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Efficacy of SARS-CoV-2 vaccination in patients with
monoclonal gammopathies: A cross sectional study
Eugenia Abella1,2 , Macedonia Trigueros3, Edwards Pradenas3 , Francisco Muñoz-Lopez3, Francesc Garcia-Pallarols1,
Randa Ben Azaiz Ben Lahsen1, Benjamin Trinité3, Victor Urrea3 , Silvia Marfil3, Carla Rovirosa3, Teresa Puig3,
Eulàlia Grau3, Anna Chamorro4, Ruth Toledo4, Marta Font4, Dolors Palacı́n5, Francesc Lopez-Segui4 , Jorge Carrillo3,6 ,
Nuria Prat5 , Lourdes Mateu4,7,8,9, Bonaventura Clotet3,4,6,8 , Julià Blanco3,6,8,10, Marta Massanella3,8,6 ,
VAC-COV-GM-HMAR, KING Cohort Extension and CoronAVI@S studies

SARS-CoV-2 vaccination is the most effective strategy to protect
individuals with haematologic malignancies against severe
COVID-19, while eliciting limited vaccine responses. We charac-
terized the humoral responses following 3 mo after mRNA-based
vaccines in individuals at different plasma-cell disease stages:
monoclonal gammopathy of undetermined significance (MGUS),
smoldering multiple myeloma (SMM), and multiple myeloma on
first-line therapy (MM), compared with a healthy population.
Plasma samples from uninfected MM patients showed lower
SARS-CoV-2–specific antibody levels and neutralization capacity
compared with MGUS, SMM, and healthy individuals. Importantly,
COVID-19 recoveredMM individuals presented significantly higher
plasma neutralization capacity compared with their uninfected
counterparts, highlighting that hybrid immunity elicit stronger
immunity even in this immunocompromised population. No dif-
ferences in the vaccine-induced humoral responses were observed
between uninfected MGUS, SMM and healthy individuals. In con-
clusion, MGUS and SMM patients could be SARS-CoV-2 vaccinated
following the vaccine recommendations for the general pop-
ulation, whereas a tailored monitoring of the vaccine-induced
immune responses should be considered in uninfected MM
patients.
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Introduction

Cancer patients present substantial immune impairment induced
by the tumour itself or by their treatment, and therefore they are at
increased risk for infections and infection-related mortality. In fact,

SARS-CoV-2 infection in non-vaccinated cancer patients with im-
munosuppression has been associated with significantly higher
morbidity and mortality rates (Zhang et al, 2020), especially those
patients with haematological neoplasms (Vijenthira et al, 2020).
Patients with plasma-cell dyscrasias, such as multiple myeloma,
are associated with immunosuppression and at increased risk of
infections due to various circumstances: active disease status,
decrease in non-clonal immunoglobulins (immunoparesis) and
impairment of cellular immunity, but also can be affected by
comorbidities and older age (Dumontet et al, 2018). In addition, new
treatment approaches with proteasome inhibitors, immunomod-
ulators, monoclonal antibodies and CAR T cells may also exacer-
bate this immune dysfunction (Chari et al, 2020), putting these
individuals at higher risk of any infection. Indeed, at least 80% of
multiple myeloma patients required hospital admission after SARS-
CoV-2 infection (Engelhardt et al, 2020), and more than 30% died
because of COVID-19 (Chari et al, 2020). SARS-CoV-2 vaccination is the
most effective strategy to protect this vulnerable population against
severe COVID-19; however, previous studies showed reduced humoral
responses against several vaccines (i.e., pneumococci, staphylococcal
α toxin, tetanus, among others) (Karlsson et al, 2011).

Given their greater susceptibility to severe COVID-19 and lower
vaccine-induced immune responses, patients with monoclonal
gammopathies are a high-priority group for vaccination to mitigate
COVID-19 related morbidity and mortality (Ribas et al, 2021) and
further characterization of their immunity generated are required.
Current guidelines recommend SARS-CoV-2 vaccination of all pa-
tients with monoclonal gammopathy of undetermined significance
(MGUS), smoldering multiple myeloma (SMM), and multiple mye-
loma on therapy (MM) (Ludwig et al, 2021). It is important to de-
termine the protection achieved with the standard vaccination to
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adapt the vaccination calendar to their immune needs and pri-
oritize booster doses administration. Published data about SARS-
CoV-2 vaccination efficacy refer mainly to patients with MM and, to a
lesser extent, with SMM (Chung et al, 2021; Pimpinelli et al, 2021; Van
Oekelen et al, 2021; Terpos et al, 2021a). Data in patients with MGUS
are scarce and requires further investigation.

