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Abstract: Diabetic neuropathy (DN) is a major complication of diabetes mellitus. We have previously
reported the efficacy of Stachybotrys microspora triprenyl phenol-44D (SMTP-44D) for DN through its
potential antioxidant and anti-inflammatory activities. However, the mechanisms underlying the
antioxidant and anti-inflammatory activities of SMTP-44D remain unclear. The present study aimed
to explore the mechanism of these effects of SMTP-44D in regard to its inhibition of soluble epoxide
hydrolase (sEH) in immortalized mouse Schwann cells (IMS32) following high glucose treatment.
IMS32 cells were incubated in a high glucose medium for 48 h and then treated with SMTP-44D for
48 h. After incubation, the ratio of epoxyeicosatrienoic acids (EETs) to dihydroxyeicosatrienoic acids
(DHETs), oxidative stress markers, such as NADPH oxidase-1 and malondialdehyde, inflammatory
factors, such as the ratio of nuclear to cytosolic levels of NF-κB and the levels of IL-6, MCP-1, MMP-
9, the receptor for the advanced glycation end product (RAGE), and apoptosis, were evaluated.
SMTP-44D treatment considerably increased the ratio of EETs to DHETs and mitigated oxidative
stress, inflammation, RAGE induction, and apoptosis after high glucose treatment. In conclusion,
SMTP-44D can suppress the induction of apoptosis by exerting antioxidant and anti-inflammatory
effects, possibly through sEH inhibition. SMTP-44D can be a potential therapeutic agent against DN.

Keywords: diabetic neuropathy; IMS32; Schwann cell; soluble epoxide hydrolase; epoxyeicosatrienoic
acid; antioxidant; anti-inflammatory; SMTP; SMTP-44D

1. Introduction

Diabetic neuropathy (DN), along with retinopathy and nephropathy, is one of the
most frequent diabetic complications, affecting approximately 50% or more of patients with
diabetes [1]. DN appears in the early stages of diabetes, with symptoms of allodynia and
hyperalgesia. The pathological progression of DN may lead to paresthesia and, in the worst
case, gangrene leading to amputation of the foot [2]. Therefore, DN has become a social
problem that severely degrades the quality of life and causes a massive increase in medical
costs. The persistence of hyperglycemia induces oxidative stress and fatty acid increases,
which activate the DN-associated metabolic pathways, namely the protein kinase C, polyol,
advanced glycation end products, and hexosamine pathways. Especially, oxidative stress is
considered the final common pathway of cellular injury under hyperglycemic conditions [3].
Furthermore, not only oxidative stress but also inflammation plays an important role in
structural and functional damage associated with the pathologic progression of DN [4–6].
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The underlying etiology of DN is multifactorial, and multiple pathways are involved in DN
pathogenesis. However, detailed mechanisms underlying DN have not yet been elucidated.

Stachybotrys microspora triprenyl phenols (SMTPs) are a family of small-molecule
triprenyl phenol metabolites derived from the fungus S. microspora [7,8]. Among the
SMTPs, SMTP-7 was identified to show excellent therapeutic activities in several types of is-
chemic models in rodents and monkeys [9–15]. On the other hand, SMTP-44D [16] has been
reported to have effective antioxidant and anti-inflammatory activities [17–19]. Recently, we
demonstrated that SMTP-44D improves neural function, mechanical allodynia, and thermal
hyperalgesia associated with DN through its antioxidant and anti-inflammatory activi-
ties [20]. However, we have not yet clarified the underlying mechanisms by which SMTP-
44D improves neurological function via its antioxidant and anti-inflammatory activities.

It is postulated that SMTP-44D inhibits inflammation by inhibiting soluble epoxide
hydrolase (sEH) [8,17]. Moreover, SMTP-44D exhibits antioxidative activity owing to its
chemical structure [8,18]. sEH hydrolyzes epoxyeicosatrienoic acids (EETs) to dihydroxye-
icosatrienoic acids (DHETs). EETs are potent endogenous signaling molecules involved in
anti-inflammatory, vascular dilation, angiogenesis, neuroprotection, and analgesia [21–23].
This suggests that the antioxidant and anti-inflammatory activities of SMTP-44D via an
sEH inhibition may improve DN-related neural function, mechanical allodynia, and ther-
mal hyperalgesia.

