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ABSTRACT
Background: Observational studies have reported associations between serum phosphate and BMI in specific clinical

settings, but the nature of this relation in the general population is unclear.

Objectives: The aim of this study was twofold: to investigate the association between serum phosphate and BMI

and body composition, as well as to explore evidence of causality through a bidirectional one-sample Mendelian

randomization (MR) in the population-based Rotterdam Study (RS).

Methods: Observational associations between phosphate (mg/dL) and BMI, lean mass, and fat percentage (fat%),

estimated by DXA, were analyzed using multivariable regression models in 9202 participants aged 45–100 y from 3 RS

cohorts. The role of serum leptin was examined in a subgroup of 1089 participants. For MR analyses, allele scores with

6 single-nucleotide polymorphisms (SNPs) for phosphate and 905 SNPs for BMI were constructed in 7983 participants.

Results: Phosphate was inversely associated with BMI in the total population (β: –0.89; 95% CI: –1.17, –0.62), and

stronger in women (β: –1.92; 95% CI: –2.20, –1.65) than in men (β: –0.37; 95% CI: –0.68, –0.06) (P-interaction < 0.05).

Adjustment for leptin did not change results in men. In women, adjustment for leptin attenuated the association, but it

was not abolished (β: –0.94; 95% CI: –1.45, –0.42). Phosphate was inversely associated with fat%, but not with lean

mass, in both sexes. MR analyses suggested a causal effect of BMI on serum phosphate (β: –0.01; 95% CI: –0.02, 0.00)

but not vice versa.

Conclusions: Serum phosphate was inversely associated with BMI and fat% in a population-based study of middle-

aged and older adults, with a stronger effect in women than in men. Adjusting for leptin attenuated this relation in

women only. MR results suggest a causal effect of BMI on phosphate but not vice versa. An underlying sex dimorphism

in phosphate homeostasis should be further explored. J Nutr 2022;152:276–285.
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Introduction

Phosphate is a widely distributed mineral ion in the body
that plays an important role as an essential component of
cell signaling, energy metabolism, and nucleic acid synthesis
(1). Most phosphate (85%) is present within bone tissue
in hydroxyapatite crystals, whereas 15% is found in the
intracellular compartment and only 1% circulates freely in the
extracellular fluids (2).

Inverse associations between serum phosphate and BMI (in
kg/m2) but also between serum phosphate and waist-to-hip ratio
(WHR), waist circumference, and fat mass have been described
in specific populations such as in participants with nonmorbid
obesity, hypertension, and metabolic syndrome (3–6). Only a

few studies have been performed at the population level. The
largest study to date included 46,798 South Korean adults older
than 20 y without previous comorbidity, and the authors re-
ported a negative correlation of serum phosphate with waist cir-
cumference and BMI. After adjustment for age, sex, and calcium
concentrations, the association of serum phosphate with waist
circumference remained robust, but the association between
serum phosphate and BMI did not remain significant (7).

Several hypotheses have been proposed to explain the associ-
ation between serum phosphate and BMI and body composition
(8). Phosphate concentrations are regulated predominantly by
parathyroid hormone (PTH) and fibroblast growth factor 23
(FGF23) (9). In theory, the relation between phosphate and
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BMI and adiposity can be explained by either serum phosphate
or its regulators {PTH, FGF23, or 1,25-dihydroxyvitamin D
[1,25(OH)2D] or dietary phosphate} influencing adiposity or
by adiposity influencing phosphate homeostasis. Billington et
al. (8) reported an inverse association between phosphate and
fat mass in 1676 postmenopausal women and 323 community-
dwelling men without active disease. This association remained
significant after adjusting for age, PTH, and estimated glomeru-
lar filtration rate (eGFR) (8). Leptin, synthesized by adipocytes
and strongly associated with adiposity, has been shown to
function as a FGF23 secretagogue in mice and could therefore
influence phosphate (10, 11). A small case-control study in
20 women undergoing bariatric surgery showed higher leptin
and FGF23 concentrations in cases compared with controls, but
there was no difference in phosphate concentrations between
the groups (10).

Recent studies have shown that phosphate is associated
with all-cause mortality, cardiovascular mortality, and mor-
tality from chronic obstructive pulmonary disease in men
and progression of chronic kidney disease (CKD), among
other adverse outcomes (12, 13). Moreover, conditions of
low serum phosphate concentrations (hypophosphatemia) are
characterized by defects at multiple levels other than bone, such
as in glucose metabolism and muscle tissue (1, 5, 6, 14–16).
A possible phosphate–adiposity relation may play a role in
these associations, and if the relation between phosphate and
mortality and morbidity can be explained by BMI, this may have
consequences for health.

