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Injuries limit the athletes’ ability to participate fully in their training and competitive

process. They are detrimental to performance, affecting the athletes psychologically

while limiting physiological adaptations and long-term development. This study aims

to present a framework for developing random forest classifier models, forecasting

injuries in the upcoming 1 to 7 days, to assist the performance support staff in reducing

injuries and maximizing performance within the Canadian National Female Short-Track

Speed Skating Program. Forty different variables monitored daily over two seasons

(2018–2019 and 2019–2020) were used to develop two sets of forecasting models.

One includes only training load variables (TL), and a second (ALL) combines a wide

array of monitored variables (neuromuscular function, heart rate variability, training load,

psychological wellbeing, past injury type, and location). The sensitivity (ALL: 0.35 ±
0.19, TL: 0.23 ± 0.03), specificity (ALL: 0.81 ± 0.05, TL: 0.74 ± 0.03) and Matthews

Correlation Coefficients (MCC) (ALL: 0.13 ± 0.05, TL: −0.02 ± 0.02) were computed.

Paired T-test on the MCC revealed statistically significant (p < 0.01) and large positive

effects (Cohen d > 1) for the ALL forecasting models’ MCC over every forecasting

window (1 to 7 days). These models were highly determined by the athletes’ training

completion, lower limb and trunk/lumbar injury history, as well as sFatigue, a training load

marker. The TL forecasting models’ MCC suggests they do not bring any added value to

forecast injuries. Combining a wide array of monitored variables and quantifying the injury

etiology conceptual components significantly improve the injury forecasting performance

of random forest models. The ALL forecasting models’ performances are promising,

especially on one time windows of one or two days, with sensitivities and specificities

being respectively above 0.5 and 0.7. They could add value to the decision-making

process for the support staff in order to assist the Canadian National Female Team

Short-Track Speed Skating program in reducing the number of incomplete training days,

which could potentially increase performance. On longer forecasting time windows, ALL

forecasting models’ sensitivity and MCC decrease gradually. Further work is needed to

determine if such models could be useful for forecasting injuries over three days or longer.
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INTRODUCTION

Sports performance is complex and influenced by many factors
such as genetic heritage, training level, trainability (Issurin et al.,
2005), sportive technique, nutrition, psychological state, and
health status (Gould et al., 1999; D’Isanto, 2019). Injuries, which
we define as any physical or mental complaint limiting the
athletes’ ability to participate fully in training and competition
(Meeuwisse et al., 2007; Clarsen et al., 2013), are part of the
factors affecting sports performance (Renström and Johnson,
1985; Clarsen et al., 2013, 2021; D’Isanto, 2019). Within high-
performance systems, injuries are common (Lian et al., 2005;
Waldén et al., 2005; Clarsen et al., 2010), potentially because of
the high demands of competitive sports, requiring the athletes to
push their body to its limit (Soligard et al., 2016). They restrict
the athletes’ ability to progress, affecting performance, long-term
development, and athlete retention while adding financial costs
(Bahr and Krosshaug, 2005; Bahr et al., 2018).

Injuries are complex and influenced by many interconnected
factors (Meeuwisse et al., 2007; Halson, 2014; Bittencourt et al.,
2016). We can regroup these factors into three main categories.
The first one refers to the stress applied to the athlete. Previous
studies extensively explored the impact of external and internal
training load (stress imposed on and perceived by the athlete)
(Foster et al., 2017) on injuries, often using acute to chronic
work ratio (ACWR) (Hulin et al., 2014; Stares et al., 2017).
The second category refers to the athletes’ predispositions
that will affect the stress response, such as their physical
and psychological health status, age, injury history, flexibility
level, fatigue, muscle strength, and imbalances (Meeuwisse
et al., 2007; López-Valenciano et al., 2018). The last category
is the athletes’ stress response. According to Selye’s general
adaptation syndrome (Selye, 1950), the stress response can lead
to positive adaptations (Eustress), such as sports performance,
or negative adaptations (distress), such as injuries. This stress
response (eustress or distress) can, in turn, modify the athletes’
predisposition and influence their future response to stress
exposure. We hypothesize that proper monitoring of various
quantitative variables from each of the three categories of factors
influencing injuries and sports performance, combined with
efficient association and observational techniques, could help
predict the athletes’ future injuries.

Many interrelated variables influence injuries, which
complexifies their association with risk factors (Meeuwisse
et al., 2007; Bittencourt et al., 2016; Van Eetvelde et al., 2021).
To tackle this problem, studies have started using machine
learning algorithms (Van Eetvelde et al., 2021). Machine learning
is a tool that uses computers to “learn” complex relationships
from empirical data and that establishes a mathematical link
between a large number of covariates and a target variable
of interest (Cabitza et al., 2018). Among the studies stated in
Van Eetvelde’s (Van Eetvelde et al., 2021) systematic review of
machine learning applications to sports injuries, different types
of variables were monitored: (1) sports background (McCullagh
and Whitfort, 2013; López-Valenciano et al., 2018; Ayala
et al., 2019); (2) psychological measurements (McCullagh and
Whitfort, 2013; López-Valenciano et al., 2018; Ayala et al., 2019);