The aim of this study was to evaluate the COVID-19 vaccine
humoral responses differ in patients with monoclonal gammo-
pathies, including MGUS, SMM, and MM, compared with a healthy
control population, to adjust the vaccination calendar to the
subtype of disease.

Results

Characteristics of the individuals withmonoclonal gammopathies

We recruited 59 patients withmonoclonal gammopathies, whowere
subgrouped according to their disease stage (MGUS, SMM, and MM).
We took advantage of the national vaccination plan in cancer
patients to evaluate the immune responses generated by the
BNT16b2 or mRNA-1273 COVID-19 vaccines. Six patients were ex-
cluded because they had received AstraZeneca or Janssen vacci-
nation (Fig S1). All samples were collected after a median of 3.9 IQR
[2.2–5] months from complete schedule of vaccine administration
(two doses). Additional characteristics of patients are presented in
Table 1.

Impact of hybrid immunity in immune responses to vaccine

Despite none of the participants included in this study had a
positive SARS-CoV-2 PCR, we identified 2/17 (12%) and 4/14 (29%)
patients fromMGUS and MM groups, respectively, that showed anti-
NP antibodies, suggesting that these individuals were previously
infected by SARS-CoV-2. Because the combination of natural in-
fection and vaccine-generated immunity elicit higher specific im-
mune responses (Reynolds et al, 2021; Stamatatos et al, 2021),
uninfected and anti-NP+ subjects suffering from monoclonal
gammopathies were analysed separately and compared with a
healthy control group (CG), matched by age, sex, and time after
complete vaccination schedule. Consistent with a previous infec-
tion of these individuals, we found a statistically significant in-
crease of circulating SARS-CoV-2–specific IgG and IgA antibodies
against S2+RBD in anti-NP+ MM patients compared with the anti-
NP− counterparts (P = 0.003 and P = 0.04, respectively, Fig 1A and B).
However, anti-NP+ MM group showed significantly lower SARS-COV-
2–specific IgG and IgA antibodies compared with the control-
infected group (P = 0.02 and P = 0.04, respectively). Low levels of
specific IgM were detected in all groups, except for previously
infected control group (Fig 1C). Finally, plasma from anti–NP+ MM
patients showed statistically increased levels of neutralization
compared with their uninfected counterparts (anti-NP−) and un-
infected controls (P = 0.01 and P = 0.04, respectively Fig 1D), whereas
similar levels of neutralization were observed between anti-NP+
MM and infected control group (P = 0.4). Because of the low number
of anti-NP+ MGUS participants, we could not draw any conclusion.

Humoral responses after 3 mo from vaccination of uninfected
individuals

Because of these differences in immune response to vaccine, we
excluded those putative COVID-19 recovered individuals from our
analysis to specifically determine the vaccine-generated immunity
in patients with monoclonal gammopathies. An uninfected control
group (CG) was included in our analysis as a reference group
matched by age, sex, and time after complete vaccination schedule
(Table 1).