Due to lack of consistency and high heterogeneity of
the previous findings on the association between phosphate
and measures of adiposity, we aimed to investigate if serum
phosphate was associated with BMI in a population-based
setting with Caucasian elderly individuals with normal variation
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of both phosphate and BMI, as well as investigate sex
differences, frequently reported for phosphate and several
health-related outcomes (13, 17). Furthermore, we aimed
to explore which body compartment drives this association
and the role of potential confounders and regulators of
phosphate homeostasis. For the purposes of testing causality
and improving the inference of our results, Mendelian random-
ization (MR) analysis was applied. MR mimics a randomized
controlled trial by using natural genetic variation, which
makes it less susceptible to confounding (18). Importantly, MR
analysis is considered unaffected by reverse causation (19).
To this end, we performed a bidirectional MR analysis using
genetic variants for BMI and for phosphate as instrumental
variables (IVs).

Participants and Methods
Study population
We performed this cross-sectional observational study and one-sample
bidirectional MR study in the Rotterdam Study (RS). RS is a population-
based study of men and women aged 40 y or older and recruited in the
district of Ommoord, Rotterdam (20). It is now composed of 4 cohorts
named RS-I, RS-II, RS-III, and RS-IV (initiated in 1989, 2000, 2006, and
2016; total n ∼18,000 participants). Participants have been followed
through several visits since recruitment. Rationale and design have been
described previously (20). The RS was approved by the Medical Ethics
Committee of Erasmus MC and by the Ministry of Health, Welfare, and
Sport of the Netherlands. All participants provided written informed
consent to participate in the study and to have their information
obtained from treating physicians. For the current study, BMI, WHR,
and serum phosphate concentrations were assessed in the third visit
of RS-I (RS-I-3, henceforth referred to as RS-I) and in the baseline
visits of RS-II and RS-III. These visits are similar in design and data
collections. Measures of body composition were assessed at the fifth visit
of RS-I, the third visit of RS-II, and at baseline in RS-III (Supplemental
Figure 1). A total of 3582 participants from RS-I, 2362 from RS-II,
and 3258 from RS-III with complete information on phosphate, BMI,
and covariates were included to study the observational association
between serum phosphate and BMI. The total population of 9202
participants had a mean age of 64.9 y (range: 45–100 y), 56.5% was
female, and mean BMI was 27.3. Genotype data for MR analysis
were available for 3228, 1955, and 2800 participants from RS-I, RS-
II, and RS-III, respectively. The total sample sizes for the analyses with
WHR, fat mass, and lean mass modeled as the outcome are depicted in
Figure 1.

Clinical outcomes
Fasting blood samples were collected at the research center in
which serum phosphate concentrations were determined. The amount
of phosphorus determined in blood corresponds to the inor-
ganic fraction, or phosphate, present mostly under the forms of
HPO4

2– and H2PO4
– with a 4:1 ratio at a physiological pH

(2). The method for phosphate determination is based on the
formation of ammonium phosphomolybdate; this compound is
measured photometrically and directly proportional to phosphate
concentration.

BMI was estimated from weight and height obtained in the standing
position without shoes. Waist circumference was measured with a
tape measure halfway between the ribcage and the pelvic bone. Hip
circumference was measured at the maximal circumference of the hips.
WHR was calculated from these measurements. Body composition
variables, namely, fat mass (kg) and lean mass (kg), were determined
from total body scans performed with iDXA equipment (GE Lunar)
(20). Fat percentage (fat%) was estimated as fat mass (kg)/body weight
(kg) × 100. Lean mass index (LMI) was estimated as lean mass
(kg)/height (cm)2 × 100.
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FIGURE 1 Participant flowchart summarizing sample sizes for the different analyses. MR, Mendelian randomization analyses; RS, Rotterdam
Study; WHR, waist-to-hip ratio.

Confounder variables
Serum total calcium concentrations (mg/dL) were measured through
a colorimetric o-cresolphthalein complexone method (Roche). Con-
centrations of serum 25-hydroxyvitamin D (25(OH)D) (nmol/L)
were determined through an electrochemiluminescence immunoassay
(Roche). Due to seasonal variability in sunlight exposure, 25(OH)D
concentrations were adjusted for season and year of blood sampling,
applying a cosinor regression method; from these models, population
means were obtained and individual values were adjusted (21,
22). Serum creatinine concentrations were determined through an
enzymatic colorimetric assay based on the formation of sarcosine.
The Chronic Kidney Disease Epidemiology Collaboration equation
was applied to calculate the eGFR (23). Serum 17β-estradiol and
testosterone concentrations were determined by coat-a-count RIA
(Siemens Diagnostics). Due to limited amount of plasma per participant,
not all hormone concentrations could be determined in all participants.