(3) neuromuscular measurements (López-Valenciano et al., 2018;
Ayala et al., 2019); (4) workloads (McCullagh and Whitfort,
2013; Whiteside et al., 2016; Rossi et al., 2017; Thornton et al.,
2017; Carey et al., 2018); (5) previous injury background and
health status (McCullagh and Whitfort, 2013; Rossi et al., 2017;
López-Valenciano et al., 2018; Ruddy et al., 2018); (6) genetic
markers (Rodas et al., 2019); and (7) personal data (age, body
mass, anthropometric measurements, demographic) (McCullagh
and Whitfort, 2013; Whiteside et al., 2016; Ruddy et al., 2018;
Oliver et al., 2020; Rommers et al., 2020). Each type of variable
helps quantify one of the three categories of factors influencing
injuries. Thus far, only the McCullagh andWhitfort (2013) study
has regrouped predictors from the three categories of factors
influencing injuries and sports performance.

Short-track speed skating is a highly interactive middle
distance sport, which consists in performing multiple laps on
the ice at high speed, including tight corners and up to nine
athletes in a single race (Hesford et al., 2012; Menting et al.,
2019; Konieczny et al., 2020). It has been studied mostly for
its biomechanical aspect (Hesford et al., 2012; Kim et al., 2019;
Konieczny et al., 2020), as well as its strategic and pacing
dimensions (Haug et al., 2015; Konings et al., 2016; Konings
and Hettinga, 2018; Menting et al., 2019). This sport induces
important leg asymmetries (Hesford et al., 2012; Konieczny
et al., 2020), which are suspected to put the athletes particularly
at risk of sustaining added injuries in the lower limb regions
(Konieczny et al., 2020). Within the Canadian National Female
Short-Track Speed Skating Program, over the 2018-2019 and
2019-2020 seasons, athletes have lost on average 75± 45 training
or competition days due to injuries, which represents 12 ± 7%
of lost training and/or competition opportunities per athlete,
over two seasons. On average, 2 days were missed per injury.
Implementing a framework helping the performance support
staff detect and prevent injuries and their risk factors is required
to maximize performance within the Canadian National Female
Short-Track Speed Skating Program.

Using a random forest algorithm, shown to be efficient
on multiple features classification problems, such as injury
prediction (Breiman, 2001), the current study aims to: (1) provide
a narrative on a data mining framework (Adriaans and Zantinge,
1997) within the Canadian National Female Short-Track Speed
Skating Program; (2) demonstrate that random forest classifiers
forecasting injuries could benefit the performance support staff;
and (3) highlight the variables of importance in the injury
forecasting process. Finally, the study aims to (4) demonstrate
how the combination of monitored variables from each of the
three categories of factors influencing injuries improves the
ability to forecast potential injuries compared to models only
built using training load variables.

MATERIALS AND METHODS

Forecasting
Van Eetvelde et al.’s review (Van Eetvelde et al., 2021)
presents mostly prospective case-control studies (McCullagh and
Whitfort, 2013; Rossi et al., 2017; Thornton et al., 2017; Carey
et al., 2018; López-Valenciano et al., 2018; Ruddy et al., 2018;
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FIGURE 1 | Overview of the data mining framework to develop and evaluate random forest forecasting models.
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TABLE 1 | Athletes characteristics summary.

Athletes characteristics Mean ± standard

deviation

Range

Age (years) 21 ± 2 18–24

World ranking 27 ± 19 2—Not ranked

Experience on the national team (years) 4 ± 2 1–9

Ayala et al., 2019; Oliver et al., 2020; Rommers et al., 2020),
analyzing data retrospectively and predicting injuries based on
the athletes’ features value on a given day. In this prospective
case-control study, we predicted the athletes’ injury status in the
upcoming 1 to 7 days. This will help the performance support
staff anticipate athletes’ upcoming injuries over the next training
micro-cycle, which corresponds to 7 days within the Canadian
National Female Short-Track Speed Skating Program.

Data Mining Approach
We put a data mining system (Adriaans and Zantinge, 1997) in
place within the Canadian National Female Short-Track Speed
Skating Program to train and evaluate the random forest injury
prediction models. Figure 1 provides a schematic of the different
steps of data acquisition, preprocessing, feature engineering, and
model training and evaluation. Each step presented in Figure 1

will be explained in the following subsections.

Athletes
We collected data over the 2018–2019 and 2019–2020 seasons.
Eleven women, members of the Canadian Short-Track Speed
Skating National Team, consented to take part in the study. Every
athlete signed an “athlete consent form” allowing the use of their
data for research purpose and program evaluation. The consent
form was approved according to provincial legislations and
ethical recommendations. Sensitive information that can directly
identify the athletes (e.g. names, addresses) were safeguarded and
maintained under controlled conditions according to provincial
laws. The athletes went through a familiarization and education
process to ensure data were reported in a standard and
appropriate way. Table 1 describes the characteristics of the
athletes who participated in the study.

