, and PER1 were downregulated. Atheromatous plaques in the ImmuneScoreH cluster had higher propor‑
tions of M0 macrophages and gamma delta T cells but lower proportions of plasma cells and monocytes (p < 0.05). 
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Background
Increasing evidence has demonstrated that atheroscle-
rosis (AS) is a systemic chronic inflammatory disease of 
the arterial wall that results from the accumulation of 
lipoprotein and the activation of diverse dysregulated 
immune cells [1–4]. Previous studies have also shown 
that the upregulation of the leukocyte levels of the 
N6-methyladenosine (m6A) modification and the dis-
ruption of circadian clocks are proatherogenic [5, 6]. In 
addition, the metabolic changes driven by rhythms of 
the circadian clock of immune cells could direct their 
immune output [7]. Although some immune cells have 
been proposed as potential therapeutic targets of ather-
osclerosis [8–10], the specific roles of different immune 
cells and the mechanism regulating their coordination 
with each other in atherosclerosis remain unclear. The 
molecular interactions between the circadian clocks 
and the immune system output in atherosclerosis are 
manifold and have not been fully documented. Further-
more, the role of the N6-methyladenosine (m6A) modi-
fication of different clock genes in different leukocytes 
in atherosclerotic lesions remains to be explored.

Given all the above-mentioned findings and prob-
lems, we hypothesized that more advanced stages of AS 
might be related to higher immune infiltration and dif-
ferent expression levels of immune checkpoint genes, 
m6A-related genes and circadian clock genes. Although 
the development of atherosclerosis in distinct vascular 
regions responds differently to common risk factors 
[11, 12] and the immune-related gene signatures show 
heterogeneity between different atherosclerotic lesions 
[13, 14], we presumed that some common genes or 
immune-related pathways might play important roles 
in the development of atherosclerosis. In this study, 
we conducted a comprehensive computational bioin-
formatic analysis using GSE100927 [14] and GSE28829 
[15] to identify potential pathways and genes that might 
coordinate different immune cells to contribute to the 
progression of atherosclerosis (Fig. 1).

Methods
Data acquisition
The GSE100927 dataset was downloaded from the Gene 
Expression Omnibus (GEO) database (http://​www.​ncbi.​
nlm.​nih.​gov/​geo/) [16]. The GSE100927 dataset includes 
29 atheromatous carotid plaques, 26 atheromatous fem-
oral plaques, 14 atheromatous infra-popliteal plaques, 
12 control samples obtained from healthy carotid arter-
ies, 12 control samples obtained from healthy femoral 
arteries, and 11 control samples obtained from healthy 
infra-popliteal arteries. Expression profiling arrays 
of GSE100927 were generated using GPL17077 (Agi-
lent-039494 SurePrint G3 Human GE v2 8 × 60 K Micro-
array 039,381). Additionally, the GSE28829 dataset, 
which consists of 16 clinically proven advanced-stage 
atheromatous carotid plaques and 13 early-stage ather-
omatous carotid plaques, was downloaded from the GEO 
database. Expression profiling arrays of GSE28829 were 
generated using GPL570 (HG-U133_Plus_2, Affymetrix 
Human Genome U133 Plus 2.0 Array). The batch effects 
between different datasets or different groups or different 
samples were eliminated using the limma R package (ver-
sion 3.40.6) [17].

Estimation of the immune and stromal scores 
in atheromatous plaques
Single-sample gene-set enrichment analysis (ssGSEA) 
was conducted to analyse the immune cell types pre-
sent in all the samples of the GSE100927 and GSE28829 
datasets using the GSVA R package(version 1.32.0) [18]. 
The enrichment of an immune cell type meta-gene in a 
given sample was scored (ssGSEA score) based on a set 
of metagenes for 28 immune cell subpopulations [19]. 
Note that these enrichments should not be interpreted as 
deconvolutions of actual cell-type proportions. The pres-
ence of infiltrated immune cells and stromal cells in the 
atheromatous plaques was further evaluated by immune 
and stromal scores calculated using the ESTIMATE 
algorithm using gene-level expression data (Estimate R 
package, version 1.0.11) [20]. The different immune cell 
compositions in atheromatous plaques were assessed 

CAPG, CECR1, IL18, IGSF6, FBP1, HLA-DPA1 and MMP7 were commonly related to these immune cells. In addition, the 
advanced-stage carotid plaques in GSE28829 exhibited higher immune infiltration than early-stage carotid plaques.

Conclusions:  Atheromatous plaques with higher immune scores were likely at a more clinically advanced stage. The 
progression of atherosclerosis might be related to CAPG, IGSF6, IL18, CECR1, FBP1, MMP7, FTO, CRY1, RORB, RORC, 
PER1, HLA-DPA1 and immune-related pathways (IFN-γ pathway and PD-1 signalling pathway). These genes and path‑
ways might play important roles in regulating immune cells such as M0 macrophages, gamma delta T cells, plasma 
cells and monocytes and might serve as potential therapeutic targets for atherosclerosis.

Keywords:  Atherosclerosis, Immune infiltration, ESTIMATE algorithm, Circadian clock
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using the CIBERSORT algorithm and an LM22 leukocyte 
signature matrix as the input matrix of reference gene 
expression signatures [21]. The heterogeneity of immune 
infiltration among healthy artery samples and different 
atheromatous plaques and the correlation between differ-
ent types of immune cells were explored.