Serum leptin concentrations were determined during the third visit
of RS-I, in a random subset of participants selected as part of a separate
case-cohort study (n = 489 men and n = 694 women). Leptin was
quantified using a multiplex immunoassay on a custom-designed human
multianalyte profile (Rules-Based Medicine) in a fasting blood sample.
Smoking status and level of education were assessed during home
interviews. Smokers were categorized as current smokers, ever smokers,
or never smokers. Level of education was categorized as primary, low,
intermediate, or high.

Genotyping
Participants were genotyped in the following platforms: Illumina
HumanHap550 BeadChip, Illumina 550 duo, or Illumina 610 and
660 quad single-nucleotide polymorphism (SNP) arrays. Variants were
filtered (24, 25) on call rate <95%, minor allele frequency <0.01,
and Hardy–Weinberg equilibrium P < 1.0 × 10–6 and subsequently
imputed to the Haplotype Reference consortium panel, release 1.1 (26).
KING software (27) was applied to identify highly related participants
(second degree or closer) through the estimation of kinship coefficients
for each pair of individuals both between and within the cohorts. A
kinship coefficient of 0.0884 was applied as a cutoff for second-degree
relatedness.

Mendelian randomization
Mendelian randomization uses genetic instruments as instrumental
variables to estimate the causal effect of a risk factor on an outcome.
To this end, we constructed 2 genetic risk scores (GRSs) to instrument
BMI by adding up the BMI-related SNPs reported in the genome-
wide association study (GWAS) by Yengo et al. (28) in 2018 (29).
This meta-analysis of GWAS on BMI identified 941 GWAS significant
independent SNPs from a conditional and joint multiple-SNP analysis

(COJO), including 655 SNPs from primary analysis, which explain
6.0% of the variance in BMI (28). Genotypes for all 941 SNPs were
available in our study population, and we constructed 2 BMI GRSs:
1 including the 655 SNPs and 1 including all 941 SNPs. SNPs with
an imputation quality score >0.8 were included for analysis (30).
Furthermore, allele frequencies for palindromic SNPs were checked to
decrease the possibility of strand coding errors. Palindromic SNPs with
a minor allele frequency of >0.42 were discarded.

Currently, 2 GWAS on serum phosphate have been published: an
European GWAS by Kestenbaum et al. (31) and a Japanese GWAS by
Kanai et al. (32). We constructed a GRS for serum phosphate using
the 13 phosphate-related SNPs that were reported in these GWAS. In
the European GWAS, the RS was part of the discovery sample, which
could result in bias from winner’s curse (33). For this reason, GWAS
summary statistics for serum phosphate were obtained from the UK
Biobank, and the 13 SNPs were checked for GWAS significance using
Neale Lab UK Biobank summary statistics (34, 35). Only the SNPs that
were also GWAS significant in the UK Biobank (i.e., P < 1.0 × 10–8)
were considered for inclusion in the phosphate GRS. Imputation quality
and palindromic SNPs were checked as described above.

The European GWAS on serum phosphate by Kestenbaum et al.
(31) and the GWAS on BMI by Yengo et al. (28) both included the RS.
Deriving weights from the data under analysis can result in severe bias
(29). Therefore, we performed the analyses with unweighted genetic risk
scores.

Statistical analysis
Differences between men and women were compared using independent
t test for continuous variables and χ2 test for categorical variables.
The cross-sectional associations between phosphate concentrations (in
mg/dL) with BMI and measures of body composition were examined
through multivariate linear regression models with BMI, WHR, fat
mass, lean mass, and fat% modeled as the dependent variables and
serum phosphate concentrations as the independent variable. Analyses
with BMI modeled as the dependent variable were performed in each of
the 3 different cohorts separately and were meta-analyzed by applying
a random-effects model with Comprehensive Meta Analysis Version
3 (36). Analyses with WHR, fat mass, lean mass, and fat% modeled
as the dependent variables were performed in RS-III, the cohort with
simultaneous measurements of laboratory data and DXA. We explored
potential sex differences in the association between serum phosphate
and BMI by including interaction terms of phosphate with sex in age-
adjusted models and performed sex-stratified analyses if there was
evidence of a different association between serum phosphate and BMI
across sexes (P-interaction < 0.10). The distribution of continuous
variables was examined using frequency distribution histograms and
Q-Q plots.
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Basic analyses were age adjusted. All analyses were further adjusted
for education level, smoking, eGFR, and for concentrations of total
calcium, 25(OH)D, 17β-estradiol, and testosterone. These confounders
were selected based on previously reported associations with phosphate
and/or with the outcomes. BMI analyses in RS-I were further adjusted
for leptin concentrations, which were available in ∼30% of participants
from RS-I.