Conceptual Model of Injuries and
Monitored Data
The conceptual model of injuries and sports performance,
presented in Figure 2, was created to guide our interpretation
of injuries and their underlying mechanisms and provide
adequate perspective on the influence of the three categories of
factors on injuries. It is inspired by Selye’s general adaptation
syndrome (Selye, 1950), Meeuwisse et al. (2007) dynamic model
of sports injury etiology, and D’Isanto (2019) factors influencing
sports performance. The model (Figure 2) guided the choice
of variables to monitor. The amount of stress imposed on
the athlete was quantified by monitoring the external (training
stress imposed on the athlete) and internal training load
(training stress perceived by the athlete) (Foster et al., 2017).

Factors influencing stress response were monitored through
psychological wellness questionnaire scores (Junge, 2000; Shrier
and Hallé, 2011), tracking of athletes’ injury type and location
history, and monitoring of their history of training completion
(ability to complete the prescribed training). The stress response
was quantified through the tracking of the athletes’ heart rate
variability (HRV) (Goessl et al., 2017) and neuromuscular
function (Gathercole et al., 2015).

We tracked 40 different variables through the monitoring
process, grouped into eight subsets, which are described in
Table 2. Combining the data from the 11 athletes over the
two seasons provided a total cumulative dataset of 7,370 daily
observations (a daily observation regroups the 40 monitored
variable values with the associated injury outcome). The
monitored data were stored in a database.

Data Preprocessing: Missing Values
Imputation and Feature Engineering
The monitoring process implies inevitable missing values
(Benson et al., 2021).We observed three causes for missing values
in the dataset: (1) the athletes did not train on a given day; (2)
some variables were not measured daily; and (3) the athletes
omitted to report data. Even if all athletes who participated
in the study had participation rates ranging from 77 to 100%
and averaging 90%, some daily instances were incomplete
and displayed, for some variables, missing values. Imputation
strategies had to be employed and are reported, for each
monitored variable subset, in Table 2. Replacing missing values
by the most recent measurement was the preferred imputation
strategy for the psychological wellbeing metrics, neuromuscular
function, and HRV variables, which were measured every 2 to
3 days. Although not perfect, the imputation strategy is easy
to implement, avoids information leakage (Van Eetvelde et al.,
2021), and provides indicators of the stress response variables
over a short time frame. It is themost simplistic single imputation
technique described by Benson et al. (2021).

Injuries were forecasted through a feature-based approach.
New variables were computed from the athlete’s monitored
variables history, stored in the database, to reflect injuries’ time
dependence (Clarsen et al., 2013; Bittencourt et al., 2016) and
improve the models’ forecasting performances.We calculated the
exponentially weighted moving average (EWMA) over the last
7 and 28 days (referred to as the acute and chronic indices) for
each monitored variable. These time frame periods were chosen
based on previous studies exploring the association between these
indices and injuries (Gabbett and Jenkins, 2011; Hulin et al.,
2014; Gabbett et al., 2016). It also corresponds to the microcycles
(7 days) and mesocycles (28 days) used for the athletes’ global
periodization. The acute to chronic work ratio (ACR) (Gabbett
and Jenkins, 2011; Hulin et al., 2014; Gabbett et al., 2016)
is an additional feature engineered for all the variables. The
EWMA ratios are a standard forecasting practice to improve
the forecasting models’ performances (Holt, 2004). In addition,
we computed the acute to chronic difference (ACD), inspired
by Banister’s training impulse concept (Banister et al., 1975;
Jovanovic, 2018).

Frontiers in Sports and Active Living | www.frontiersin.org 4 July 2022 | Volume 4 | Article 896828

https://www.frontiersin.org/journals/sports-and-active-living
https://www.frontiersin.org
https://www.frontiersin.org/journals/sports-and-active-living#articles


Briand et al. Speed Skating Injury Forecasting Models

FIGURE 2 | Conceptual framework of the factors influencing sport performance and injuries and their inter-relation.

For each variable, to quantify the influence of the past
mesocycles and microcycles, we computed rolling means,
standard deviations, and maximums over time windows
of 7, 14, 21, and 28 days. At the end of the feature
engineering process, a single daily observation is constituted of
1014 features associated with the athletes’ injury status (injured or
not injured).

Training and Test Sets
To make predictions, the random forest algorithms were
“trained” on available data and “learned” a set of rules that
allow appropriate classification (injured or not injured), given
the set of features provided as input. This set of features was
composed of: (1) monitored variables on any given day; (2)
imputed variables (if some monitored variables were missing);
(3) engineered features based on the athletes’ monitored variables
history stored in the database.