Consensus clustering and hierarchical cluster analysis 
of atheromatous plaques
The consensus clustering of different atheromatous 
plaques was performed using the ConsensusClusterPlus 
R package (version 1.48.0) based on the ssGSEA scores 
of infiltrated immune cells [22]. The Euclidean distances 

between samples were calculated. For the classification 
of atheromatous plaques into different subgroups, an 
unsupervised k-means clustering analysis using Euclid-
ean distances was adopted for consensus clustering with 
1000 repetitions. Hierarchical cluster analysis based on 
ssGSEA scores using Ward.D2 methods and Euclidean 
distances were performed for atheromatous plaques in 
each dataset (Stats R package, version 3.6.1).

GO and KEGG pathway enrichment analysis
Fold changes (FCs) in gene expression values were calcu-
lated for atheromatous plaques in different groups, and 
the Benjamini–Hochberg method was used to adjust the 
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Fig. 1  Analysis pipeline of expression values from microarrays. The expression values of GSE100927 and GSE28829 were analysed according to the 
pipeline. The atheromatous plaques in GSE100927 and GSE28829 were divided into a cluster with low immune scores (ImmuneScoreL cluster) and 
a cluster with high immune scores (ImmuneScoreH cluster) according to the degree of immune infiltration. The distribution of clinically proven 
early-stage and advanced-stage carotid plaques in GSE28829 was statistically significant (p < 0.001), and the distribution of atheromatous plaques 
from different peripheral arteries in GSE100927 was statistically significant (p < 0.001)
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original p values. The criteria |log2 FC|> 1 and adjusted 
p < 0.05 were used to identify the differentially expressed 
genes (DEGs) between the ImmuneScoreH cluster and 
other samples (including the healthy controls and Immu-
neScoreL cluster) in GSE100927(limma R package, 
version 3.40.6). Gene Ontology (GO) and Kyoto Encyclo-
pedia of Genes and Genomes (KEGG) pathway enrich-
ment analyses of these DEGs were performed using the 
clusterProfiler R package(version 3.12.0) [23]. The GO 
annotation included biological process (BP), molecular 
function (MF), and cellular component (CC) categories. 
In addition, the DEGs between the ImmuneScoreH and 
ImmuneScoreL clusters in GSE100927 were identified 
using the same method.

Construction of the protein–protein interaction (PPI) 
network
PPI networks of the DEGs between the ImmuneScoreH 
cluster and other samples (including the healthy controls 
and ImmuneScoreL cluster) in GSE100927 were con-
structed using the search tool for the retrieval of inter-
acting genes (STRING database, V11.0; http://​string-​db.​
org/), which predicts protein functional associations and 
PPIs. After downloading the results from the STRING 
database with a confidence score > 0.9, Cytoscape soft-
ware (V3.7.2; http://​cytos​cape.​org/) was applied to 
visualize and analyse the biological networks and node 
degrees. Twelve algorithms on CytoHubba (version 
0.1) were used to identify the hub genes. Genes with 
degree > 30 were identified as hub genes. These hub genes 
together with the DEGs between the ImmuneScoreH and 
ImmuneScoreL clusters in GSE100927 were analysed 
using Pearson correlation coefficients to identify com-
mon genes related to the relative percentages of immune 
cells in each sample.

Gene set enrichment analysis (GSEA)
The expression profiles of healthy samples and atheroma-
tous plaques and the expression profiles of different sub-
types of atheromatous plaques in GSE100927 were used 
for GSEA using software provided by the Massachusetts 
Institute of Technology (version 4.1.0) [24]. The KEGG 
and REACTOME subsets of canonical pathways (CPs) 
of MSigDB (V7.1, https://​www.​gsea-​msigdb.​org/​gsea/​
msigdb/​index.​jsp), which contains gene sets derived from 
the KEGG and Reactome pathway databases, were used 
as the a priori knowledge for the GSEA. The NES and a 
FDR < 0.25 were used to quantify the enrichment magni-
tude and statistical significance.

Expression profiles of genes of interest
The expression profiles of HLA molecules, immune 
checkpoint molecules, m6A regulators, circadian 

rhythm-related genes, and IFN-γ signalling pathway-
related genes (Additional file 6: Supplementary Table 1) 
were explored and compared between healthy artery 
samples and atheromatous plaques. The expression pro-
files of these genes were also explored and compared 
between different clusters of atheromatous plaques.

Statistical analysis
All statistical analyses in this study were performed 
using R version 3.6.1. The expression profiles of genes of 
interest or predefined gene sets between clusters were 
compared using the Mann–Whitney-Wilcoxon test. 
The correlation among variables was evaluated with the 
Pearson correlation coefficient. Fisher’s exact test was 
used for nominal variables. A p value < 0.05 was consid-
ered statistically significant. Where appropriate, p values 
were corrected for multiple testing using the Benjamini–
Hochberg false discovery rate method.