Because fat mass and lean mass are related to one another, we tested
the correlation between fat mass and lean mass using Spearman cor-
relation coefficients. To avoid treating highly intercorrelated variables
as independent ones, analyses with fat mass and lean mass modeled
as outcomes were adjusted for LMI and fat%, respectively (37, 38).
Because increased obesity is related to increased visceral obesity, BMI
might be a confounder in the association between WHR and serum
phosphate (39). Therefore, analyses for WHR were further adjusted for
BMI.

We performed several sensitivity analyses. We restricted analysis to
participants without CKD [defined as eGFR <60 mL/(min·1.73 m2)
(23), n = 8125]. Early stages of CKD are associated with hyperphos-
phaturia when there is still an adequate renal response to FGF23 (40).
Furthermore, the measurements of serum phosphate and fat and lean
mass were simultaneous in RS-III but not in RS-I and RS-II. We therefore
proceeded to test the correlation for BMI and WHR measurements at
the 2 different time points, and we performed the body composition
analysis in RS-I and RS-II as a sensitivity analysis and meta-analyzed the
results with those from RS-III. All analyses were performed with IBM
SPSS software, version 21 (SPSS), Stata version 15 (StataCorp), and R
version 3.6.1 (R foundation for Statistical Computing).

Mendelian randomization analysis
One-sample bidirectional MR was performed in participants with data
on BMI, serum phosphate, covariates, and individual-level genotype
data. First, we tested the 3 assumptions of MR (41). To correct
for multiple testing of the independence assumption, a Bonferroni
correction was applied resulting in a corrected P value < 0.006
(0.05/9) [testing age, sex, education level, smoking, total calcium,
25(OH)D, eGFR, testosterone, and 17β-estradiol]. Next, MR analyses
were performed through 2-stage least squares (2sls) regressions (42)
using Stata, with the GRS as the instrumental variable. Analyses were
adjusted for age, sex, and the first 10 principal components to control
for population stratification. β, P value, and F statistics were considered.

To account for potential overestimation of results due to family
relatedness, 2sls MR analyses were repeated after randomly excluding
first- and second-degree relatives, estimated using KING software.
Because previous studies have shown an inverse relation of BMI with
vitamin D deficiency, an observation that has been confirmed through
MR, we performed an additional 25(OH)D-adjusted MR analysis by
including the same BMI GRS in the models as a covariate but weighting
each SNP for its effect on 25(OH)D in the study sample (43, 44).

MR–Egger, the weighted median estimator, and an adapted lasso
regression were applied to investigate potential pleiotropy (45).
Horizontal pleiotropy would violate the exclusion-restriction condition
in MR (18). MR–Egger is able to assess directional pleiotropy (41,
45) The adaptive lasso regression provides a consistent estimate while
allowing <50% of the instruments to be invalid (46). The weighted
median approach assumes that genetic instruments representing >50%
of the weights are valid IVs (42, 47). The adjusted continuously
updating estimator (CUE) was applied to account for the presence of
many weak instruments (48).

Results

The general characteristics of the study population, stratified
by sex, are depicted in Table 1. More than 90% of the study
population displayed serum phosphate concentrations within
the normal range [2.5–4.5 mg/dL (49)]. On average, women had
higher concentrations of serum phosphate, total calcium, and
17β-estradiol than men. Women tended to have higher BMI and

higher prevalence of obesity. Leptin concentrations were higher
in women than in men. Men generally had higher testosterone
concentrations, higher levels of education, and higher values
of WHR. Also, smoking was more prevalent in men than in
women.

Phosphate and BMI

Cross-sectional sex-combined linear regression analyses showed
a significant association between serum phosphate and BMI
(β: –1.44; 95% CI: –1.62, –1.25; P < 0.001) (Supplemental
Table 1). Further analyses were performed sex-stratified due
to evidence of an interaction between phosphate and BMI
across sexes (P-interaction < 0.001). Linear regression analyses
(Table 2 and Supplemental Table 2) showed a significant inverse
association between serum phosphate concentrations and BMI
in men and a more pronounced inverse relation in women after
adjustment for age, education level, smoking, total calcium,
25(OH)D, eGFR, 17β-estradiol, and testosterone.