To evaluate the classifiers’ ability to replicate their predicting
performances, they were evaluated on a test set, i.e., a set of
unseen data (not used in the models’ training process). Two
sets of forecasting models were developed. One including only
training load variables (TL), and a second (ALL) combining
a wide array of monitored variables (neuromuscular function,
heart rate variability, training load, psychological wellbeing,
past injury type, and location). From the 7,370 available daily

instances, we created two test sets of 1,100 instances, composed
of each of the 11 athletes’ last (chronologically) 100 daily
instances. The ALL-Test-Set was composed of each of the 40
monitored variables and their respective engineered features,
based on each athlete’s complete data history, for a total of
1,014 features, while the TL-Test-Set was composed only of
internal and external training load monitored variables and their
corresponding engineered features, for a total of 182 features.
With the remaining 6,270 daily instances, we created two training
sets: the ALL-Training-Set composed of the same features as the
ALL-Test-Set and the TL-Training set composed of the same
features as the TL-Test-Set. As depicted in Figure 1, the test sets
feature engineering was performed on the athletes’ complete data
history. The training sets feature engineering was only performed
on the remaining 6,270 daily observations. This process replicates
the way data will be handled to make predictions once the models
are implemented in the training environment and avoid data
leakage, where information of the test set would leak in the
training set, leading to overfitting and biased interpretation of the
models’ evaluation (Van Eetvelde et al., 2021). Two distinct data
sets (ALL and TL) were created to assess the impact of building
forecasting models composed of variables from each of the three
components of the injury conceptual model (ALL) in comparison
to models composed of variables only reflecting the stress applied
to the athlete (TL).
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TABLE 2 | Description of the different variables, their measurement frequency, and the strategies used to replace missing values.

Variable Description and measurements Measurement

frequency

Missing values replacement strategy

External training load Number of laps on the ice rink performed for each

training by the athletes in different intensity zones.

Every training on ice Main cause: Athletes did not train. Missing

values replaced with a zero.

Internal training load Athletes qualitatively assigned fatigue perception on

a scale of 0 to 10, which was multiplied by the

session duration, in minutes, to provide an internal

load score referred to as sFatigue (Dunbar et al.,

1992)

After every training

session

Same as external training load.

Psychological wellbeing metrics Athletes provided an assessment, on a scale of 0 to

100, of their levels of stress, energy, happiness,

mood, motivation, performance stress, and sleep

quality over the three previous days (Junge, 2000;

Shrier and Hallé, 2011).

3 times a week Main Cause: non-daily measurement

frequencies. Replaced with the most

recent measurement.

Heart rate variability Resting heart rate variability (HRV) taken using a

heart rate monitoring belt (Polar H10, Finland)

connected HRV4Training (Altini et al., 2017).

Variables measured: resting heart rate, high

frequency power (hf), low frequency power (lf),

pnn50 (Seyd et al., 2008), RMSSD (Wang and

Huang, 2012), sdnn (Wang and Huang, 2012;

Goessl et al., 2017).

Every 3 days Same as psychological wellbeing metrics.

Neuromuscular function Counter movement jumps (CMJ) performed on

force plates. Variables measured: contraction time,

flight time to contraction time ratio, jump height

(from flight time and impulsion), takeoff velocity,

flight time to contraction time ratio, height (from

impulsion), height (from flight time) and flight velocity

(Gathercole et al., 2015).

3 times a week Same as psychological wellbeing metrics.

Injury type and location Each time athletes reported injuries they specified

injury body location (head/neck, trunk, trunk/lumbar,

lower limb, upper limb) and the type (bone, muscle

and tendon, joint and ligament, skin, brain/spinal

cord/peripheral nervous system, other).

Each time an injury was

reported

Main cause: Athlete was not injured.

Replaced with a zero.

Training completion The athletes ranked the level of training completion

according to four factors: 0: training completed

without injury/illness, 1: training completed with

injury/illness, 2: training could not be completed

because of injury/illness and 3: The athlete could

not train at all because of injury/illness.

After every training

session

Main cause: Athlete did not train. Missing

values replaced with a zero. In the cases

where athletes could not train because of

injury or illness, the corresponding health

status was validated by the medical team.

Injury (Target variable: Forecast 1

to 7 days)

The injury status, by definition (Meeuwisse et al.,

2007; Clarsen et al., 2013) refers to the Training

completion variable value in a future time window of

1 to 7 days. A Training completion of 0 was labeled

as a “non-injured” athlete, while a Training

completion of 1, 2 and 3 was labeled as an “injured”

athlete. Models were trained to predict this variable.

Every day Variable derived from the Training

completion When the Injury variable is

defined there are no missing values left.

For the missing values and replacement strategies, the main cause of missing values is reported in the third column of the table. A close follow-up was made with the performance

support staff to verify all information for specific situations, such as athletes omitting to report due to injuries.

Models Training
Two sets of models were trained using theWaikaito Environment
for Knowledge Analysis (WEKA) (Hall et al., 2009). WEKA
provides built-in functions to facilitate classifications of
imbalanced datasets, such as the one in this study, where
non-injured outweighs injured daily observations. To improve
the random forest injury classifier, the injured and non-injured
instances of the test set were balanced using WEKA’s class
balancer filter, which applies a weight function to the instances
such that injured and non-injured instances display a similar

total sum of weight (Hall et al., 2009). A cost function was also
introduced using WEKA’s cost-sensitive classifier function.The
function penalizes injury misclassifications through the random
forests training process, which improves injury forecasting
performances (Hall et al., 2009). Default setups were used for all
of WEKA’s built-in functions. The ALL forecasting models were
trained on the ALL Training Set, and the TL forecasting models
were trained on the TL Training Set. For each set, seven classifiers
were trained to predict whether the athletes would be injured in
an upcoming time frame of 1 to 7 days, respectively. The random
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forest algorithm introduces randomness, notably through the
bootstrap aggregating process (Breiman, 2001). To account for
the classifiers’ random factors, the training of each classifier was
performed 30 times for each of the seven forecasting time frames.
At the end of the training process, we obtained, for both sets of
models (ALL and TL), 30 trained random forest classifiers for
each forecasting time window (1 to 7 days).