Results
Subtypes of atheromatous plaques in GSE100927
The gene expression profiles of 69 atheromatous plaques 
and 35 healthy samples in the dataset GSE100927 were 
obtained from the GEO database. The relationship 
between these samples was evaluated by principal com-
ponent analysis (PCA), and the intergroup distances were 
greater than the inner-group distances (Additional file 1: 
Figure S1A). The enrichment of an immune cell type 
meta-gene in a given sample was scored (ssGSEA score). 
Hierarchical clustering of the ssGSEA scores showed 
that all 104 samples were distributed into three distinct 
groups: a healthy group, a low immune infiltration group, 
and a high immune infiltration group. Healthy artery 
samples were mainly gathered into the healthy group, 
and atheromatous plaques were mainly gathered into the 
low and high immune infiltration groups. Notably, the 
atheromatous carotid plaques had higher ssGSEA scores 
than other plaques (Fig. 2A). An unsupervised consensus 
clustering analysis was performed to classify all 69 ath-
eromatous plaques in GSE100927 based on their ssGSEA 
scores, and the cumulative distribution function (CDF) 
curve showed that k = 4 was an optimal choice (Addi-
tional file  1: Figure S1B–H). Therefore, the 69 ather-
omatous plaques in GSE100927 were grouped into four 
distinct subgroups (Fig. 2B). Based on the immune scores 
and stromal scores calculated using the ESTIMATE 
algorithm (Fig. 2C, D), the four subgroups (Fig. 2B, sub-
group1/2/3/4 in Fig. 2E) of the 69 atheromatous plaques 
were divided into a cluster with high immune scores 
(ImmuneScoreH cluster) and a cluster with low immune 
scores (ImmuneScoreL cluster) (Fig. 2E). We found that 
all but one of the atheromatous carotid plaques were in 
the ImmuneScoreH cluster. Furthermore, we evaluated 

http://string-db.org/
http://string-db.org/
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https://www.gsea-msigdb.org/gsea/msigdb/index.jsp
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the fraction of immune cells in different groups of ather-
omatous plaques using the CIBERSORT algorithm. Fig-
ure  2F showed the different distributions of 21 types of 
immune cells in the 69 atheromatous plaques. The ath-
eromatous plaques in the ImmuneScoreH cluster had a 
higher proportion of M0 macrophages and gamma delta 
T cells but a lower proportion of plasma cells and mono-
cytes (Additional file 2: Figure S2A, B). Moreover, plasma 
cells were positively correlated with resting mast cells 
(r = 0.55, p < 0.001, Additional file 2: Figure S2C), and M0 
macrophages were negatively correlated with activated 
NK cells (r = − 0.63, p < 0.001, Additional file  2: Figure 
S2C).

Subtypes of atheromatous plaques in GSE28829
To explore whether results of unsupervised K-means 
clustering (using ssGSEA scores as input) is consistent 
with clustering results of immune scores (calculated by 

ESTIMATE algorithm) in a dataset with small sample 
size(n < 30), and to explore whether higher immune infil-
tration is correlated with more advanced atherosclerosis, 
we analysed the immune infiltration of atheromatous 
plaques in GSE28829. As shown in Additional file 3: Fig-
ure S3A, the 29 atheromatous plaques in GSE28829 were 
grouped into two distinct groups based on the ssGSEA 
analysis. The cluster dendrogram also showed that all 
the samples were divided into two groups (Additional 
file  3: Figure S3B). An unsupervised consensus cluster-
ing analysis of all 29 atheromatous plaques in GSE28829 
based on the ssGSEA score showed that k = 2 was an 
optimal choice (Additional file  3: Figure S3C, D, sub-
group1/2 in Additional file 3: Figure S3E). Based on the 
immune scores and stromal scores calculated using the 
ESTIMATE algorithm, the 29 atheromatous plaques were 
divided into the ImmuneScoreH and ImmuneScoreL 
clusters (Additional file  3: Figure S3E). The distribution 

Fig. 2  Atherosclerosis subtypes and distinct infiltrated immune cells in the samples in the GSE100927 dataset. A Heatmap of ssGSEA scores 
of all 104 samples in GSE100927 that were clustered based on the Euclidean distance using the Ward.D2 method. B Consensus clustering of 
ssGSEA scores of 69 atheromatous plaques based on the Euclidean distance using the k-means clustering method with k = 4. C, D Violin plots 
of stromal scores and immune scores in the plaques with high immune scores (ImmuneScoreH cluster) and the plaques with low immune 
scores (ImmuneScoreL cluster) of the 69 atheromatous plaques based on the ESTIMATE algorithm. E Heatmap of ssGSEA scores of four 
subgroups (subgroup1-4 which were divided using the k-means clustering method with k = 4 in B) and two clusters (ImmuneScoreH cluster and 
ImmuneScoreL cluster based on the immune score calculated by ESTIMATE algorithm) of the 69 atheromatous plaques in GSE100927. F Immune 
infiltration landscape in the four subgroups and two clusters of 69 atheromatous plaques demonstrated in E 
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of clinically proven early-stage and advanced-stage ath-
eromatous plaques in the two clusters was statistically 
significant (Fig.  1). The ImmuneScoreL cluster of ath-
eromatous plaques in GSE100927 (Additional file  2: 
Figure S2A) and GSE28829 (Additional file  3: Figure 
S3F) contained relatively higher proportions of plasma 
cells (p < 0.05) and monocytes (p < 0.05). In contrast, 
M0 macrophages (p < 0.05) and gamma delta T cells 
(p < 0.05) were present at relatively higher proportions 
in the ImmuneScoreH cluster. To further demonstrate 
the immune infiltration in health controls to atheroma-
tous plaques derived from different datasets, we pooled 
GSE28829 and GSE100927. After removing batch effects, 
ssGSEA socres of different immune cell types in these 
pooled samples were calculated. Healthy arteries were of 
lower immune infiltration (Additional file 3: Figure S3G).