All individuals analysed seroconverted after COVID-19 vaccina-
tion; however, there were statistically significant differences among
groups in the levels of specific anti–SARS-CoV-2 IgG antibodies
(Kruskal–Wallis, P = 0.002, Fig 2A). Patients with MM showed sig-
nificantly lower levels of SARS-CoV-2–specific IgG antibodies
compared with all groups (P < 0.006 in all cases, Fig 2A), whereas no
differences were observed between MGUS and SMM with control
group. Lower levels of specific SARS-CoV-2 IgA antibodies were
detected in all groups, and 33% (5/15), 23% (5/22), and 80% (8/10) of
MGUS, SMM, and MM did not develop any specific IgA antibodies,
respectively (Fisher’s exact test P = 0.008, Fig 2B). Again, MM showed
significantly lower levels of SARS-CoV-2–specific IgA antibodies
compared with CG and MGUS (P = 0.002 and P = 0.04, respectively)
and a tendency compared with SMM (P = 0.08). SARS-CoV-2–specific
IgM antibodies were almost undetectable in all samples, including
healthy CG (Fig 2C). Similarly to the serology results, patients with
MM showed a tendency for lower neutralization capacity compared
with CG (P = 0.08, 321 [196–449] and 770 [422–1,554] neutralization
titer, respectively), whereas no differences in neutralization levels
between MGUS or SMM with CG were observed (Fig 2D). Using the
lowest 25th percentile on neutralization titer from CG as cut-off
(neutralization titer of 420), we found that 7/10 (70%) of MM patients
did not reach this neutralization threshold in comparison of the 8/
36 (22%) of the CG individuals (Fisher’s exact test, P = 0.003). In
contrast, MGUS or SMM groups showed comparable percentages of
patients below the established cut-off than control group (4/15
[27%] and 4/22 [18%], respectively, P = 0.48 and P = 1.0 compared
with CG). We then estimated the proportion of effective neu-
tralizing antibodies among the total SARS-CoV-2–specific IgG,
calculated as the ratio of plasma neutralization titer to total SARS-
CoV-2 IgG antibodies, as previously described (Trigueros et al,
2022; Pradenas et al, 2022b). We observed an increase of this ratio
in patients with MM compared with other groups (Fig 2E and P =
0.02), suggesting that despite the low levels of specific SARS-CoV-2
antibodies in this population, these antibodies seemed to be
functional.

Because treatments received by MM group could cause specific
immune dysfunction impairing immune response to COVID-19
vaccines, we first compared the levels of specific SARS-CoV-2 IgG
antibodies and neutralization capacity in MM patients receiving or
not daratumumab (anti-CD38 therapy). No differences were found
between groups (Fig S2A and B). Similar results were found when we
compared MM individuals who underwent autologous hemato-
poietic cell transplantation (auto-HSCT) versus no auto-HSCT (Fig
S2C and D). Despite the limited number of patients, these results
suggest that these treatments might not the main cause of the
immune dysfunction observed in these individuals.
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Predictive factors for specific SARS-CoV-2 humoral responses

There was a positive correlation between SARS-CoV-2–specific IgG
and IgA antibody response and the neutralization titer (r = 0.60 P <
0.0001, and r = 0.54 P < 0.0001, respectively, Fig 3A–C). On the other
hand, we found a negative correlation between the neutralization
capacity and the days post-complete vaccine scheduled (r = −0.48,
P < 0.0001) and age (r = −0.27, P < 0.0001). In addition, age was also
negatively correlated to the levels of circulating SARS-CoV-2–
specific IgG and IgA antibodies (r = −0.37, P < 0.0001 and r = −0.34, P =
0.002, respectively). Because of the potential impact of different
parameters in the humoral response described in the literature and
found in our cohort, we performed linear regression models for the
levels of specific SARS-CoV-2 IgG and IgA antibodies and neutral-
ization capacity for the variables: group (MGUS, SMM, MM, and CG
[reference]), age, sex, immunoparesis (yes/no), vaccine (Pfizer/
Moderna), days post complete vaccine schedule, and subtype of
gammopathy (IgG, IgA, IgM, and light chain). In the univariate
analysis, we found that MM group, age and immunoparesis were
significantly associated with lower levels of circulating SARS-CoV-
2–specific IgG antibodies (Table 2). In the multivariate analysis, only
MM group and age were negative predictors of lower levels of SARS-
CoV-2 IgG antibodies. Similarly, MM group, age, IgG gammopathy
and immunoparesis were significant predictive factors for lower
levels of circulating SARS-CoV-2–specific IgA antibodies in the
univariate analysis, and only age remained significant in the

multivariate analysis (Table 2). Finally, MM group, age, immuno-
paresis, and days post-complete schedule (two doses) were signif-
icant predictive factors for lower neutralization capacity, whereas
Moderna vaccine had a tendency to higher neutralization levels
(Table 2). The multivariate analysis revealed that all these param-
eters remained significant predictors, except for immunoparesis.

Last, we also evaluated the impact of lymphopenia in the hu-
moral response in patients with monoclonal gammopathies. While
the total counts of lymphocytes were positively associated with
increased levels of specific SARS-CoV-2 IgG antibodies in the
univariate linear regression (estimate 0.321, P = 0.02), the neu-
tralization capacity was not significant (estimate 0.09, P = 0.23).