Models Evaluation
Each instance of the test-set was provided as input to
the forecasting models, and the trained classifier generated
predictions on the upcoming injury status (on a time frame of 1 to
7 days depending on the classifier). To obtain a confusion matrix,
each prediction was compared to the true outcome, which is
already known. Confusion matrices compile True Positives (TP),
False Positives (FP), False Negatives (FN), and True Negatives
(TN) (Visa et al., 2011).We computed the following threemetrics
from confusion matrices that summarized each of the 30 models’
predictive performances for every forecasting time window (1
to 7 days).

The sensitivity.

Sensitivity =
TP

TP + FN

The specificity

Specificity =
TN

TN + FP

the Matthews Correlation Coefficient (MCC) (Matthews, 1975).

MCC =
TP · TN − FP · FN

√
(TP + FP)(TP + FN)(TN + FP)(TN + FN)

The sensitivity and specificity are commonly used evaluation
metrics and were computed to compare our models with
existing sports injury prediction models (Van Eetvelde et al.,
2021). The MCC (Matthews, 1975) is considered one of the
best methods to evaluate binary classifiers (Powers, 2020). It
is a wellbalanced metric that can be used even if the two
classes are unbalanced (Boughorbel et al., 2017). An MCC of 1
indicates complete agreement between the predictions and the
observation, and inversely, an MCC of −1 denotes complete
disagreement (Boughorbel et al., 2017). An MCC of 0 would be
considered a model where the predictions were made randomly
(Boughorbel et al., 2017). The unbalanced nature of the data set
is the reason why accuracy (Yin et al., 2019) was not used as
an evaluation metric. In our case, out of the total 7,370 daily
observations, only 12% constitute injuries. Therefore, even if
the models were always to predict non-injured athletes, the
accuracy would remain relatively high (∼0.88) and would not
provide valuable information to the practitioners. We computed
the mean and standard deviation of the 30 sensitivity scores,
30 specificity scores, and 30 MCC of every forecasting time
window. At the end of the evaluation process, we obtained three
evaluation metrics (mean ± standard deviation) for each model
and each forecast window (1 to 7 days) for both the ALL and TL
forecasting models.

Models Comparison
To analyse the effect of the forecasting model types (ALL or TL)
and forecasting time windows (1 to 7 days) on each evaluation
metric (sensitivity, specificity, MCC), two-way ANOVAs were
performed on each metric. In addition to ANOVAs, paired
T-tests (Meek et al., 1987) were performed on each separate
forecasting window to evaluate the effect of the model type
on the evaluation metrics, with the null hypothesis that both
forecasting models (ALL and TL) evaluation metrics were equal
at a significance level of p < 0.01. In addition, we computed
Cohen effect sizes (Cohen, 1994; Fritz et al., 2012) to quantify the
difference between the two types of model evaluation metrics.

Variables of Importance
Random forest classifiers enable highlighting variables of
importance, which have a practical application for the
performance support staff, trying to understand better the
causes and mechanisms of injuries (Meeuwisse et al., 2007;
Bittencourt et al., 2016; Van Eetvelde et al., 2021). The higher the
random forests’ minimum GINI decrease coefficient, the greater
the importance of the variable in the model (Archer and Kimes,
2008).

RESULTS

Each graph in Figure 3 compares one of the three evaluation
metrics derived from the evaluation of the ALL forecasting
models and TL forecasting models for each forecasting time
window (1–7 days). Two-way ANOVAs performed on sensitivity,
MCC and specificity indicated that there was a statistically
significant interaction between the models type and the
forecasting window (F(6, 406) = 351.8, p < 0.000 for sensitivity;
F(6, 406) = 71.38, p < 0.000 for specificity; F(6, 406) = 186.3, p
< 0.000 for MCC). Figure 3A compares the two types of model
sensitivity, i.e., the number of injury outcomes that the model
correctly predicted. On average, the sensitivity was 0.35± 0.19 for
the ALL forecasting model and 0.23± 0.03 for the TL forecasting
model. Paired T-test performed on each respective forecasting
window showed a statistically significant positive effect (p <

0.01) on the ALL forecasting models’ sensitivity, with large
Cohen effect sizes (d > 1) for forecasting windows of 1–3 days.
As the forecasting windows got larger, the sensitivity gradually
dropped from 0.70 ± 0.03 for a one-day forecasting window
to 0.14 ± 0.03 for seven days forecasting window, for the ALL
forecasting model. The sensitivity was above 0.5 only for 1 and 2
days forecasting windows. The TL forecasting models’ sensitivity
remained relatively stable, oscillating between 0.26 and 0.20.