Gene set enrichment analysis (GSEA) of GSE100927
Multiple immune-related pathways were highly 
enriched in atheromatous plaques (vs. healthy artery 
samples, Additional file  3: Fig.  3A–F), and these 

pathways included the B cell receptor signalling path-
way (normalized enrichment score (NES) = 1.5637, 
false discovery rate (FDR) = 0.2085), leukocyte transen-
dothelial migration (NES = 1.4851, FDR = 0.1689), nat-
ural killer cell-mediated cytotoxicity (NES = 1.5498, 
FDR = 0.1852), T cell receptor signalling pathway 
(NES = 1.5517, FDR = 0.1952), primary immunodefi-
ciency (NES = 1.4222, FDR = 0.1732), and antigen pro-
cessing and presentation (NES = 1.5726, FDR = 0.2379). 
These six immune-related pathways were also highly 
enriched in the ImmuneScoreH group (vs. the Immune-
ScoreL group, Additional file 4: Fig. 4A–F). In addition, 
interferon-related pathways (Fig.  4G–J), PD-1 signalling 
(Fig.  4K, NES = 1.4343, FDR = 0.1613) and neutrophil 
degranulation (Fig.  4L, NES = 1.6372, FDR = 0.1153) 
were highly enriched in the ImmuneScoreH group (vs. 
the ImmuneScoreL group). To cross-validate these find-
ings, we also performed GSEA for GSE28829. We found 
that these pathways were also highly enriched in the 
ImmuneScoreH cluster (vs. the ImmuneScoreL cluster) 
of GSE28829 (Additional file 4: Figure S4A–L).
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Fig. 3  Gene set enrichment analysis (GSEA) comparing atheromatous plaques with healthy control samples of GSE100927. KEGG canonical 
pathways were used as the a priori information for the GSEA. A Primary immunodeficiency, B leukocyte transendothelial migration, C antigen 
processing and presentation, D natural killer cell-mediated cytotoxicity, E T cell receptor signalling pathway, and F B cell receptor signalling pathway 
were highly enriched in atheromatous plaques
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Correlation between atherosclerosis and genes of interest 
in GSE100927
Based on the above-presented results, we further 
explored immune-related genes, including HLA mole-
cule-related genes, immune checkpoint-related genes, 
IFN-γ pathway-related genes, circadian rhythm-related 
genes, and m6A methylation regulator-related genes 
(Additional file  6: Supplementary Table  1). Eighty of 
these genes were detected in GSE100927 (Fig. 5). The 
expression of these 80 genes were compared between 
atheromatous plaques and healthy control artery sam-
ples (Fig.  5A–E), as well as between plaques of high 
immune scores (ImmuneScoreH cluster) and low 
immune scores (ImmuneScoreL cluster) (Fig.  5F–J). 

Fifty out of these 80 genes showed the same trends in 
both sets of comparisons and were statistically differ-
ent, including HLA-DPA1, PDCD-1, CD274(PD-L1), 
CD47, IFNGR1, STAT1, JAK2, FTO, RORB, RORC, 
CRY1 and PER1. Only eight genes were of no statis-
tical difference in both sets of comparisons (Fig.  5k). 
These findings were cross-validated in GSE28829. 
Thirty-four genes of interest were statistically different 
between immuneScoreH cluster and immuneScoreL 
cluster in GSE28829 (Additional file 5: Figure S5A–E). 
Thirty-one of these 34 genes showed the same trends 
when compared between immuneScoreH cluster and 
immuneScoreL cluster in GSE100927 (Additional 
file 5: Figure S5F).
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Fig. 4  Gene set enrichment analysis (GSEA) comparing atheromatous plaques in the ImmuneScoreH cluster with those in the ImmuneScoreL 
cluster of GSE100927. A–F KEGG canonical pathways were used as the a priori knowledge for the GSEA. A Primary immunodeficiency, B leukocyte 
transendothelial migration, C antigen processing and presentation, D natural killer cell-mediated cytotoxicity, E T cell receptor signalling pathway, 
and F B cell receptor signalling pathway were highly enriched in the ImmuneScoreH cluster. G–L The REACTOME subset of canonical pathways 
was used as the a priori information for the GSEA. G–J Interferon-related pathways, K PD-1 signalling, and L neutrophil degranulation were highly 
enriched in the ImmuneScoreH cluster
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Identification of the DEGs and hub genes of GSE100927
The comparison of the ImmuneScoreH cluster with the 
other samples (including the healthy controls and Immu-
neScoreL cluster) identified 698 DEGs (Additional file 7: 
Supplementary Table  2, 216 upregulated DEGs and 482 
downregulated DEGs) (Fig. 6A). Most of the DEGs in the 
ImmuneScoreH cluster were enriched in KEGG path-
ways such as haematopoietic cell lineage and phagosome 
(Fig. 6B). In addition, most of these DEGs were enriched 
in biological functions such as neutrophil activation, neu-
trophil degranulation, neutrophil-mediated immunity, 
and leukocyte migration (Fig.  6C). The protein–protein 
interaction network of these genes is shown in Fig. 6D. In 
addition, 19 hub genes (PTPN6, HLA-DRA, HLA-DRB1, 
VAMP8, ITGB2, ITGAM, CXCL1, CYBB, FCER1G, 
CYBA, HLA-DRB5, HLA-DQB1, HLA-DQA1, HLA-
DQB2, HLA-DPB1, HLA-DPA1, LCK, HLA-DQA2, 
and PTPRJ; all with degrees > 30) were identified in the 
ImmuneScoreH cluster (Fig.  6E). The overlaps between 
the 698 DEGs, 19 hub genes, 80 detected genes of interest 
and 782 metagenes of ESTIMATE were shown in Fig. 6F. 
In addition, 284 DEGs (177 upregulated DEGs and 107 
downregulated DEGs) were identified in the ImmuneS-
coreH cluster compared with the ImmuneScoreL cluster 
(Additional file 8: Supplementary Table 3). The overlaps 
between the 284 DEGs, 19 hub genes, 80 detected genes 
of interest and 782 metagenes in ESTIMATE were shown 
in Fig. 6G.