Discussion

In this study, we evaluated the SARS-CoV-2 vaccine–induced hu-
moral response in different stages of plasma-cell diseases, re-
vealing that uninfected MM have a lower humoral response to
vaccination after 3 mo post-vaccine (two doses) when compared
with MGUS and SMM, and a group of healthy controls matched by
age and sex. These results are in line with previous published
data, which evaluated humoral responses at shorter time points
post-SARS-CoV-2 vaccination (Bird et al, 2021; Bitoun et al, 2021;
Chung et al, 2021; Pimpinelli et al, 2021; Van Oekelen et al, 2021;

Figure 1. Comparison of humoral response between
uninfected and infected individuals suffering from
monoclonal gammopathies compared with a control
group (CG).
(A, B, C) Levels of specific SARS-CoV-2
immunoglobulins IgG (Panel A), IgA (Panel B), and IgM
(Panel C) against S2+RBD proteins quantified in plasma
from uninfected and infected participants by ELISA
after 3 mo from SARS-CoV-2 vaccination. Panel
(D) Neutralizing activity against WH1 virus after 3 mo of
vaccine administration in infected and uninfected
participants. Dotted line indicates the 25th percentile of
neutralization titer from CG. In all panels, median values
are indicated and P-values were obtained from
Mann–Whitney test for comparison between groups.
Each symbol represents a participant, and are color-
coding according to their disease group (MGUS,
purple square; SMM, upper triangle turquoise; MM,
lower triangle orange; and CG, blue diamond).
Source data are available for this figure.
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Terpos et al, 2021a). Even though MM patients showed low levels of
specific SARS-CoV-2 antibodies, these antibodies seemed to be
functional because a high ratio of neutralization/total anti–SARS-
CoV-2 was observed. Despite we have included only MM patients
during the first line of therapy, who may have better preserved
immune function compared with more advanced stages of the
disease (Bitoun et al, 2021), the levels of neutralizing antibodies
remained low, demonstrating that this population would benefit
from a booster SARS-CoV-2 vaccine dose (Re et al, 2021 Preprint).
Importantly and similarly to other studies (Gavriatopoulou et al,
2021; Van Oekelen et al, 2021), we detected significantly higher
plasma neutralization capacity in MM individuals who recovered
from COVID-19 compared with their uninfected counterparts,
highlighting that hybrid immunity elicit stronger immune re-
sponses, similar to healthy individuals, even in this immuno-
compromised population (Andreano et al, 2021; Crotty, 2021).
Indeed, unvaccinated recovered COVID-19 MM patients on active
treatment show already a superior antibody response compared
with MM subjects after 1 mo complete vaccine schedule (two
doses) (Gavriatopoulou et al, 2021).

The humoral response in MGUS and SMM patients has been less
studied until now. We observed similar levels of SARS-CoV-2 an-
tibodies and plasma neutralization capacity in MGUS and SMM
patients compared to the healthy control group. Similarly, Terpos
et al (2021a) did not identify significant differences between MGUS

and controls regarding the development of neutralizing SARS-CoV-
2 antibodies after 50 d from SARS-CoV-2 vaccination (Terpos et al,
2021a). However, in this same study, SMM patients achieved more
variable vaccine-induced responses and only 61% achieved a
clinically relevant antibody response. In our study, MGUS and SMM
showed comparable percentages of neutralization activity com-
pared with the control group (around 73–82% in all cases), being
this proportion for SMM patients higher than previously described.
The lower number of patients included in our study (N = 22 versus
N = 38) or the functional assay used may explain the differences
observed between both studies.

The underlying causes for suboptimal humoral response to
SARS-CoV-2 vaccine in uninfected MM patients may be multifac-
torial, including disease-related immune dysregulation and the
immunosuppression caused by the anti-myeloma therapies. First,
myeloma cells can suppress the expansion of normal B-cells and
the production of immunoglobulins after SARS-CoV-2 vaccine ad-
ministration. However, only MM patients showed a suboptimal
humoral immune response after vaccination, suggesting that the
symptomatic disease plays a crucial role in immunosuppression,
whereas the asymptomatic disease may preserve humoral re-
sponses. Second, some anti-myeloma therapies could deplete B
cells and impair T-cell function, which may hamper also the re-
sponse to vaccines with poorer neutralizing antibody and cellular
immunity responses (Ludwig et al, 2021). Various groups have