Figure 3B compares the MCC, i.e., an index of the models’
predictions correlation with real observations. The MCC was on
average 0.13 ± 0.11 for the ALL forecasting model and −0.02
± 0.02 for the TL forecasting model. Paired T-test performed
on each respective forecasting window showed a statistically
significant positive effect (p < 0.01) on the ALL forecasting
model’s MCC, with large Cohen effect sizes (d > 1) for each
forecasting window. Every TL forecasting model MCCwas below
zero, suggesting the model’s predictions were slightly worse than
if predicted randomly. The ALL forecasting window’s MCC
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FIGURE 3 | Evaluation metrics scores for both the ALL forecasting models (red dots) and TL forecasting models (blue dots). The x-axis displays the model forecasting

window (from 1 to 7 days), while the y-axis presents in (A) the sensitivity, (B) Matthews Correlation Coefficient (MCC), and (C) specificity. The (*) symbol indicates a

significant positive difference for the ALL forecasting models compared to the TL forecasting models (p < 0.01), as determined by paired T-test performed on each

individual forecasting window, while the (#) symbol indicates positive large Cohen effect sizes for the ALL forecasting models compared to the TL forecasting models

(d > 1). The red dotted line on graph (B) indicates a MCC of zero, corresponding to the performance of a model making predictions randomly. Note that the y-axis of

each graph are all on different scales to better appreciate the difference between the two types of models for every metric.

decreased as the forecasting windows got larger, reaching 0.00 ±
0.02 for seven-day forecasting windows.

Figure 3C compares the two types of model specificity, i.e.,
the number of non-injured outcomes that the models predicted
correctly. On average, the specificity was 0.81 ± 0.05 for the
ALL forecasting model and 0.74 ± 0.03 for the TL forecasting
model. Paired T-test performed on each forecasting window
revealed a significant positive effect (p < 0.01) on the ALL
forecasting model’s specificity with large Cohen effect sizes
(d > 1) for forecasting windows of four to seven days. The
ALL forecasting model’s specificity increased as the forecasting
window got larger, reaching a maximum of 0.86± 0.02 for seven-
day forecasting windows. The TL forecasting model’s specificity
remained relatively stable, oscillating between 0.76 and 0.81.

The ALL forecasting models displayed a significantly higher
injury prediction rate and MCC, suggesting they could bring
added information to the performance support staff, especially
over shorter forecasting time windows of 1 or 2 days, where the
MCCs suggest low to moderate agreement between the models’
predictions and the observations (MCCs of respectively 0.32
± 0.03 for a one-day forecast and 0.22 ± 0.04 for a two-day
forecast). These models are composed of multiple variables from

each of the three components of the injury model (Figure 2).
To understand better which categories of variables influence
these models, the variables of importance were computed.
Figure 4 presents the five most important variables retained
from the ALL forecasting models of each forecasting window
(1 to 7 days). Every variable in Figure 4 is derived from three
monitored variables: athlete training completion, lower limb
and trunk/lumbar injury, and sFatigue, an internal training load
marker. As the forecasting window gets larger, the minimum
GINI decrease coefficient gets smaller.

DISCUSSION

The results demonstrate that combining a wide array of
monitored variables and quantifying the injury etiology
conceptual components significantly improve the injury
forecasting performance of random forest models. The
ALL forecasting models displayed higher MCC than the TL
forecasting models. The TL forecasting models’ MCC suggests
they do not bring any added value to forecast injuries. The
ALL forecasting models are particularly promising for injury
prediction over short time frames of 1 or 2 days, with sensitivities
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FIGURE 4 | The 5 most important variables for each forecasting window (1 to 7 days) of the ALL forecasting models. The selected variables of importance were the

ones with the highest minimum GINI decrease coefficient. The variables are numbered and colored according to their corresponding forecasting time period. ACD,

Acute Chronic difference. ACR, Acute to Chronic Ratio.

higher than 0.5 and specificities above 0.7 in both cases. These
forecasting models were highly determined by the athletes’
training completion, lower limb and trunk/lumbar injury
history, as well as sFatigue, a training load marker.

Machine Learning Framework
The conceptual model of injuries presented in Figure 2 is
essential for developing an injury prediction machine learning
framework. Practitioners who want to elaborate a data mining
system need to have in mind the three conceptual components
of injuries, i.e., the stress applied to the athlete, the factors
influencing the athletes’ stress response, and the stress response

itself, which can lead to positive adaptations, or negative
outcomes like injuries. They should define key monitoring
variables reflecting each component of the conceptual model of
injuries, which could vary depending on the context (exercise
modality, athletes’ level, age, financial resources, etc.) and should
be adapted to match the practitioners’ needs (Halson, 2014;
Starling et al., 2020; Clarsen et al., 2021). Monitored data should
be stored in a database, as engineered features based on the
data history are essential to reflect the time-dependent nature of
injuries (Bittencourt et al., 2016). Handling the database is easier
when a problem conceptualization has been made (Figure 2),
and a data-mining plan (Figure 1) has been established. This
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planning provides perspective on the problem and ensures data
are monitored and stored purposefully.