Identification of common genes related to the relative 
percentages of immune cells in GSE100927
In the ImmuneScoreL cluster, actin regulatory protein 
CAP-G (CAPG), immunoglobulin superfamily member 
6 (IGSF6), interleukin-18 (IL18), cat eye syndrome criti-
cal region protein 1 (CECR1), fructose-bisphosphatase 
1 (FBP1), and HLA-DPA1 were positively related to the 

Fig. 5  Comparison of the expression of genes related to different 
immune regulators in GSE100927. ns: p > 0.05, *p <  = 0.05, **p  ≤ 0.01, 
***p  ≤ 0.001, ****p  ≤ 0.0001. 80 genes were detected in GSE100927. 
A–E were a set of comparisons between atheromatous plaques and 
healthy control: A box plot comparing the expression of human 
leukocyte antigen (HLA)-related genes, B immune checkpoint-related 
genes, C IFN-γ pathway marker genes, D m6A methylation 
regulator-related genes, E circadian rhythm-related genes. F–J 
were a set of comparisons between atheromatous plaques in the 
ImmuneScoreH cluster with that in atheromatous plaques in the 
ImmuneScoreL cluster: F Box plot comparing the expression of 
HLA-related genes, G immune checkpoint-related genes, H IFN-γ 
pathway marker genes, I m6A methylation regulator-related genes, J 
circadian rhythm-related genes. K Summarized the consistent results 
between the two sets of comparisons (atheromatous plaques vs. 
healthy controls/ImmunceScoreH cluster vs. ImmunceScoreL cluster)

▸



Page 9 of 14Shen et al. BMC Med Genomics          (2021) 14:145 	

proportion of M0 macrophages and gamma delta T cells 
but negatively related to the proportion of plasma cells 
or monocytes (Fig.  7A, B). In the ImmuneScoreH clus-
ter, CAPG and matrix metallopeptidase 7 (MMP7) were 
positively related to the proportion of M0 macrophages 
and gamma delta T cells but negatively related to the pro-
portion of plasma cells or monocytes (Fig.  7C, D). The 
relationships were the same for the CAPG and plasma 
cells / monocytes / M0 macrophages in the health sam-
ples (Fig. 7E, F).

Discussion
Atherosclerosis is a systemic chronic inflammatory dis-
ease associated with activated innate immune response 
[25]. A better understanding of immune infiltration in 
different plaques might provide a better understanding 
of atherosclerosis. In our study, we first deemed that the 
ESTIMATE algorithm might be appropriate for assess-
ing the immune infiltration of different plaques because 
the gene sets used for estimating stromal and immune 
scores in the ESTIMATE algorithm are filtered by a 
dataset of gene expression in normal tissues (GSE1133, 
including smooth muscle, endothelium, heart, and hae-
matopoietic cells) [20]. Then, an unsupervised consensus 
clustering of ssGSEA scores and the ESTIMATE algo-
rithm were used successively to classify the plaques. As 
expected, in GSE100927, ImmuneScoreH cluster has 
higher ssGSEA scores than ImmuneScoreL group, indi-
cating that the clustering of immune scores calculated 
by ESTIMATE algorithm were consistent with the unsu-
pervised consensus clustering of ssGSEA score (Fig. 2E). 
Meanwhile, the results obtained from the application of 
the ESTIMATE algorithm to GSE28829, a dataset with 
small sample size (n = 29), were consistent not only with 
the unsupervised consensus clustering results but also 
with the different clinical stages of these carotid plaques 
(Additional file 3: Figure S3E), reinforcing the feasibility 

of applying ssGSEA and ESTIMATE algorithm to the 
classification of atheromatous plaques. In addition, the 
analysis of GSE100927 gathered most plaques from the 
infrapopliteal and femoral arteries into clusters different 
from those that included most plaques from the carotid 
artery (Fig.  2E), which indicated the distinct heteroge-
neity of immune infiltration in different atherosclerotic 
lesions. These findings suggest that plaques with higher 
immune infiltration might be at a more advanced stage of 
atherosclerosis.

In this study, we identified 12 immune-related path-
ways that might play important roles in atherosclerosis 
development by GSEA: seven pathways were related to 
immune cells, four pathways were related to interferon, 
and the other pathway was related to PD-1 signalling. 
These results, together with those from previous studies 
that explored the function of IFN-γ [26, 27] and PD-1/
PD-L1 inhibitors [28], suggest that the inhibition of 
IFN-γ and PD-1/PD-L1 might reduce atherosclerosis. In 
addition, nine of the 19 hub genes belonged to major his-
tocompatibility complex (MHC) class II (HLA-DP, HLA-
DQ, and HLA-DR), which present antigens from outside 
a cell to T lymphocytes. All these results indicate that the 
IFN-γ pathway and PD-1 signalling pathway might serve 
as potential targets in atherosclerosis therapy.