Figure 2. Comparison of humoral response after 3 mo frommRNA vaccination in uninfected patients with monoclonal gammopathies compared with a control group
(CG).
(A, B, C, D) Levels of specific SARS-CoV-2 immunoglobulins IgG (Panel A), IgA (Panel B), and IgM (Panel C) against S2+RBD proteins quantified and neutralizing activity
against WH1 (Panel D) from MGUS, SMM, and MM patients and a control group (CG) after 3 mo of vaccine administration. (D) Dotted line indicates the 25th percentile of
neutralization titer from CG (Panel D). Panel (E) Ratio of plasma neutralization titer per total SARS-CoV-2 IgG antibodies. Median values are indicated; P-values were
obtained from Kruskal–Wallis test for comparison between groups and the post hoc Dunn’s multiple comparison’s test. Only significant P-values are shown. Each symbol
represents a participant, and are color-coding according to their disease group (MGUS, purple square; SMM, upper triangle turquoise; MM, lower triangle orange, and CG,
blue diamond).
Source data are available for this figure.
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observed an defective humoral response in patients on
daratumumab-based therapies compared with other treatments
(Chung et al, 2021; Pimpinelli et al, 2021; Van Oekelen et al, 2021;
Terpos et al, 2021a), suggesting a dysfunction of the immune system
and relation between plasma cells and bone marrow microenvi-
ronment. However, our study and others (Bitoun et al, 2021;
Gavriatopoulou et al, 2021), with a reduced number of patients
analysed in all cases, did not find this association on patients with
daratumumab. Similarly to others (Bitoun et al, 2021), we did not
find lower anti–SARS-CoV-2–specific antibodies or neutralization
capacity on MM patients with previous HSCT compared with their
counterparts. Additional studies with higher number of patients are
required to validate these results.

Age may also contribute to a lower immune response to SARS-
CoV-2 vaccines among non-cancer uninfected controls older than
65 yr (Collier et al, 2021; Trigueros et al, 2022). In this study, we
observed that older age was negatively associated with the levels of
anti–SARS-CoV-2 IgG antibodies as well as the neutralization ca-
pacity, as other groups have already highlighted (Chung et al, 2021;
Terpos et al, 2021b). Because of the older age of most MM patients,
this parameter should be taken into account for future analysis.

Immunoparesis has been also associated with an inferior an-
tibody response (Terpos et al, 2021b), and we did confirm these
results in our univariate analysis, but was not confirmed in the
multivariate validation. In that sense, we observed greater
immunoparesis in SMM (77%) and MM (90%) patients compared

with the 35% of MGUS subjects. Despite this high frequency in
immunoparesis in SMM group, no significant differences in the
levels of anti–SARS-CoV-2 antibodies or plasma neutralization
capacity were detected between MGUS, SMM and the healthy
control groups. Overall, our results suggest that other factors rather
than immunoparesis may contribute to a lower response to vac-
cination in MM patients. In our cohort, SMM and MM presented
similar defects in immune effector cells and B-cell disorders, and
the only differential finding between both groups was anti-
myeloma therapy and lymphopenia.

Interestingly, we observed that mRNA-1273 COVID-19 vaccine was
associated to a higher levels of neutralization activity in our
multivariate analysis, as previously described (Chung et al, 2021).
This result should be further investigated in larger longitudinal
studies of patients with MM.

Even though an assessment of the immune response several
months after vaccination has been performed, our study has some
limitations. First, the relatively small number of participants, es-
pecially for the uninfected MM group, limited the multivariate
analysis especially for the impact of treatment. In addition, we did
not assess specific SARS-CoV-2 cellular responses after vaccination,
which could also be used as a correlate of protection (San Segundo
et al, 2021).

In conclusion, our study demonstrates that patients suffering
from MGUS and SMM did not show significant differences in the
plasma neutralization capacity compared with healthy controls,

Figure 3. Correlations between variables.
Panel (A) Correlation matrix of relevant continuous variables including MGUS, SMM, MM, and CG participants. Spearman coefficients are indicated in the lower part of
the panel, whereas P-values in the upper part. Only significant correlations are plotted (P < 0.05). Positive correlations are shown in blue, whereas negative in red.
(B, C) Detail of the correlation between the levels of SARS-CoV-2–specific IgG (Panel B) and IgA (Panel C) antibodies and neutralization capacity. Each symbol represents a
participant, and are color-coding according to their disease group (MGUS, purple square; SMM, upper triangle turquoise; MM, lower triangle orange, and CG, blue
diamond). Correlation coefficient and P-values were obtained from Spearman correlation.
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and SARS-CoV-2 booster vaccines should be administrated fol-
lowing the recommendations for the general population. In con-
trast, MM patients in first line of therapy have a blunted antibody
response after 3 mo from complete vaccine administration, and
tailored booster campaigns of the vaccine-induced immune re-
sponses should be considered in these cancer patients to adapt
their SARS-CoV-2 vaccination calendar to their immune needs.