Missing data have to be handled (Benson et al., 2021).
In this study, we used the simplest imputation form, which
replaces the missing data with the most recent measurement.
The imputation strategy does not minimize the errors and
introduces information loss that could potentially be detrimental
to the models’ predictive performances. Other imputation
strategies that usemean values or regression techniquesminimize
the models’ error prediction (Benson et al., 2021). However,
these strategies are less optimal in the perspective of the
models’ implementation and could introduce higher risks
of information leakage and overfitting (Van Eetvelde et al.,
2021). To minimize the missing values’ imputation detrimental
effects on future models’ performance, we will be looking at
minimizing missing values, by measuring certain variables more
frequently. It is a challenge to maximize measurement frequency
without overwhelming the athletes (Starling and Lambert, 2018).
New monitoring technology to track the athletes’ HRV and
neuromuscular function may represent an interesting avenue for
that purpose (de Zambotti et al., 2019; Roberts et al., 2020).
Practitioners are free to use the imputation strategies that better
suit their needs. However, they should always keep in mind the
models practical value and overfitting risks in their decision-
making.

The ALL forecasting models show promising results,
especially over short time windows of 1 and 2 days, where more
than half the future injury days and more than 70% of future
injury-free days can be predicted correctly by themodels. Injuries
can be compared to extreme meteorological events, which are
particularly difficult to forecast (Ghil et al., 2011; Nayak and
Ghosh, 2013; Boers et al., 2014). Although modest, the results
suggest that, in short time frames, the models could bring added
information and help the performance support staff, providing
better reaction time and facilitating their injury management
decisions. In previous studies, reported sensitivity scores usually
ranged between 0.65 and 0.85, while reported specificity scores
ranged between 75 and 95% (McCullagh and Whitfort, 2013;
Whiteside et al., 2016; Rossi et al., 2017; López-Valenciano et al.,
2018; Ayala et al., 2019; Rommers et al., 2020); every study differs
in context and methodology.

In this study, methodological choices were made regarding to
the models’ implementation in the speed skating environment,
which could explain the lower sensitivities and specificities. We
brought a novel approach that predicts the athletes’ health status
in upcoming 1 to 7-day time windows. Inevitably, forecasting
implies more uncertainty and diminished performance. Injury
forecasting was preferred as it has more potential to help and
assist the performance support staff. In the experimental setup,
we replicated the models’ implementation process in the training
environment, where models will be trained with all the available
information and data history at hand and where new data entries,
to predict future outcomes will be provided by the same athletes
who participated in the models’ training process. Therefore, the
test sets data was collected on the same athletes that contributed
to train the models. We did not test the models’ ability to
predict injuries from athletes that didn’t contribute to train the

models. The training sets’ engineered features were computed
separately and are not influenced by the test set data. These
choices introduce some form of overfitting and information
leakage (Van Eetvelde et al., 2021), because new data entries for
injury predictions will inevitably be influenced by the athletes’
data history used to train the models. However, this process
must be seen as a calibration process rather than a major
hurdle or methodological issue. The models are calibrated to
predict the upcoming injuries of the athletes within the Canadian
National Female Short-Track Speed Skating Program and could
only work in that particular context, with the specific athletes
who took part in the data-mining process. Practitioners should
adapt the framework to work in their specific environment
and context, and with the athletes participating in their data-
mining framework.

Comparing the Two Types of Models
This study appreciates the significant impact of introducing
variables from all three components of the injury conceptual
model on the injury forecasting performances. Keeping the
methodological aspect constant, the forecasting models,
composed of variables from the three components of the injury
conceptual model (ALL forecasting models), have displayed
significantly higher MCC (p < 0.01), with large Cohen effect
sizes (d >1) on each of the seven forecasting windows, compared
to models built only using training load (TL forecasting models).
In fact, the TL forecasting models all had an MCC below zero.
Therefore, they behave similarly to a model making predictions
randomly and would not be helpful for the performance
support staff.

The ALL forecasting models all have an MCC above zero. The
MCC values gradually decrease to near zero (0.00 ± 0.02) on 7-
day forecasting windows. As the forecasting window gets larger,
the ALL forecasting models’ ability to predict injury occurrences
from the test set decreases. This is expected, especially for
complex problems such as injuries, which are influenced bymany
interrelated variables and some random factors. For instance,
injuries can occur accidentally by falling on the ice. These
types of injuries are unfortunately impossible to predict. As the
forecasting windows get larger, the influence of the different
variables and random factors are multiplied, thus explaining the
decrease observed in ALL forecasting models’ sensitivity and
MCC. As for the ALL forecasting models’ specificity increase
with larger forecasting windows, there are two main reasons.
The first one is that patterns leading to an athlete staying
healthy are probably better defined and predictable by the
models. There are more cases where athletes are healthy, which
facilitates pattern recognition. While injuries may be compared
to extreme meteorological events, injury-free days resemble day-
to-day weather, which is relatively predictable. The second reason
is the cost function for injury misclassification, which ties the
sensitivity and specificity together. As injuries get harder to
predict, the only way to minimize the cost function with larger
forecasting windows is to maximize the models’ specificity. We
applied the same cost function for misclassification on every
forecasting window. It would be interesting to test different cost
functions depending on the forecasting windows.