Further adjustments of this analysis for leptin concentra-
tions, available in ∼30% of participants from RS-I (Table 3),
did not affect results in men. In contrast, leptin adjustment
attenuated but did not abolish the relation between serum
phosphate concentrations and BMI in women.

Phosphate and body composition

There was a positive correlation between fat and lean mass
in men and women (men: ρ: 0.248; P < 0.001; women: ρ:
0.369; P < 0.001). Furthermore, there was a positive correlation
between BMI and WHR in men and women (men: ρ: 0.616; P
< 0.001; women: ρ: 0.460; P < 0.001). To avoid treating highly
intercorrelated variables as independent ones, analyses with fat
mass modeled as the outcome were adjusted for LMI and lean
mass was adjusted for fat%. Analyses with WHR modeled as
the outcome were adjusted for BMI.

Table 4 displays the associations between serum phosphate
and measures of body composition in RS-III, the cohort with
simultaneous measurements of laboratory data and DXA.
Serum phosphate concentrations were inversely associated with
fat mass in women but not in men. Fat%, a measure of total
adiposity, was found to be inversely associated with serum
phosphate concentrations in both sexes. Serum phosphate
concentrations were not significantly associated with lean mass
in both sexes. WHR, a measurement of central adiposity, was
not found to be associated with serum phosphate in men but
women showed a significant inverse relation.

Sensitivity analyses

When repeating analyses in participants without CKD, we
found a borderline significant inverse relation between BMI and
serum phosphate concentrations in men and a significant inverse
relation in women (Supplemental Table 3).

BMI and WHR measurements from both visits in RS-I and
RS-II proved to be positively correlated in both sexes (BMI
men RS-I: ρ: 0.897, RS-II: ρ: 0.898; P < 0.001; BMI women
RS-I: ρ: 0.910, RS-II: ρ: 0.918; P < 0.001; WHR men RS-I:
ρ: 0.632, RS-II: ρ: 0.780; P < 0.001; WHR women RS-I: ρ:
0.462, women RS-II: ρ: 0.800; P < 0.001). We performed the
body composition analysis in RS-I and RS-II as a sensitivity
analysis and meta-analyzed the results with those from RS-
III (Supplemental Tables 4–7). Serum phosphate was inversely
associated with fat mass in both sexes. Serum phosphate was
also significantly associated with fat% in both sexes. Serum
phosphate was inversely associated with lean mass in women
but not in men. Serum phosphate was inversely associated
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TABLE 2 Association between serum phosphate concentrations and BMI in men and women aged 45–100 y from the Rotterdam
Study1

Men Women

Model n β (95% CI) P value n β (95% CI) P value

Model 12 4004 − 0.33 (−0.62, −0.05) 0.022 5198 − 2.22 (−2.50, −1.95) <0.001
Model 23 4004 − 0.37 (−0.68, −0.06) 0.019 5198 − 1.92 (−2.20, −1.65) <0.001

1β and 95% CIs were estimated from linear regression models and represent the change in BMI per increase in 1 mg/dL of phosphate. Analyses were performed in each of the
3 cohorts of the Rotterdam Study separately, and estimates were meta-analyzed using a random-effects meta-analysis model. eGFR, estimated glomerular filtration rate;
25(OH)D, 25-hydroxyvitamin D.
2Model 1: adjusted for age.
3Model 2: adjusted for age, smoking, education level, calcium and 25(OH)D, eGFR, testosterone, and 17β-estradiol.

with WHR only in women. In men, serum phosphate was
inversely associated with WHR, but after adjusting for BMI and
confounders, this association was no longer significant.

Genetic instruments

For the BMI GRS, 30 of 941 SNPs were discarded due to an
imputation quality score <0.8, and 6 SNPs were discarded as
they were palindromic with an allele frequency close to 0.42.
The remaining 905 SNPs from the COJO analysis and the 634
SNPs from the primary GWAS analysis were used to construct
an unweighted GRS for BMI.

Concerning the first MR assumption, the 905 and 634 BMI
GRSs were significantly associated with BMI, with F statistics
>79 in all cohorts (Supplemental Table 8). Neither score was
associated with serum phosphate. Concerning the second MR
assumption, there was a significant inverse association between
both the 905 and 634 BMI GRSs with 25(OH)D concentrations
(Supplemental Figures 2 and 3).