Schwann cells are glial cells of the peripheral nervous system that support neurons and
maintain the structural and functional integrity of nerves. In diabetes, Schwann cells are
subjected to hyperglycemic insults, and their supporting functions are disrupted, resulting
in peripheral nerve dysfunction [24,25]. The collapse of mitochondrial function in Schwann
cells associated with glial support can cause primary neuronal degeneration, suggesting
that Schwann cell dysfunction directly affects neural function [26]. Therefore, Schwann cell
lines, such as immortalized mouse Schwann cells (IMS32), have been widely applied to
in vitro models of DN [24,27].

Thus, the present study aimed to explore the mechanism underlying the antioxidant
and anti-inflammatory effects of SMTP-44D via its sEH inhibitory action.

2. Results
2.1. Ratio of EETs to DHETs in Response to SMTP-44D in IMS32 under High Glucose Conditions

The ratio of 11(12)- and 14(15)-EETs to corresponding DHETs was measured to evaluate
the sEH inhibition effect. Figure 1 shows the effects of SMTP-44D on the ratio of 11(12)-
and 14(15)-EET/DHET as assessed by LC-ESI-MS at 96 h. In the high glucose, normal
saline (HG + NS) group, the ratio of 11(12)-EET/DHET (p < 0.01, 0.36 ± 0.08) and 14(15)-
EET/DHET (p < 0.05, 2.23 ± 0.38) was significantly decreased compared to that in the
normal glucose, normal saline (NG + NS) group (1.72 ± 0.32 and 4.61 ± 0.81, respectively).
The HG + SMTP-44D (30 µM) treatment group showed a significant increase in the ratio
of 11(12)-EET/DHET (p < 0.01 1.34 ± 0.18) and 14(15)-EET/DHET (p < 0.05, 3.72 ± 0.55)
compared to the HG + NS group.
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the HG treatment. The data are expressed as the mean  S. E. M. (n = 3). * p  0.05, ** p  0.01 vs. 

NG+NS group; #p  0.05, ##p  0.01 vs. HG+NS group by one-way analysis of variance followed by 

Bonferroni test. NG, normal glucose; HG, high glucose; NS, normal saline. 

2.2. Effects of SMTP-44D on NF-κB Nuclear Migration in IMS32 Cells under High Glucose 

Conditions 

The levels of nuclear NF-κB, full-length and soluble forms of RAGE (f-RAGE and s-

RAGE, respectively), and MMP-9, which cleaved f-RAGE to form sRAGE, were deter-

mined to evaluate the impact of SMTP-44D on high glucose-induced inflammatory re-

sponses in IMS32 cells. Figure 2 shows the effects of SMTP-44D on the NF-κB nuclear 

migration (nuclear fractions/nuclear fractions + cytosolic fractions) in the lysate, f-RAGE 

(RAGE in the lysate), s-RAGE (RAGE in the supernatant), and MMP-9 in the supernatant, 

as assessed by ELISA at 96 h. In the HG + NS group, nuclear migration of NF-B (p < 0.01, 

0.33  0.06), f-RAGE (p < 0.01, 156.07  16.08 pg/mg protein), s-RAGE (p < 0.01, 257.82  

79.21 pg/mg protein), and MMP-9 (p < 0.01, 0.20  0.04 ng/mg protein) were significantly 

increased as compared to those in the NG + NS group (0.10  0.02; 24.09  6.63 pg/mg 

protein; 20.60  2.25 pg/mg protein; and 0.06  0.01 ng/mg protein, respectively). The HG 

+ SMTP-44D (30 μM) treatment group resulted in significant decreases in the nuclear mi-

gration of NF-B (p < 0.05, 0.14  0.05), f-RAGE (p < 0.01, 65.53  17.56 pg/mg protein), s-

RAGE (p < 0.05, 43.74  1.63 pg/mg protein), and MMP-9 (p < 0.05, 0.10  0.004 ng/mg 

protein) compared to the HG + NS group. 