Many types of immune cells have been proven to pos-
sess intrinsic clocks, and these cell types include mac-
rophages [29], monocytes [30], neutrophils [31], natural 
killer (NK) cells [32], mast cells and eosinophils [33]. Cir-
cadian clock and m6A for the function of the circadian 
clock have emerged as important gatekeepers for differ-
ent immune functions [34, 35]. In this study, we revealed 
that RORB, RORC, PER1, CRY1, FTO were in close rela-
tionship with atherosclerosis, particularly in atheroscle-
rotic lesions with higher immune infiltration. While it’s 
been reported that the demethylase FTO (alpha-ketoglu-
tarate-dependent dioxygenase) coimmunoprecipitates 

Fig. 6  Differentially expressed genes (DEGs) and hub genes in the ImmuneScoreH cluster (vs. the ImmuneScoreL cluster and healthy controls). FDR: 
false discovery rate, logFC: log(fold change). A Heatmaps of DEGs among healthy control samples and atheromatous plaques in the ImmuneScoreL 
and ImmuneScoreH clusters. B Bubble and circle plots showing the results from the KEGG pathway enrichment analysis of DEGs of atheromatous 
plaques in the ImmuneScoreH cluster (vs. ImmuneScoreL cluster and healthy controls). The top 10 KEGG pathways ranked by the FDR are shown. 
C Bubble and circle plots showing the results from the Gene Ontology (GO) enrichment analysis, including the biological process (BP), molecular 
function (MF), and cellular component (CC) categories, of DEGs of atheromatous plaque in the ImmuneScoreH cluster (vs. ImmuneScoreL cluster 
and healthy controls). The top 10 BP, MF and CC terms ranked by the FDR are shown. D PPI network of DEGs of plaques in the ImmuneScoreH 
cluster. E Nineteen hub genes of plaques in the ImmuneScoreH cluster. F UpSet plot demonstrating overlaps between the 698 DEGs 
(ImmuneScoreH cluster vs. other samples, Additional file 7: Supplementary Table 2), the 19 hub genes (E), 80 detected genes of interest (Fig. 5K) 
and 782 metagenes in ESTIMATE. G UpSet plot demonstrating overlaps between the 284 DEGs (ImmuneScoreH cluster vs. ImmuneScoreL cluster, 
Additional file 8: Supplementary Table 3), 19 hub genes (E), 80 detected genes of interest (Fig. 5K) and 782 metagenes in ESTIMATE. HLA: human 
leukocyte antigen, PTPN6: protein tyrosine phosphatase non-receptor type 6, VAMP8: vesicle-associated membrane protein 8, ITGB2: integrin 
subunit beta 2, ITGAM: integrin subunit alpha M, CXCL1: C-X-C motif chemokine ligand 1, CYBA: cytochrome B-245 alpha chain, CYBB: cytochrome 
B-245 beta chain (also known as NADPH oxidase 2), FCER1G: Fc receptor gamma chain, LCK: lymphocyte cell-specific protein-tyrosine kinase, PTPRJ: 
protein tyrosine phosphatase receptor type J (also known as SCC1 or DEP1)

(See figure on next page.)
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with CRY1/2 [36], studies also showed that upregulation 
of FTO and CRY1 attenuated atherosclerosis through 
macrophages and proinflammatory factors respectively 

[37, 38]. It was also reported that receptor tyrosine 
kinase-like orphan receptor (ROR) inverse agonist could 
induce an anti-atherogenic immune profile to decrease 
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plaque formation [39]. Besides, loss of Per1 enhanced 
the recruitment of macrophages through an increase in 
CC chemokine receptor 2 (Ccr2) expression level [40]. In 
addition, the chronic inflammation of large vessels sub-
jected to rhythmic myeloid cell recruitment is regulated 
by the rhythmic release of myeloid cell-derived CCL2 
[41]. All the available evidence suggests that chronophar-
macology-based therapy targeting RORB, RORC, PER1, 
CRY1, or FTO might constitute another approach for the 
treatment of atherosclerosis.

Our analysis also identified four significantly changed 
types of immune cells (M0 macrophages, gamma delta 
T cells, plasma cells, and monocytes) in plaques with 
higher immune infiltration. According to the correla-
tion analysis between genes and immune cells, seven 
genes (IGSF6, IL18, CECR1, FBP1, CAPG, HLA-DPA1 
and MMP7) exhibited good correlation with these 
immune cells. Previous studies have demonstrated 
that the interruption of IL18 function reduces athero-
sclerosis in mice [42], and loss-of-function mutations 
in CECR1 could lead to systemic vasculopathy or vas-
culitis [43]. In addition, CAPG modulates the protec-
tive effects of unidirectional shear stress and might 
be related to the macrophage responses to oxidized 
LDL [44, 45]. However, fewer studies have focused 
on how these genes regulate immune cells in athero-
sclerosis. Further exploration of their functions in the 

pathogenesis of atherosclerosis might provide new 
methods for atherosclerosis therapy.