For the phosphate GRS, 13 phosphate-associated SNPs from
a European and Japanese GWAS were considered. GWAS
significance was checked in the UK Biobank. Six of 13 SNPs
were independently associated with phosphate or were in
high linkage disequilibrium (r2 >0.8) with an independently
associated SNP in the UK Biobank. These 6 SNPs were
used to construct a GRS for phosphate. The phosphate GRS
was associated with serum phosphate concentrations, with
F statistics >10 in all cohorts (Supplemental Table 9). The
score was not associated with BMI. The phosphate GRS
was not significantly associated with potential confounders
(Supplemental Figure 4).

MR

The 2sls regression of BMI, instrumented by the 905 SNP
GRSs, on serum phosphate as outcome showed a significant
causal effect of genetically determined BMI on serum phosphate
(Supplemental Table 10). The adapted lasso regression did
not show evidence for invalid instruments. MR–Egger did

not show evidence for pleiotropy (intercept, P = 0.317). The
weighted median estimator and the adapted CUE returned

similar estimates (Figure 2). Because the BMI GRS was
associated with serum 25(OH)D, we included adjustment for
genetically determined 25(OH)D by the same SNPs to assess
the likely direct [25(OH)D-independent] effects of BMI on
serum phosphate. In this 25(OH)D-adjusted model, estimates
were similar to the unadjusted model (data not shown). 2sls
regression with the 905 SNP GRSs was repeated after exclusion
of first- and second-degree relatives and showed a significant
causal effect of genetically determined BMI on serum phosphate
in this group (Supplemental Table 11). On the other hand, 2sls
regression with the 634 SNP GRSs on serum phosphate showed
similar estimates, but it did not reach significance (Supplemental
Table 12).

The 2sls regression of serum phosphate, instrumented by
the 6 SNP GRSs, on BMI as outcome showed no evidence of
a causal effect of genetically determined phosphate on BMI
(Supplemental Table 13).

Discussion

Our analyses in 3 cohorts of a population-based study of
Caucasian elderly individuals consistently showed that serum
phosphate concentrations were inversely associated with BMI in
both sexes, and this association was not influenced by education
level, smoking, total calcium, 25(OH)D, eGFR, and gonadal
steroids. Associations were significantly stronger in women
compared with men, and in a subset analysis, we found leptin
adjustments to attenuate but not abolish the significant results.
Furthermore, phosphate was also associated with fat mass in
women but not in men. Phosphate proved to be significantly
associated with fat% in both sexes. With bidirectional MR
analysis, we found that BMI lowers phosphate (1-unit higher
BMI lowered phosphate by 0.01 mg/dL), but phosphate does
not seem to affect BMI. Although the effect estimates from MR

TABLE 3 Association between serum phosphate concentrations and BMI in men and women aged 61–100 y with serum leptin
measurements from RS-I1

Men Women

RS-I n β (95% CI) P value n β (95% CI) P value

Model 12 471 − 0.91 (−1.53, −0.28) 0.005 618 − 2.65 (−3.40, −1.89) <0.001
Model 23 471 − 1.14 (−1.77, −0.51) <0.001 618 − 2.33 (−3.08, −1.58) <0.001
Model 34 471 − 1.13 (−1.67, −0.59) <0.001 618 − 0.94 (−1.45, −0.42) <0.001

1β and 95% CIs were estimated from linear regression models and represent the change in BMI per increase in 1 mg/dL of phosphate. eGFR, estimated glomerular filtration
rate; RS, Rotterdam Study; 25(OH)D, 25-hydroxyvitamin D.
2Model 1: adjusted for age.
3Model 2: adjusted for age, smoking, education level, calcium and 25(OH)D concentrations, eGFR, testosterone, and 17β-estradiol.
4Model 3: adjusted for age, smoking, education level, calcium and 25(OH)D concentrations, eGFR, testosterone, 17β-estradiol, and leptin.
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TABLE 4 Association between serum phosphate concentrations and measures of body composition in men and women aged
45–88 y from RS-III with measures of body composition1

Men Women

Characteristic n β (95% CI) P value n β (95% CI) P value

Fat mass
Model 12 469 − 1.93 (−3.79, −0.07) 0.042 671 − 4.43 (−6.26, −2.59) <0.001
Model 23 469 − 1.29 (−3.06, 0.48) 0.15 671 − 4.11 (−5.97, −2.24) <0.001
Model 34 469 − 1.34 (−3.08, 0.40) 0.13 671 − 3.25 (−4.81, −1.69) <0.001

Fat percentage
Model 12 469 − 1.66 (−3.02, −0.30) 0.017 671 − 2.34 (−3.63, −1.05) <0.001
Model 23 469 − 1.45 (−2.76, −0.14) 0.031 671 − 2.23 (−3.53, −0.93) 0.001
Model 34 469 − 1.44 (−2.75, −0.13) 0.032 671 − 1.83 (−3.04, −0.62) 0.003