Figure 1. The ratio of 11(12)-EET/DHET (A) and 14(15)-EET/DHET (B) in response to SMTP-44D
in IMS32 cells under high glucose conditions. IMS32 cells were incubated with SMTP-44D (30 µM)
from 48 to 96 h after the HG treatment. The levels of EETs and DHETs were determined 96 h after
the HG treatment. The data are expressed as the mean ± S. E. M. (n = 3). * p < 0.05, ** p < 0.01 vs.
NG + NS group; # p < 0.05, ## p < 0.01 vs. HG + NS group by one-way analysis of variance followed
by Bonferroni test. NG, normal glucose; HG, high glucose; NS, normal saline.

2.2. Effects of SMTP-44D on NF-κB Nuclear Migration in IMS32 Cells under High
Glucose Conditions

The levels of nuclear NF-κB, full-length and soluble forms of RAGE (f-RAGE and s-
RAGE, respectively), and MMP-9, which cleaved f-RAGE to form sRAGE, were determined
to evaluate the impact of SMTP-44D on high glucose-induced inflammatory responses
in IMS32 cells. Figure 2 shows the effects of SMTP-44D on the NF-κB nuclear migration
(nuclear fractions/nuclear fractions + cytosolic fractions) in the lysate, f-RAGE (RAGE in
the lysate), s-RAGE (RAGE in the supernatant), and MMP-9 in the supernatant, as assessed
by ELISA at 96 h. In the HG + NS group, nuclear migration of NF-κB (p < 0.01, 0.33 ± 0.06),
f-RAGE (p < 0.01, 156.07 ± 16.08 pg/mg protein), s-RAGE (p < 0.01, 257.82 ± 79.21 pg/mg
protein), and MMP-9 (p < 0.01, 0.20 ± 0.04 ng/mg protein) were significantly increased
as compared to those in the NG + NS group (0.10 ± 0.02; 24.09 ± 6.63 pg/mg protein;
20.60 ± 2.25 pg/mg protein; and 0.06 ± 0.01 ng/mg protein, respectively). The HG + SMTP-
44D (30 µM) treatment group resulted in significant decreases in the nuclear migration of
NF-κB (p < 0.05, 0.14 ± 0.05), f-RAGE (p < 0.01, 65.53 ± 17.56 pg/mg protein), s-RAGE
(p < 0.05, 43.74 ± 1.63 pg/mg protein), and MMP-9 (p < 0.05, 0.10 ± 0.004 ng/mg protein)
compared to the HG + NS group.

2.3. Levels of NOX-1, MDA, IL-6, and MCP-1 in Response to SMTP-44D in IMS32 Cells under
High Glucose Conditions

The levels of NOX-1, MDA as a measure of reactive oxygen species, IL-6, and MCP-1
were measured to evaluate the exacerbation of inflammation in IMS32 cells under high
glucose conditions. Figure 3 summarizes the effects of SMTP-44D on the production
of MDA in the lysate as assessed by the TBARS assay and on the expression of NOX-
1 in the lysate as well as the production of IL-1β and IL-6 in the lysate as assessed by
ELISA at 96 h. In the HG + NS group, the levels of NOX-1 (p < 0.01, 1.74 ± 0.22 ng/mg
protein), MDA (p < 0.01, 58.9 ± 14.03 nmol/mg protein), IL-6 (p < 0.01, 49.02 ± 11.76 pg/mg
protein), and MCP-1 (p < 0.01, 138.01 ± 19.04 ng/mg protein) were significantly increased as
compared to those in the NG + NS group (0.29 ± 0.05 ng/mg protein; 2.86 ± 1.16 nmol/mg
protein; 15.71 ± 3.34 pg/mg protein; and 54.80 ± 13.32 ng/mg protein, respectively). The
HG + SMTP-44D (30 µM) treatment group showed significant decreases in the levels of
NOX-1 (p < 0.01, 0.76 ± 0.04 ng/mg protein), MDA (p < 0.01, 11.29 ± 0.59 nmol/mg protein),
IL-6 (p < 0.01, 9.66 ± 4.87 pg/mg protein), and MCP-1 (p < 0.01, 75.78 ± 2.09 ng/mg protein)
compared to the HG + NS group.
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Figure 2. Nuclear migration of NF-κB (A) and the levels of MMP-9 (B), f-RAGE (C), and s-RAGE
(D) in response to SMTP-44D in IMS32 cells under high glucose conditions. IMS32 cells were
incubated with SMTP-44D (30 µM) from 48 to 96 h after the HG treatment. The nuclear migration of
NF-κB (A) and the levels of MMP-9 (B), f-RAGE (C), and s-RAGE (D) were determined 96 h after the
HG treatment. The data are expressed as the mean ± S. E. M. (n = 3). ** p < 0.01 vs. NG + NS group; #
p < 0.05, ## p < 0.01 vs. HG + NS group by one-way analysis of variance followed by Bonferroni test.
NG, normal glucose; HG, high glucose; NS, normal saline.