Frontiers in Sports and Active Living | www.frontiersin.org 10 July 2022 | Volume 4 | Article 896828

https://www.frontiersin.org/journals/sports-and-active-living
https://www.frontiersin.org
https://www.frontiersin.org/journals/sports-and-active-living#articles


Briand et al. Speed Skating Injury Forecasting Models

Variables of Importance
It is crucial for the performance support staff to understand the
variables that have the strongest influence on athletes’ injuries.
These variables can provide valuable information on injury risk
factors and guide their interventions (Meeuwisse et al., 2007;
Clarsen et al., 2021; Van Eetvelde et al., 2021). The random
forest algorithms were useful to provide the most important
variables [maximizing the minimum GINI decrease (Archer
and Kimes, 2008)] of the ALL forecasting models to forecast
injuries over the seven time windows. The most important
variables are derived from three main features: athletes’ ability
to complete their training (training completion); lower limb and
trunk/lumbar injuries; and sFatigue, an internal training load
marker. The training completion variable is intimately tied to our
definition of injury (Meeuwisse et al., 2007; Clarsen et al., 2021).
Injuries impede the athletes’ ability to complete their training
because of physical or psychological complaints. Tracking the
athletes’ ability to complete their training sessions over time is
crucial to identify future injuries. Lower limb injuries are another
variable worth tracking in short-track speed skating. Lower
limb asymmetries have already been pointed out as potential
injury risk factors in this sport (Konieczny et al., 2020). In
addition, the athletes skate in a crouched posture, which could
be responsible for lower back and lumbar discomfort (Hesford
et al., 2012). Both variables (training completion, as well as
lower limbs and trunk/lumbar injuries) provide indices of the
athletes’ health status, a factor influencing the athletes’ future
stress response. The other monitored variables may not be as
important for the ALL forecasting models’ predictions, but they
certainly play a role in the forecasting process. As a matter of
fact, sFatigue, an internal training load marker, was among the
most important variables for five-day forecasting windows. In
addition, as the forecasting windows got larger, the minimum
GINI decrease coefficients of the important variables got smaller,
potentially linked to the ALL forecasting models’ MCC and
sensitivity decrease. Practitioners building models in different
sports and contexts will necessarily observe different variables
of importance.

Limitations and Future Perspectives
The injury conceptual model presented in Figure 2, although
useful to understand the interactions of different categories of
variables and their influence, remains simplistic. The etiology of
injuries remains much more complex (Meeuwisse et al., 2007;
Bittencourt et al., 2016). We will keep improving the conceptual
model of injuries, making it more robust and accurate, based
on the continuous observations provided by the performance
support staff. Improvements to the conceptual model will help
orient the datamining framework and future variablemonitoring
process. Thus far, we have focused on the negative stress aspect of
the conceptual model presented in Figure 2 (injuries). However,
in the future, basing our work on the same conceptual model,
we could explore the positive stress adaptations to predict
performance through a similar framework.

The random forest forecasting models act as black boxes.
Even if they provide some indicators of the variables of

importance, they cannot assist the performance support staff
in understanding how each variable influences the injury
conceptual model. Nonetheless, the ALL forecasting windows
on short time windows (1 or 2 days) are promising, and we
believe they could add value to the performance support staff.
We plan to implement the models similarly to meteorological
models, assisting the performance support staff and providing
injury warnings in the upcoming 1 to 7 days. Doing so could
facilitate the performance support staff interventions. Much
like meteorological models are used in real life, they do not
override human judgment. Ultimately, decisions are based on all
available information, some of which is not necessarily taken into
consideration by the forecasting models. The implementation
of the models will be closely documented to help validate and
improve our framework.

CONCLUSION

In conclusion, the framework presented in this study is a
work in progress. It shows promising results for the use of
machine learning techniques to forecast sports injury over short
forecast time frames of 1 and 2 days. Further work is needed
to determine if improved models could help better forecast
injuries in time frames of 3 days or longer. The framework is
in its early development stages. It will be refined and improved
by monitoring additional variables reflecting the conceptual
model of injury (Figure 2), gathering more data, and fine-
tuning the models’ hyperparameters. In addition, the forecasting
models were built from the combination of collected data from
11 individual athletes. It would be valuable to individualize the
models, as each athlete is different. The variables influencing
the conceptual model of injuries, their interaction, and their
importance may vary from one athlete to another.

PRACTICAL APPLICATIONS

- This study presents a novel injury conceptual model
(Figure 2), essential to orient variable monitoring and guide
data mining projects wishing to predict sports injuries.

- Monitoring different types of variables, quantifying the three
components of the conceptual injury model, i.e., the stress
applied to the athletes, the factors influencing the stress
response, and the stress response itself, improves the injury
models’ forecasting performances.

- Specifically for athletes within the Canadian National Female
Short-Track Speed Skating program who took part in
the elaboration of this study’s forecasting models, training
completion, as well as lower limbs and trunk/lumbar
injuries and sFatigue appear particularly important to predict
future injuries.

- This study displays promising results from the perspective
of forecasting models implementation to assist the Canadian
National Female Short-Track Speed Skating program injury
prevention process.
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