Lean mass
Model 12 469 − 0.34 (−1.56, 0.87) 0.58 671 − 1.02 (−2.00, −0.04) 0.042
Model 23 469 0.08 (−1.18, 1.34) 0.92 671 − 0.85 (−1.87, 0.16) 0.10
Model 34 469 0.07 (−1.20, 1.33) 0.92 671 − 0.28 (−1.25, 0.69) 0.57

WHR
Model 12 1370 − 0.01 (−0.014, 0.002) 0.17 1775 − 0.02 (−0.02, −0.01) <0.001
Model 23 1370 − 0.01 (−0.02, 0.00) 0.045 1775 − 0.02 (−0.03, −0.01) <0.001
Model 34 1370 − 0.004 (−0.01, 0.003) 0.22 1775 − 0.01 (−0.02, −0.002) 0.011

1β and 95% CIs were estimated from linear regression models and represent the change in outcome variable per increase in 1 mg/dL of phosphate. eGFR, estimated
glomerular filtration rate; LMI, lean mass index; RS, Rotterdam Study; WHR, waist-to-hip ratio; 25(OH)D, 25-hydroxyvitamin D.
2Model 1: adjusted for age.
3Model 2: adjusted for age, smoking, education level, calcium and 25(OH)D concentrations, eGFR, testosterone, and 17β-estradiol.
4Model 3: adjusted for age, smoking, education level, calcium and 25(OH)D concentrations, eGFR, testosterone, 17β-estradiol, and body composition. WHR was adjusted for
BMI, lean mass for fat percentage, and fat mass and fat percentage for LMI.

analyses should not be interpreted literally, they do provide us
more insight in phosphate homeostasis (19, 50). This study adds
to the existing knowledge of phosphate homeostasis. Recent
studies have shown that phosphate is associated with several
health-related outcomes (12, 13). Our findings imply that the
phosphate–adiposity relation should be taken into account
when considering associations of serum phosphate, and if the
relation between phosphate and mortality and morbidity can
be explained by BMI, this may have health consequences.

A key assumption of MR analysis is that the genetic
instrument must influence the outcome only through the
exposure and not through other pathways (“horizontal
pleiotropy”) (18). We performed several sensitivity analyses
to test potential pleiotropic effects of the SNPs in the BMI
GRS and to assess the credibility of our MR results (42).
These analyses (including adapted lasso regression, MR–Egger,

weighted median approach, and adjusted CUE) all returned
similar estimates.

Our data suggest that BMI lowers phosphate. Several
theories may explain this effect. A recent MR study showed
that a higher BMI leads to a lower 25(OH)D concentration
(43). The active form of vitamin D, 1,25(OH)2D, is synthesized
from 25(OH)D and increases phosphate absorption from the
intestine. A decrease in 25(OH)D may therefore decrease phos-
phate absorption from the intestine. However, it must be added
that, in contrast to its role on calcium homeostasis, 1,25(OH)2D
is likely to influence phosphate homeostasis in considerable
magnitude only at the extremes of its concentration (51). We
estimated the effect of genetically predicted BMI on phosphate,
controlling for the genetically determined vitamin D by the same
SNPs (44). This resulted in similar estimates with borderline
significance.

FIGURE 2 Mendelian randomization results for BMI and serum phosphate in men and women aged 45–100 y from the Rotterdam Study. CUE:
continuously updated estimator; GRS, genetic risk score; MR, Mendelian randomization; P, phosphate; SNP, single-nucleotide polymorphism.
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A positive relation between BMI, measures of central adi-
posity, and FGF23 concentrations has recently been described
in several studies (52, 53). Hu et al. (54) found a positive
association of serum FGF23 with abdominal obesity in 597
obese and nonobese men. In 591 postmenopausal women, both
BMI and abdominal obesity were independently associated with
serum intact FGF23, but there was no such association in
premenopausal women (n = 411) (54). FGF23 is the most
potent phosphaturic agent discovered so far. Holecki et al. (55)
reported a positive association between phosphate and intact
and cleaved FGF23 but found no association between BMI and
measures of intact and cleaved FGF23 in 3115 elderly Polish
male and female participants (9).