2.4. Effects of SMTP-44D on Apoptosis in IMS32 Cells under High Glucose Conditions

TUNEL-positive cells were measured to detect Schwann cell apoptosis. Figure 4
shows the effects of SMTP-44D on apoptosis, as assessed by the TUNEL assay at 96 h. In
the HG + NS group, the number of TUNEL-positive cells (p < 0.05, 1.66 ± 0.34%) was
significantly higher than that in the NG + NS group (0.54 ± 0.16%). The HG + SMTP-44D
(30 µM) treatment group showed a significant decrease in the number of TUNEL-positive
cells (p < 0.05, 0.62 ± 0.35) compared to that in the HG + NS group.
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Figure 3. The levels of NOX-1 (A), MDA (B), IL-6 (C), and MCP-1 (D) in response to SMTP-44D in
IMS32 cells under high glucose conditions. IMS32 cells were incubated with SMTP-44D (30 µM)
from 48 to 96 h after the HG treatment. The levels of NOX-1 (A), MDA (B), IL-6 (C), and MCP-1
(D) were determined 96 h after the HG treatment. The data are expressed as the mean ± S. E. M.
(n = 3). ** p < 0.01 vs. NG + NS group; ## p < 0.01 vs. HG + NS group by one-way analysis of variance
followed by Bonferroni test. NG, normal glucose; HG, high glucose; NS, normal saline.
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Figure 4. Evaluation of apoptosis in response to SMTP-44D in IMS32 cells under high glucose
conditions. IMS32 cells were incubated with SMTP-44D (30 µM) from 48 to 96 h after the HG
treatment. Apoptosis analysis by the TUNEL assay was performed 96 h after the HG treatment.
Representative images of TUNEL-positive cells (green fluorescence) labeled with dUTP and nuclei
(blue fluorescence) stained with DAPI solution are shown. White arrows indicate TUNEL-positive
cells. The data are expressed as the mean ± S. E. M. (n = 3). * p < 0.05 vs. NG + NS group; # p < 0.05
vs. HG + NS group by one-way analysis of variance followed by Bonferroni test. NG, normal glucose;
HG, high glucose; NS, normal saline.

3. Discussion

The present study suggested that SMTP-44D exhibited antioxidant and anti-inflammat-
ory effects through the inhibition of sEH in IMS32 cells following high glucose treatment.
We confirmed that SMTP-44D inhibited the metabolism of EETs to DHETs, which could
be implicated in the reduced migration of NF-κB from the cytoplasm to the nucleus. The
antioxidant effect of SMTP-44D may be related to the inhibition of the nuclear migration
of NF-κB, which decreases the expression of the f-RAGE, leading to a decrease in the
expression of NOX-1. This, in turn, suppresses the expression of reactive oxygen species
as assessed as a decrease in MDA. The SMTP-44D-mediated reduction in NF-κB nuclear
migration can be attributed to the suppression of IL-6, MCP-1, and MMP-9. Moreover, the
decreased level of s-RAGE, which is produced by a cleavage of f-RAGE by MMP-9, can be
a result of the decreased production of MMP-9. These antioxidant and anti-inflammatory
effects of SMTP-44D may contribute to the mechanism of the suppression of Schwann cell
apoptosis, which is involved in the pathological development of DN.