Materials and Methods

Study population

A cross-sectional study (VAC-COV-GM-HMAR) was conducted in
patients with monoclonal gammopathies at Hospital del Mar to
assess the efficacy of vaccination against SARS-CoV-2, after having
received the complete vaccination schedule dose according to
BNT162b2 (Pfizer-BioNTech) and mRNA-1273 COVID-19 (Moderna)
schedules (median of 3.9 IQR [2.2–5] months post-vaccine). 59
patients suffering monoclonal gammopathies consecutively visited
during 2 mo at the outpatient haematological consult were eligible
to entry into the study. Treated patients received only one line of
therapy before vaccination.

Results were compared with a control group, which included 36
uninfected and 58 infected individuals without haematological
malignancies, belonging to the King cohort extension (N = 47) and
CoronAVI@S (N = 47) studies. Post-vaccine samples were selected
among individuals vaccinated also with BNT16b2 and mRNA-1273
COVID-19.

The VAC-COV-GM-HMAR, King cohort extension, and CoronAVI@S
studies were approved by the Ethics Committee Boards from the
Hospital del Mar (HMAR), the Hospital Universitari Germans Trias i
Pujol (HUGTIP), and the Institut Universitari d’Investigació en
Atenció Primària (IDIAP), respectively (HMAR/2021/9913/I, HUGTiP/
PI-20-217, and IDIAP/20-116P) and were conducted in accordance
with the Declaration of Helsinki. All patients provided written in-
formed consent before starting the study.

Determination of anti–SARS-CoV-2 antibodies

The presence of anti–SARS-CoV-2 antibodies against Spike S2
Subunit+ Spike protein receptor binding domain (S2+RBD) or
nucleocapside protein (NP) in plasma samples was evaluated using
an in-house developed sandwich-ELISA, as previously described
(Massanella et al, 2021). Briefly, Nunc MaxiSorp ELISA plates (Cat. no.
M9410-1CS; Sigma-Aldrich) were coated overnight at 4°C with 50 ng/
ml of capture antibody (anti-6xHis antibody, clone HIS.H8; Cat. no.
MA1-21315; Thermo Fisher Scientific) at 2 μg/ml in PBS. After
washing, plates were blocked for 2 h at room temperature using
PBS/1% of BSA (Cat. no. 130-091-376; Miltenyi Biotech). Then, 50 μl of
the following SARS-CoV-2–derived antigens diluted in blocking
buffer were added: Spike (S2) (0.9 μg/ml, Cat. no. 40590-V08B),
receptor binding domain (RBD, Cat. no. 40592-V08B) (0.3 μg/ml), or
nucleocapsid protein (NP, 40588-V08B) (1 μg/ml) (Sino Biologicals)
and incubated overnight at 4°C. Each plasma sample was evaluated
in duplicated at dilution ranging from 1/100 to 1/50,000 in blocking

buffer for each antigen. Diluted samples were incubated at room
temperature for 1 h. Antigen-free wells were also assayed in parallel
for each sample in the same plate to evaluate sample background.
Serial dilutions of a positive plasma sample were used as standard.
A pool of 10 SARS-CoV-2–negative plasma samples, collected before
June 2019, were included as negative control. The following re-
agents were used as secondary antibodies: HRP-conjugated (Fab)2
Goat anti-human IgG (Fc specific, Cat. no. 109-036-098) (1/20,000),
Goat anti-human IgM (1/10,000, Cat. no. 109-036-129), and Goat anti-
human IgA (α chain specific, Cat. no. 109-036-011) (1/10,000) (all
from Jackson Immunoresearch). Secondary antibodies were incu-
bated for 30 min at room temperature. After washing, plates were
revealed using o-Phenylenediamine dihydrochloride (OPD, Sigma-
Aldrich, Cat. no. P8787) and the enzymatic reaction was stoppedwith
4N of H2SO4 (Sigma-Aldrich). The signal was analysed as the optical
density (OD) at 492 nm with noise correction at 620 nm. The specific
signal for each antigen was calculated after subtracting the
background signal obtained for each sample in antigen-free wells.
Values are plotted into the standard curve. Standard curve was
calculated by plotting and fitting the log of standard dilution (in
arbitrary units) versus response to a four-parameter equation in
Prism 8.4.3 (GraphPad Software).