The innovation of this study is the exploration of dif-
ferent immune infiltration profiles, potential pathways 
and common genes associated with different immune 
cells in atherosclerosis using plaques from different vas-
cular beds. Previous outstanding single-cell proteomic 
and transcriptomic study of plaques [46] and previous 
re-analysis of GSE100927 and GSE28829 [47] have only 
used the carotid plaques to identify the DEGs and to 
explore the immune infiltration, ignoring the heteroge-
neous nature of arteries from different peripheral vascu-
lar beds. The relationships between genes and different 
immune cells has not been explored in the previous study 
which has re-analysed GSE100927 and GSE28829 either 
[47]. Hence, our study might be more rational for iden-
tifying common cellular and molecular biological fea-
tures in the course of atherosclerosis by pooling plaques 
from different vascular beds together. In addition, the 
classification method for atheromatous plaques based 
on immune infiltration calculated by ssGSEA and ESTI-
MATE algorithm in our study might be complementary 
to traditional clinical classification methods based on 
gross pathology and histopathology. The proposed clas-
sification method might provide us a better understand-
ing of the molecular pathophysiological procedure of 
atherosclerosis.

Fig. 7  Identification of common genes related to plaques in the ImmuneScoreL and ImmuneScoreH clusters. CAPG: actin regulatory 
protein CAP-G, IGSF6: immunoglobulin superfamily member 6, IL18: interleukin-18, CECR1: cat eye syndrome critical region protein 1, FBP1: 
fructose-bisphosphatase 1, MMP7: matrix metallopeptidase 7. A Pearson correlation coefficients obtained for the correlations of CAPG, CECR1, 
IL18, IGSF6, and FBP1 with the relative proportions of M0 macrophages, gamma delta T cells, plasma cells and monocytes in the ImmuneScoreL 
cluster. B Scatterplot showing the correlations of the relative expression levels of CAPG, CECR1, IL18, IGSF6, and FBP1 to the relative proportions 
of M0 macrophages, gamma delta T cells, plasma cells and monocytes in the ImmuneScoreL cluster. C Pearson correlation coefficients obtained 
for the correlations of CAPG and MMP7 with the relative proportion of M0 macrophages, gamma delta T cells, plasma cells and monocytes in the 
ImmuneScoreH cluster. D Scatterplot showing the correlations of the relative expression levels of CAPG and MMP7 to the relative proportions of 
M0 macrophages, gamma delta T cells, plasma cells and monocytes in the ImmuneScoreH cluster. E Pearson correlation coefficients obtained for 
the correlations of CAPG with the relative proportion of M0 macrophages, gamma delta T cells, plasma cells and monocytes in the healthy controls. 
F Scatterplot showing the correlations of the relative expression levels of CAPG to the relative proportions of M0 macrophages, gamma delta T 
cells, plasma cells and monocytes in the healthy controls. The grey-shaded areas in the scatterplots represent the standard errors of the regression 
lines. R: correlation coefficient. The p values of all these genes were < 0.05 except for the correlation of the relative expression levels of CAPG to the 
relative proportions of gamma delta T cells in F 



Page 12 of 14Shen et al. BMC Med Genomics          (2021) 14:145 

However, our study has some limitations. First, there is 
no detail clinical information pertaining to the exact clin-
ical stages of plaques in GSE100927. Hence, our hypoth-
esis that plaques with higher immune infiltration might 
be at a more advanced stage of atherosclerosis, just like 
the results in GSE28829, needs to be cross validated in 
further study. Second, the results of this study are based 
on an analysis of gene expression values obtained from 
microarrays, and gene expression might not be directly 
equivalent to protein expression. Both in vitro and in vivo 
experiments should be performed to validate our findings 
at the gene transcription and translation levels. In addi-
tion, because the techniques of using in vivo or in vitro 
models for investigating the interaction between differ-
ent immune cells and stromal cells (including vascular 
endothelial cells and smooth muscle cells) are immature, 
next-generation sequencing and proteomics studies of 
atheromatous plaques from different vascular beds with 
larger sample sizes might increase the confidence of our 
results.

Conclusions
Taken together, the results obtained in our study pro-
vide novel insight into atherosclerosis: dysregulated 
in  situ immune responses, loss of circadian rhythm, 
and abnormal m6A modification might orchestrate and 
lead to the progression of atherosclerosis. Chronophar-
macology-based treatment targeting different immune 
cells (macrophage M0 and T cells gamma delta, plasma 
cells and monocytes) through different immune-related 
genes (CAPG, IGSF6, IL18, CECR1, FBP1, MMP7, 
HLA-DPA1, FTO, CRY1, RORB, and PER1) and 
immune-related pathways (IFN-γ pathway and PD-1 
signalling pathway) might serve as potential therapies 
for atherosclerosis.
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Protein tyrosine phosphatase non-receptor type-6; VAMP8: Vesicle associated 
membrane protein 8; ITGB2: Integrin subunit beta 2; ITGAM: Integrin subunit 
alpha-M; CXCL1: C-X-C motif chemokine ligand-1; CYBA: Cytochrome B-245 
alpha chain; CYBB: Cytochrome B-245 beta chain (also known as NADPH 
Oxidase 2); FCER1G: Fc receptor gamma-chain; LCK: Lymphocyte cell-specific 
protein-tyrosine kinase; PTPRJ: Protein tyrosine phosphatase receptor type-J 
(also known as SCC1 or DEP1); CAPG: Actin regulatory protein CAP-G; IGSF6: 
Immunoglobulin superfamily member-6; IL18: Interleukin-18; CECR1: Cat eye 
syndrome critical region protein-1; FBP1: Fructose-bisphosphatase-1; MMP7: 
Matrix metallopeptidase-7.