EETs are involved in the downregulation of NF-κB activation [28,29]. This fact suggests
that the anti-inflammatory effect of EETs was exerted via the suppression of NF-κB activity
(Figure 1). Node K et al. [30] demonstrated the anti-inflammatory effects of 11(12)-EET.
Additionally, 14(15)-EET protects neurons from apoptosis by promoting mitochondrial
biogenesis and function [31]. It is possible that SMTP-44D inhibits apoptosis not only by
downregulating NF-κB activation but also by affecting the mitochondrial pathway. The
NF-κB-dependent upregulation of f-RAGE expression leads to oxidative damage due to
lipid peroxides and hydrogen peroxide [32]. In the present study (Figure 2), we confirmed
that the high glucose treatment increased f-RAGE expression and nuclear migration of
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NF-κB, which have been implicated in the induction of several pro-inflammatory cytokines
and chemokines, such as IL-6, MCP-1, and MMP-9 [33,34]. Indeed, we observed significant
increases in IL-6, MCP-1, and MMP-9 secretion from IMS32 cells (Figures 2 and 3). MMP-
9 is reported to be involved in the cleavage of f-RAGE on the cell membrane and is
released from the surface of the cell membrane as s-RAGE [35,36]. As shown in Figure 2,
s-RAGE was abundant in the supernatant, along with a significant increase in MMP-9
secretion upon high glucose treatment. The binding of f-RAGE to advanced glycation end-
product (AGE) activates NOX, which enhances intracellular oxidative stress and induces
the secretion of various cytokines through NF-κB activation [37]. In the present study, f-
RAGE expression was significantly increased by the high glucose treatment, suggesting that
the increase in NOX-1 expression was accompanied by an increase in the release of reactive
oxygen species, leading to an increase in MDA expression (Figures 2 and 3). Schwann cell
apoptosis is caused by high glucose-induced oxidative stress and inflammatory factors,
which are involved in DN pathogenesis [38,39]. Furthermore, Schwann cell apoptosis has
been reported to induce myelin degeneration [38]. In the present study, we suggest that
apoptosis was induced by an increase in MDA, IL-6, and MCP-1 secretion in IMS32 cells
after high glucose treatment (Figure 4). In addition, our previous report showed a thinning
of myelin in the sciatic nerve caused by hyperglycemia [20]; therefore, myelin degeneration
could be caused by apoptosis of Schwann cells in the sciatic nerve.

Since the main purpose of this study was to explore the mechanism of the action of
SMTP-44D, a dose-dependent study was not performed. In addition, SMTP-44D could
have ameliorated neuropathy by exerting effects in addition to the inhibition of sEH C-
terminal domain epoxide hydrolase (C-EH) since SMTP-44D inhibits N-terminal domain
phosphatase activity along with the C-EH [19,40]. Therefore, it is necessary to clarify the
differences in activity between SMTP-44D and a highly selective inhibitor of the C-EH such
as 12-(3-adamantan-1-yl-ureido) dodecanoic acid (AUDA).

In future in vitro studies, we will explore the dose-dependent effects of SMTP-44D
on mitochondrial functions and compare the effects of SMTP-44D with those of AUDA.
In vivo studies will confirm the apoptosis of Schwann cells in the sciatic nerve in a DN
mouse model.

The present study is the first to show the antioxidant and anti-inflammatory effects of
SMTP-44D in IMS32 cells through its sEH inhibitory effect. Our results suggest that EETs
could ameliorate axonal damage by inhibiting apoptosis and maintaining the function of
Schwann cells through their effects. Thus, SMTP-44D can serve as a new therapeutic agent
for DN treatment due to its sEH inhibitory activity.