Pseudovirus neutralization assay

Neutralization assay was performed using SARS-CoV-2.SctΔ19 WH1
pseudovirus as previously described (Trinité et al, 2021; Pradenas
et al, 2022a). Briefly, SARS-CoV-2.SctΔ19 WH1 and B.1.617.2/Delta
were generated (Geneart) from the full protein sequence of the
original SARS-Cov-2 isolate Wuhan-Hu-1 (WH1) spike sequence,
with the deletion of the last 19 amino acids in C-terminal (Ou et al,
2020), human-codon optimized and inserted into pcDNA3.1(+). HIV
reporter pseudoviruses expressing SARS-CoV-2 S protein and
Luciferase were generated using the defective HIV plasmid pNL4-
3.Luc.R-.E—obtained from the NIH AIDS Reagent Program (Connor et
al, 1995). Expi293F cells were transfected using ExpiFectamine293
Reagent (Thermo Fisher Scientific) with pNL4-3.Luc.R-.E− and SARS-
CoV-2.SctΔ19 (WH1, B.1.617.2/Delta), at an 8:1 ratio, respectively.
Control pseudoviruses were obtained by replacing the S protein
expression plasmid with a VSV-G protein expression plasmid as
reported (Sánchez-Palomino et al, 2011). Supernatants were har-
vested 48 h after transfection, filtered at 0.45 μm, frozen and titrated
on HEK293T cells overexpressing WT human ACE-2 (Integral Mo-
lecular). Neutralization assays were performed in duplicate. Briefly,
in Nunc 96-well cell culture plates (Cat. no. 165305; Thermo Fisher
Scientific), 200 TCID50 of pseudovirus were preincubated with
threefold serial dilutions (1/60–1/14,580) of heat-inactivated
plasma samples for 1 h at 37°C. Then, 2 × 104 HEK293T/hACE-2
cells treated with DEAE-Dextran (Cat. no. D9885; Sigma-Aldrich)
were added. Results were read after 48 h using the EnSight Mul-
timode Plate Reader and BriteLite Plus Luciferase reagent (Cat. no.
6066761; Perkin Elmer). The values were normalized, and the ID50
(the reciprocal dilution inhibiting 50% of the infection) was cal-
culated by plotting and fitting the log of plasma dilution versus
response to a four-parameter equation in Prism 8.4.3 (GraphPad
Software). This neutralization assay had been previously validated
in a large subset of samples (Trinité et al, 2021; Pradenas et al,
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2022a). The lower limit of detection was 60 and the upper limit was
14,580 (reciprocal dilution).

Statistical analysis

Continuous variables were described using medians and the
interquartile range (IQR), whereas categorical factors were reported
as percentages. Quantitative variables were compared using the
Mann–Whitney test and proportions using the chi-squared test for
comparison between two groups, and nonparametric Kruskal–
Wallis test for comparison between all groups. Correlations be-
tween continuous variables were assessed with Spearman’s rank
correlation coefficient. The impact of each variable to the levels of
specific SARS-CoV-2 IgG or IgA antibodies and neutralization ca-
pacity was assessed via linear regression models including all
patients with monoclonal gammopathies and the control groups,
using the latter as reference. A multivariate model was constructed
based on significant variables on the univariate analysis with an
inclusion criterion of P < 0.1. Statistical analyses were performed
with Prism 9.1.2 (GraphPad Software) and R (4.1.2). Statistical sig-
nificance was determined when P ≤ 0.05.

Data Availability

The authors confirm that the data supporting the findings of this
study are available within the article and its supplementary ma-
terials. The data are available on request from the corresponding
author (E Abella/M Massanella).

Supplementary Information

Supplementary Information is available at https://doi.org/10.26508/lsa.
202201479.
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Trinité B, Tarrés-Freixas F, Rodon J, Pradenas E, Urrea V, Marfil S, Rodrı́guez de
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