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Abstract: Age-related macular degeneration (AMD) is a leading cause of blindness in older adults.
One of the strongest genetic risk factors for AMD is a complement factor H (CFH) gene polymorphism
characterized by a tyrosine-histidine change at amino acid position 402 (Y402H). The magnitude of
this association between the Y402H variant and AMD is among the strongest that has been identified
for any complex, multifactorial human disease. This strong association has motivated researchers
to investigate a potential link between various elements of the complement pathway and AMD
pathogenesis. Given the possible contribution of complement dysregulation to AMD, complement
inhibition has emerged as a therapeutic strategy for slowing geographic atrophy (GA). Randomized
clinical trials thus far have yielded mixed results. In this article, we provide the historical context for
complement inhibition as a strategy for treating GA, discuss potential advantages and disadvantages
of complement inhibition, and highlight the questions that must be addressed before complement
inhibition can take center stage as a therapy for AMD.
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1. Introduction

Age-related macular degeneration (AMD) is a leading cause of blindness in older
adults and is projected to affect as many as 288 million people by 2040 [1]. Advanced AMD
manifests in two forms: non-exudative (dry) AMD and exudative (wet) AMD. Advanced
nonexudative AMD is characterized by degeneration of photoreceptors, retinal pigment
epithelium (RPE) cells, and choriocapillaris, termed geographic atrophy (GA); advanced
exudative AMD is characterized by abnormal blood vessel growth beneath the retina.
When left untreated, both forms of advanced AMD can progress to irreversible vision loss
and devastating blindness.

Although exudative AMD was historically responsible for the majority of vision loss
associated with AMD, the development of therapies targeted against vascular endothelial
growth factor (VEGF) has been transformative. Anti-VEGF medications such as beva-
cizumab, ranibizumab, aflibercept, and, most recently, brolucizumab, can be delivered into
the intravitreal space and reduce the extent of exudative AMD. Anti-VEGF agents are not
a panacea since some patients do not respond or under-respond for unclear reasons [2].
Nonetheless, they have improved visual outcomes for many patients with exudative AMD,
although some do develop macular atrophy after prolonged anti-VEGF therapy.

Despite advances in our ability to manage patients with exudative AMD, we are
unequipped to treat GA as seen in nonexudative AMD. There are no approved treatments
that prevent or slow progression of GA. Although vitamin and antioxidant supplemen-
tation may reduce the risk of progression to advanced AMD, they appear to reduce the
risk of progression specifically to exudative AMD and may, in fact, have no effect on
either risk of developing GA or rate of GA lesion growth [3–7]. There is a clinical need for
novel therapies for GA. Given a potential link between the complement system and AMD,
complement inhibition has emerged as a strategy for treating GA.
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2. Evidence of Complement Dysregulation in AMD Pathogenesis

The complement system is an integral and ancient part of the immune system. The
complement cascade is activated by three well-characterized pathways: the classical com-
plement pathway, the lectin complement pathway, and the alternative complement path-
way. Each of these initiating pathways forms a C3 convertase (C4b-C2b or C3b-Bb), an
enzyme that catalyzes the hydrolysis of C3 to C3a/C3b and thereby activates the common
final pathway of the complement cascade. The effect of common final pathway activation
is threefold: (1) enhanced phagocytosis of foreign or damaged material; (2) heightened
inflammation; and (3) activation of the pathogen-killing membrane attack complex (MAC)
(Figure 1). Numerous soluble and membrane-associated complement regulators prevent
inappropriate complement activation. The complex pathways involved in complement
activation and complement regulation are discussed in excellent reviews [8,9].
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The initial evidence suggesting that the complement pathway may be involved in
AMD pathogenesis stemmed from landmark genetic studies published at the turn of
the millennium. Specifically, genome-wide association studies identified that a tyrosine-
histidine change at amino acid position 402 (Y402H) in the complement factor H (CFH)
gene was associated with a greater than 2 to 3-fold increased odds of AMD [10–12]. The
magnitude of this association is among the strongest that has been identified for any
complex, multifactorial disease to date. When it was initially identified, it was thought that
the Y402H variant may account for up to 50% of the attributable risk of AMD [12].

CFH is a negative regulator of the alternative pathway of complement activation. The
Y402H variant is located within the short consensus repeat 7 (SCR7) region of the CFH
gene and affects the ability of CFH to bind to molecules such as heparin, C-reactive protein,
and oxidized phospholipids [13–16]. Although the exact mechanism is an area of active
investigation, it is thought that alteration in CFH’s binding kinetics confers increased risk
of AMD by impairing its ability to negatively regulate alternative pathway activation.