4. Materials and Methods
4.1. Reagents

Dulbecco’s modified Eagle’s medium (DMEM), trypsin-EDTA solution, and protease
inhibitor cocktail (PIC) were purchased from Sigma-Aldrich Co., LLC. (St. Louis, MO,
USA). RIPA buffer, leukotriene B4-d4 (LTB4-d4), (±)11(12)-EET (11(12)-EET), (±)11(12)-
DiHET (11(12)-DHET), (±)14(15)-EET (14(15)-EET), and (±)14(15)-DiHET (14(15)-DHET)
were purchased from Cayman Chemical Company (Ann Arbor, MI, USA). Four percent
paraformaldehyde phosphate-buffered solution, trisodium citrate, formic acid (abt.99%)
for HPLC, ultrapure water for LC/MS, 2-propanol for LC/MS, acetonitrile for LC/MS, and
ethyl acetate were purchased from FUJIFILM Wako Pure Chemical Corporation (Osaka,
Japan). Triton® X-100 was purchased from MP BIOMEDICALS. (Santa Ana, CA, USA).
Cellstain®-DAPI solution was purchased from Dojindo Laboratories (Kumamoto, Japan).
SMTP-44D [9] was generously donated by TMS Co., Ltd. (Tokyo, Japan). The structure of
SMTP-44D is shown in Figure 5.
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4.2. Cell Culture

Immortalized mouse Schwann cells (IMS32) were purchased from Cosmo Bio Co.
Ltd. (Tokyo, Japan). IMS32 were seeded on 100 mm/Tissue Culture Dish (AGC TECHNO
GLASS Co., Ltd. [IWAKI], Shizuoka, Japan) or 9.5 mm × 4 wells Multi-Well Glass Bot-
tom Dish (Matsunami Glass Ind., Ltd., Osaka, Japan) and cultured in culture medium
for Schwann cell line IMS32 (Cosmo Bio Co. Ltd., Tokyo, Japan) at 37 ◦C under 5%
CO2/95% air.

4.3. Treatment Protocol

When the cells reached approximately 90% confluency, the culture medium was
replaced with serum-free DMEM supplemented with an N-2 supplement (Thermo Fisher
Scientific K.K., Tokyo, Japan) containing normal glucose (5.6 mM; NG) or high glucose
(30 mM; HG). IMS32 cells were incubated for 96 h under three different culture conditions:
(1) NG + normal saline (NS) group; (2) NG + NS group; and (3) NG + SMTP-44D (30 µM)
treatment group. The three different treatment conditions are shown in Figure 6.
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4.4. Cell Sampling

After 96 h of incubation under each experimental condition, the cell culture super-
natant was collected in ice-cold tubes. The cells were rinsed with phosphate-buffered saline
(PBS; Takara Bio Inc., Shiga, Japan), mixed with 800 µL of RIPA buffer with PIC, detached
from the 100 mm/Tissue Culture Dish by Cell Lifter (AS ONE Corporation, Osaka, Japan),
and collected in ice-cold tubes. These cell lysates were homogenized and centrifuged at
10,000× g for 15 min at 4 ◦C; the supernatant was immediately dispensed in new ice-cold
tubes. The samples were immediately frozen in liquid nitrogen and stored at −80 ◦C until
they were examined for use in LC-EIS-MS, ELISA, or TBARS assay.

4.5. Measurement of EET and DHET by Liquid Chromatography-Electrospray Ionization Mass
Spectrometry (LC-ESI-MS)

For the extraction of EET and DHET from the cell lysate, 100 µL of 0.1% formic acid
containing ultrapure water was added to 500 µL of each sample. Then, the samples were
incubated with ethyl acetate, vortexed, and centrifuged at 20,000× g for 5 min at 4 ◦C. The
organic layer (upper layer) was then retrieved and evaporated to dryness using an evapo-
rator. After the solvent evaporated to dryness, the EETs and DHETs were resuspended in
50 µL of mobile phase A (ultrapure water/acetonitrile/formic acid = 63/37/0.02) contain-
ing an internal standard (25 pg of LTB4-d4) and injected into the LC-ESI-MS system. All MS
analyses were performed using a Prominence HPLC system (Shimadzu Corporation, Kyoto,
Japan) equipped with a linear ion trap quadrupole mass spectrometer (QTRAP 5500, AB
Sciex Pte. Ltd., Framingham, MA, USA), as previously described [41,42]. EETs and DHETs
were subsequently analyzed using a tandem quadrupole mass spectrometer via multiple-
reaction monitoring (MRM) in negative-ion mode. The m/z transitions monitored were as
follows: 319.05/167.00 for 11(12)-EET, 337.10/167.20 for 11(12)-DHET, 319.06/219.00 for
14(15)-EET, 337.12/207.08 for 14(15)-DHET, and 339.13/196.93 for LTB4-d4. These EETs and
DHETs were identified in the samples by matching their MRM signals and LC retention
times with those of a pure standard. EETs and DHETs were quantified using standard
curves of the analyte to the internal standard. EETs and DHETs were reported as a ratio.