Supplementary Information
The online version contains supplementary material available at https://​doi.​
org/​10.​1186/​s12920-​021-​00991-2.

Additional file 1. Supplementary Figure 1: Consensus clustering analy‑
sis of atherosclerosis samples in GSE100927. (A) Plot showing the results 
from the principal component analysis (PCA) of the gene expression pro‑
files of 29 atheromatous plaques from the carotid arteries, 26 atheroma‑
tous plaques from the femoral arteries, 14 atheromatous plaques from 
the infrapopliteal arteries, 12 healthy control samples from the carotid 
arteries, 12 healthy control samples from the femoral arteries, and 11 
healthy control samples from the infrapopliteal arteries in the GSE100927 
dataset. (B) Cumulative distribution function (CDF) curve obtained from 
the consensus clustering analysis with k = 2–6 based on the Euclidean 
distance of the ssGSEA scores using the k-means clustering method. (C) 
Relative change in the area under the CDF curve obtained with k = 2–6. 
(D) Tracking plot for k = 2–6. (E)–(H) Consensus clustering matrices of k = 
2, 3, 5, 6.

Additional file 2. Supplementary Figure 2: Identification of immune 
infiltration in different atheromatous plaques in GSE100927.  (A) Boxplot 
comparing the relative proportion of 21 types of infiltrated immune cells 
between the ImmuneScoreL cluster and the ImmuneScoreH cluster. (B) 
Heatmap of the relative proportion of 21 types of infiltrated immune 
cells calculated using the CIBERSORT algorithm. (C) Correlations between 
21 types of infiltrated immune cells. Pearson correlation coefficients are 
indicated in the upper triangular matrix. The p values are indicated in the 
lower triangular matrix: blank: p > 0.05, *: p <= 0.05, **: p <= 0.01, ***: p 
<= 0.001, ****: p <= 0.0001.

Additional file 3. Supplementary Figure 3: Atherosclerosis subtypes 
and distinct immune cell infiltration of samples in GSE28829. (A) Heatmap 
of ssGSEA scores of all 29 atheromatous carotid plaques in GSE28829 
that were clustered based on the Euclidean distance using the Ward.D2 
method. (B) Cluster dendrogram of ssGSEA scores of the 29 atheroma‑
tous carotid plaques based on the Euclidean distance using Ward.D2 
method. (C) Cumulative distribution function (CDF) curve obtained from 
the consensus clustering analysis with k = 2–6 based on the Euclidean 
distance of the ssGSEA scores using the k-means clustering method. (D) 
Relative change in the area under the CDF curve obtained with k = 2–6. 
(E) Heatmap of the ssGSEA scores of plaques from the two subgroups in 
Figure S3B-C, as well as of the ImmuneScoreL cluster and the Immune‑
ScoreH cluster. (F)Boxplot comparing the relative proportion of 21 types 
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of infiltrated immune cells calculated by CIBERSORT between the Immu‑
neScoreL cluster and the ImmuneScoreH cluster. (G) The comparison of 
immune infiltration in health controls to atheromatous plaques derived 
from GSE28829 and GSE100927 which were calculated after removing 
batch effects.

Additional file 4. Supplementary Figure 4: Gene set enrichment 
analysis (GSEA) comparing atheromatous plaques in the ImmuneScoreH 
cluster with those in the ImmuneScoreL cluster of GSE28829. (A-F) KEGG 
canonical pathways were used as the a priori knowledge for the GSEA. 
(A) Primary immunodeficiency, (B) leukocyte transendothelial migration, 
(C) antigen processing and presentation, (D) natural killer cell-mediated 
cytotoxicity, (E) T cell receptor signalling pathway, and (F) B cell receptor 
signalling pathway were highly enriched in the ImmuneScoreH cluster. 
(G-L) The REACTOME subset of canonical pathways was used as the a 
priori information for the GSEA. (G-J) Interferon-related pathways, (K) PD-1 
signalling, and (L) neutrophil degranulation were highly enriched in the 
ImmuneScoreH cluster.

Additional file 5. Supplementary Figure 5: Comparison of the expres‑
sion of genes related to different immune regulators in GSE28829. ns: 
p > 0.05, *: p <= 0.05, **: p <= 0.01, ***: p <= 0.001, ****: p <= 0.0001. 
Supplementary Figure 5A–E were a set of comparisons between ather‑
omatous plaques in the ImmuneScoreH cluster with that in atheromatous 
plaques in the ImmuneScoreL cluster: box plot comparing the expres‑
sion of human leukocyte antigen (HLA)-related genes(S5A), immune 
checkpoint-related genes (S5B), IFN-γ pathway marker genes(S5C), m6A 
methylation regulator-related genes(S5D), circadian rhythm-related 
genes(S5E). Figure S5F summarized the consistent results between the 
GSE100927 and GSE28829 (ImmunceScoreH cluster vs. ImmunceScoreL 
cluster).

Additional file 6. Supplementary Table 1: Gene of interest defined 
based on prior biological knowledge.

Additional file 7. Supplementary Table 2: DEGs between ImmuneS‑
coreH cluster and other samples of GSE100927.

Additional file 8. Supplementary Table 3: DEGs between ImmuneS‑
coreH cluster and ImmuneScoreL cluster of GSE100927.
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