Since these seminal studies, other complement gene variants, including those in
complement factor I (CFI), complement factor D (CFD), complement factor B (CFB), and
complement component 2 (C2), among others, have been found to be associated with
increased odds of AMD [17–19]. Moreover, complement activation products have been
identified within drusen, lipid- and protein-rich deposits that develop in patients with
AMD [20–22]. Patients with AMD also have higher systemic complement activation
compared to non-AMD controls [23]. These findings provide evidence that complement
dysregulation is involved in AMD pathogenesis.
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3. Complement Inhibition for Geographic Atrophy

Given this possible relationship between complement dysregulation and AMD, nu-
merous clinical trials have evaluated complement inhibition as a strategy for treating GA.
This section describes completed Phase 2 and 3 trials that were found on clinicaltrials.gov
(accessed on 15 January 2021).

3.1. Studies Reporting Null Results

The initial studies yielded null results (Table 1). In the Phase 2 COMPLETE study,
intravenous administration of the anti-C5 humanized antibody eculizumab (Soliris®; Alex-
ion Pharmaceuticals, Boston, MA, USA) had no effect on GA growth rate [24]. Similarly,
intravitreal administration of the anti-C5 fully human antibody LFG316 (Novartis, Basel,
Switzerland) did not significantly change GA growth rate or visual acuity (NCT01527500).
Although the anti-CFD antibody lampalizumab (Genentech, San Francisco, CA, USA)
met a pre-specified alpha of 0.20 in the Phase 2 MAHALO study, the Phase 3 SPECTRI
(NCT02247531) and CHROMA (NCT02247479) studies showed no effect of lampalizumab
on GA growth rate [25,26]. Despite initial promise, these null results suggest that comple-
ment inhibition may not be the appropriate strategy for treating GA.

Table 1. Published Phase 2 and 3 clinical trials evaluating complement inhibition to slow geographic atrophy (GA).

Study (Phase) Drug (Target) Group 1 Group 2 Sham Group 1 Group 2
Time b

N GA Growth N GA Growth P a N GA Growth P a

COMPLETE (2) Eculizumab (C5) Low dose High dose 10 0.37 c 10 0.35 c N.S. 10 0.40 c N.S. 52 W
MAHALO (2) Lampalizumab (CFD) q2M q1M 40 0.30 [2.92] d 41 0.33 [3.15] d 0.552 42 0.25 [2.33] d 0.117 18 M

CHROMA/SPECTRI
(3) Lampalizumab (CFD) q6W q4W 598 0.36 [1.98] d 603 0.36 [2.05] d N.S. 596 0.37 [2.06] d N.S. 48 W

FILLY (2) APL-2 (C3) q2M q1M 81 0.35 c 79 0.28 c 0.067 86 0.26 c 0.008 12 M
GATHER1 (2/3) ARC1905 (C5) Low dose High dose 194 0.42 e 67 0.29 c 0.007 83 0.32 c 0.005 12 M

a p-value as reported in published study, N.S.: not significant; b Follow-up duration, W: weeks, M: months; c Adjusted mean change
in square root-transformed geographic atrophy (GA) area; d When studies reported adjusted mean change in untransformed GA area,
we calculated an approximation of the square-root transformation for ease of comparison by finding the difference between the square
root-transformed baseline GA area and square root-transformed final GA area and dividing the difference by the follow-up duration in
years (the original untransformed values are shown in brackets); e Weighted average of multiple sham groups.

3.2. Studies Reporting Statistically Significant Results

In the Phase 2 FILLY study, intravitreal injection of the C3 inhibitor pegcetacoplan
(APL-2; Apellis Pharmaceuticals; Crestwood, KY, USA) significantly reduced GA growth
rate [27]. In the Phase 2/3 GATHER1 study, intravitreal injections of the anti-C5 aptamer
avacincaptad pegol/ARC1905 (Zimura®; IVERIC Bio [formerly, Ophthotech], Cranbury,
NJ, USA) significantly reduced GA growth rate [28]. Phase 3 studies (ARC1905: GATHER2
[NCT04435366]; APL-2: DERBY [NCT03525613] and OAKS [NCT03525600]) are ongoing.
A summary of the results of all mentioned studies is presented in Table 1.