4.6. Enzyme-Linked Immunosorbent Assay (ELISA)

The levels of full-length receptor for the advanced glycation end product (f-RAGE),
monocyte chemotactic protein-1 (MCP-1), and interleukin-6 (IL-6) in the lysate and sol-
uble RAGE (s-RAGE) and matrix metalloproteinase-9 (MMP-9) in the supernatant were
assessed using an ELISA kit (R&D Systems Inc., Minneapolis, MN, USA) according to the
manufacturer’s instructions. The levels of the oxidative stress indicator NADPH oxidase-1
(NOX-1) were assessed using the ELISA kit (MyBioSource Inc., San Diego, CA, USA) as
described previously [15]. The NF-κB p65 ELISA kit (Abcam plc., Cambridge, UK) was
used to determine the levels of nuclear factor-kappa B (NF-κB) in the cytosolic and nu-
clear fractions isolated from the IMS32 samples using a Nuclear/Cytosol Fractionation Kit
(BioVision Inc., Milpitas, CA, USA). The total protein levels were quantitated using the
PierceTM bicinchoninic acid protein assay kit (Thermo Fisher Scientific Inc., Coon Rapids,
MN, USA) according to the manufacturer’s instructions. The levels of all proteins, except
for NF-κB, were determined by interpolation from the standard curves and normalized for
the protein content of each sample. Levels of NF-κB were quantified as the ratio of nuclear
fractions to nuclear fractions + cytosolic fractions in the lysate.

4.7. Thiobarbituric Acid Reactive Substances (TBARS) Assay

The levels of oxidative stress in cell lysates were evaluated as an index of lipid per-
oxidation by measuring the levels of malondialdehyde (MDA) using the TBARS assay kit
(Cayman Chemical, Ann Arbor, MI, USA), following the manufacturer’s instructions. MDA
levels were determined according to a previous report [20].
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4.8. TdT-Mediated dUTP Nick-End Labelling (TUNEL) Assay

DNA fragmentation induced by HG was examined using the In Situ Cell Death De-
tection Kit, Fluorescein (Roche Diagnostics GmbH, Mannheim, Germany), according to
the manufacturer’s instructions. In brief, cells cultured under experimental conditions in
a 9.5 mm × 4 well Multi-Well Glass Bottom Dish were fixed with 4% paraformaldehyde
phosphate-buffered solution and then permeabilized with 0.1% trisodium citrate and 0.1%
Triton X-100 in PBS. The cells were incubated with a TUNEL reaction mixture for 1 h at
37 ◦C, followed by the addition of 0.2% DAPI solution for nuclear staining. The stained
cells were examined using a BIOREVO BZ-9000 microscope (KEYENCE CORPORATION.,
Osaka, Japan). Cells were considered apoptotic when they exhibited green fluorescence
(TUNEL-positive cells) when visualized by the incorporation of labeled deoxyuridine
triphosphate (dUTP) at the sites of DNA breaks in a reaction catalyzed by the deoxynu-
cleotidyl transferase (TdT) enzyme. ImageJ software version 1.52a (National Institutes
of Health, MD, USA) was used to determine the number of TUNEL-positive cells (green
fluorescence) by labeled dUTP and the number of nucleus-stained cells (blue fluorescence)
by DAPI solution.

4.9. Statistical Analysis

All data are expressed as the mean ± S. E. M. Statistical significance was evaluated
using one-way analysis of variance (ANOVA), followed by the Bonferroni test. Statistical
significance was set at p < 0.05.
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