We observed a >50% attenuation of the effect estimate in
women after adjusting for leptin. Leptin derives from white
adipose tissue, and its concentrations reflect with high accuracy
the amount of fat mass (11). Consistently, leptin-deficient
mice display significantly higher concentrations of phosphate,
calcium, and 1,25-dihydroxyvitamin D than wild-type mice
(56). Interestingly, leptin has been recently described as a
stronger predictor of FGF23 concentrations in women than
1,25(OH)2D concentrations (10). Furthermore, the existence of
leptin receptors at the kidney level (proximal straight tubules,
loop of Henle, distal tubules, and collecting ducts) leaves
room for a potential additional effect of leptin as a direct
phosphaturic agent (11, 57). Thus, a phosphaturic effect of
leptin through FGF23 and potentially also directly might partly
explain the inverse association observed between BMI and
phosphate concentrations, as reflected in the attenuation of
the association after leptin adjustment in women. Previous
studies have shown that leptin adjustments attenuate but
not abolish the positive relation between FGF23 and body
weight, BMI, and fat mass in both sexes (52). Collectively,
these data support the concept that the relation between
adipocytes and mineral metabolism is not fully mediated
through leptin. On the other hand, leptin adjustment did not
modify the association between BMI and phosphate in men,
suggesting a sex dimorphism in the relation between leptin
and phosphate concentrations. The potential role of “leptin
resistance,” in which leptin action is limited in obese states, on
this sex dimorphism remains to be elucidated (58, 59). Further
research will be needed to clarify our observations and to
uncover the mechanisms underlying the sex dimorphism in this
association.

We also considered the role of gonadal steroids as phosphate
regulators as this has recently been reported. 17β-Estradiol
treatment has been shown to induce phosphaturia in rats,
but also in women, through a PTH-independent mechanism
(60–62). In addition, testosterone concentrations were shown
to exert an important role in regulating phosphate concen-
trations, even with a similar magnitude as PTH (63). We
tested if 17β-estradiol or testosterone concentrations were
playing a role as potential confounders of the observed
associations. However, the adjustments for gonadal steroids
did not change the association of phosphate with BMI in
either sex.

Furthermore, we assessed the potential role for renal
impairment, as obesity is associated with CKD progression and
early stages of CKD are associated with hyperphosphaturia
when there is still an adequate renal response to FGF23 (40,
64). We did not find that our results were confounded by CKD,
as excluding participants with eGFR <60 mL/(min·1.73 m2)
yielded very similar results to those obtained from the entire
study population.

We observed that phosphate concentrations were related to
total adiposity, as reflected by fat%. This relation was found
in both sexes but again stronger in women. The association
between phosphate and WHR was mainly explained by BMI.
This finding is in contrast with a previous report that suggested
that phosphate was associated with fat distribution rather than
with obesity itself (3).

This study has several limitations. The population is
composed of European Caucasians, precluding inference to
other populations or ethnic groups. We had no availability
of serum FGF23, 1,25(OH)2D, or PTH concentrations. PTH
decreases phosphate by increasing renal phosphate excretion.
Furthermore, it has been shown that PTH is associated with
BMI in obese participants and with fat mass in healthy
postmenopausal women. Therefore, PTH could partly explain
the association between phosphate and BMI (8–10, 65). Body
composition was not measured in the same visit as the serum
phosphate concentrations in the total research population, only
in a subset, but results were mostly similar. Last, the F statistic
for the MR analyses with instrumented phosphate was <10,
which makes these analyses prone to weak instrument bias.
Still, we found that the direction of the effect of the MR analyses
with instrumented phosphate is opposite from the phenotypic
analysis and from the MR analyses with instrumented BMI.
Our study has several strengths, though. We were able to test
and replicate findings in 3 large population-based cohorts,
displaying normal variation of phosphate and BMI and there-
fore showing that this association is not restricted to subsets.
Due to the sample size, sex-stratified analyses were feasible,
and this highlighted the significant sex differences in our
findings. Moreover, potentially important confounders could
be investigated in this study. In addition, leptin measurements
were available in a subset of the population, making it possible
to further explore the potential mechanisms underlying the
observed associations. An important strength of our study is the
availability of genotype data, which allowed us to undertake
a step forward in causal inference through the implementation
of MR.

In summary, we found an inverse association between serum
phosphate concentrations and BMI and fat% in Caucasian
elderly individuals, with a significantly stronger effect in women
compared with men. Bidirectional MR analysis indicated that
BMI lowers phosphate and not the other way around. We found
that serum leptin explained part of the association between
phosphate and BMI in women, suggesting that fat mass is
a regulator of phosphate homeostasis through production
of leptin. Further research is needed to increase power and
replicate our findings, especially regarding the role of leptin, and
to elucidate the reasons underlying the observed sex differences.
Our findings imply that the phosphate–adiposity relation should
be taken in account when considering associations of serum
phosphate.
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