3.3. Some Notable Observations

Despite meeting their primary endpoint, the FILLY and GATHER1 studies have
notable features that warrant a closer look. First, in both studies, there was a high dropout
rate of up to 30–40% among patients who were randomized to the treatment arm compared
to 10–15% among patients who were randomized to the placebo arm (Figure 2). Although
no patients dropped out of the COMPLETE study, there were similarly high drop-out
rates of up to 25–30% in the treatment arms of the Phase 2 MAHALO study versus 17%
in the pooled sham arm. In contrast, all arms of the Phase 3 CHROMA/SPECTRI trials
had a drop-out rate of less than 10%. The specific reasons for dropping out need to be
examined closely to determine whether they may affect the ability of complement inhibition
to become widely used for patients with GA. Furthermore, the specific analytic approaches
used to handle this dropout are not clearly delineated in the published manuscripts and
thus requires further scrutiny to determine whether they could contribute to potential
bias. Commonly used methods for this type of analysis, such as mixed repeated-measures
models, rely on the assumption that missing data is missing at random. If the missing data
was not at random (i.e., there was a difference in patients who dropped out versus those
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who remained in the study), the significant findings could have been influenced by bias.
Sensitivity analyses performed by the investigators suggested that these concerns may not
be of significance but are still worth closer examination given that they may lead to a new
therapy for GA.
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Second, patients in the FILLY and GATHER1 studies who were randomized to intrav-
itreal complement inhibition were 3 to 17 times more likely to develop exudative AMD
compared to those who received sham injections [27,28] (Figure 3). Conversion to exudative
AMD not only may hinder precise quantification of GA area but is also potentially concern-
ing in light of some animal studies that support that complement inhibition may promote
more extensive neovascularization in a laser-injury model [29], although not all animal
studies have yielded the same results. Post hoc analysis of the FILLY study suggests that
development of exudative AMD was more likely in patients with risk factors at baseline,
such as presence of the double-layer sign on imaging in the study eye or history of exuda-
tive AMD in the contralateral eye, suggesting that complement inhibition may have the
unintended consequence of increasing risk of exudation in patients who have underlying
risk factors [30]. Finally, the FILLY study reported a 2% rate of endophthalmitis in patients
who were randomized to monthly intravitreal APL-2 injections. Given that complement
inhibition impairs the immune system, this risk is biologically plausible and requires
careful scrutiny given the potentially devastating and immediate visual consequences
of endophthalmitis.

Chronic complement inhibition may also have biological consequences beyond the
12 to 18-month follow-up period that has been studied. Animal studies suggest that the
complement pathway may be important for maintaining retinal homeostasis and resilience
against retinal neurodegeneration. Yu and colleagues reported that mice lacking C3a- and
C5a-mediated signaling exhibited progressive retinal degeneration compared to wild-type
controls [31]. Similarly, other studies have identified that complement proteins are impor-
tant for maintaining retinal integrity in aging and other models of retinal disease [32–34].
The key findings from these selected studies are shown in Table 2. If also true in humans,
aggressive complement inhibition may have unintended, long-term consequences. A de-
tailed description of other animal models that highlight the importance of the complement
pathway in ocular phenotypes is discussed in other reviews [35,36].
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Table 2. Selected basic science studies identifying key role of complement in retinal homeostasis in
mouse models.

Study Authors Year Key Finding

Yu et al. [31] 2012 Mice lacking receptors for C3a and C5a
develop retinal degeneration

Hoh Kam et al. [32] 2013 Mice lacking C3, CFH, or both develop
retinal degeneration during aging

Mukai et al. [33] 2018
Mice lacking C1q, Mbl, Fb, C3, and C5
have accelerated retinal degeneration
with aging

Silverman et al. [34] 2019
C3-CR3 signaling protects against
degeneration in a mouse model of
retinitis pigmentosa

3.4. The Right Drug for the Wrong Patient?

The magnitude of association between complement gene variants and AMD is among
the strongest that has been identified for any complex, multifactorial disease. A recent
study by Heesterbeek and colleagues revealed a small but statistically significant increase
in serum C3d/C3 ratios, a marker of complement activation, in patients with intermediate
AMD or central GA versus patients without AMD [23], supporting that chronic, low
systemic complement dysregulation may contribute to AMD. However, this study did not
investigate whether there is an association between complement activation and GA growth
rate. While many studies have found a strong association between complement gene
variants and the presence of AMD, there is not a clear association between risk-conferring
gene variants and AMD progression [37–39]. Secondary analysis of the COMPLETE study
revealed no significant associations between risk-conferring complement gene variants and
either baseline GA area or GA growth rate [24], although this finding should be interpreted
cautiously since it was not the primary aim of the study. Certain variants of C3 have
even been shown to be associated with an increased risk of AMD but a lower GA growth
rate [40,41] (Figure 4).
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These discrepancies suggest that there is a complex relationship between complement
dysregulation and AMD pathogenesis that requires further investigation. Studies that
analyze complement activation profiles at specific, well-defined stages of AMD could
provide further insight into the role of complement dysregulation in various stages of AMD.
If supported by the data, it is plausible that complement inhibition may have a role for
treating patients who are at risk of developing AMD rather than for preventing progression
to advanced disease, although the potential risks of regular intravitreal injections may not
outweigh the potential benefits of complement inhibition for prevention of AMD.

3.5. Should We Pause or Proceed?

There is clear evidence that the complement pathway is involved in the pathogenesis
of AMD, although the cellular and molecular mechanisms underlying this complex relation-
ship are still an area of active investigation. Despite these limitations in our understanding
in the underlying pathobiology, significant resources have been invested in clinical trials
that evaluate complement inhibition as a strategy to slow GA progression. To date, no
Phase 3 trial has met its primary endpoint of showing an effect of complement inhibition
on GA growth; nonetheless, many agents remain under active investigation. A summary
of the evidence for and against complement inhibition as a viable strategy for treating GA
is presented in Table 3.

We should proceed with caution as we continue to investigate new therapeutic strate-
gies for GA. Although discovering a treatment for GA remains a priority given the lack
of treatments available at this time, there are disadvantages to pursuing strategies that
have, thus far, been unsuccessful. Continued investigations into the pathobiology of AMD
that offer insights into how complement gene variants lead to increased risk of AMD and
characterize what specific portions of the complement pathway become dysregulated at a
local and systemic level are necessary. These findings may inform the design of clinical
trials that target the optimal patient population with the optimal agent.

The complement pathway is complex with numerous levels of regulation. A better
understanding of the specific effectors that contribute to AMD pathophysiology may
lead to pathway-specific therapies rather than broad inhibitory strategies. These targeted
approaches may slow AMD progression with fewer off-target, unintended effects. Given
that there are reports that certain genotypes are associated with distinct responses to
current AMD treatments, it may also be important to investigate whether patients with
measurable complement dysregulation, whether due to underlying genetics or otherwise,
may be more responsive to complement modulation [6,42,43]. There have also been other
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pathways, such as oxidative stress and metabolic dysfunction, that have been proposed to
contribute to photoreceptor and RPE degeneration as observed in GA [44–47]. Although
many of these hypotheses are based primarily on animal studies, it will be important to
elucidate how these pathologic processes interact with complement dysregulation to be
able to develop therapies for GA that target the underlying primary pathologic process.

Table 3. Evidence for and against complement inhibition as a viable strategy for slowing geo-
graphic atrophy.

Supporting Evidence Opposing Evidence

• Magnitude of association between
complement genes and AMD is among
the strongest reported for any complex,
multifactorial disease

• No proven genetic association of
complement with GA with some studies
showing that certain C3 variants may be
associated with slower GA progression

• Some Phase 2 studies have shown
sufficient promise to proceed to Phase 3
trials that are currently ongoing
(GATHER2, DERBY, OAKS)

• Phase 2 with promising results have high
dropout rates in the treatment arm and
increased conversion to exudative AMD,
requiring further exploration

• Evidence of both systemic and local
complement over-activation in patients
with AMD supports that complement
inhibition may be beneficial

• Complement inhibition may have
unintended consequences in terms of
conversion to exudative AMD, increased
risk of endophthalmitis, or damaging
retinal health in the long-term time frame

4. Conclusions

Despite excitement surrounding the use of complement inhibition to treat GA, there
are numerous questions that need to be answered. Additional research that identifies the
disease stage of AMD that would benefit the most from complement inhibition, rigorously
evaluates possible unintended consequences of complement inhibition, and addresses
potential tolerability concerns is necessary. A new therapy that would revolutionize the
therapeutic landscape for patients with GA necessitates a better understanding of disease
pathophysiology and critical assessment of all available data.
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