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The elemental composition of phytoplankton (C:N:P stoichiometry) is a critical factor

regulating nutrient cycling, primary production and energy transfer through planktonic

food webs. Our understanding of the multiple direct and indirect mechanisms

through which temperature controls phytoplankton stoichiometry is however incomplete,

increasing uncertainty in the impacts of global warming on the biogeochemical

functioning of aquatic ecosystems. Here, we use a decade-long warming experiment

in outdoor freshwater ponds to investigate how temperature-driven turnover in species

composition and shifts in stoichiometric traits within species through local thermal

adaptation contribute to the effects of warming on seston stoichiometry. We found that

experimental warming increased seston C:P and N:P ratios, while the C:N ratio was

unaffected by warming. Temperature was also the dominant driver of seasonal variation in

seston stoichiometry, correlating positively with both C:P and N:P ratios. The taxonomic

composition of the phytoplankton community differed substantially between the warmed

and ambient treatments indicating that warming resulted in differential sorting of species

from the regional pool. Furthermore, taxonomic composition also changedmarkedly over

the year within each of the warmed and ambient treatments, highlighting substantial

temporal turnover in species. To investigate whether local adaptation also played an

important role in shaping the effects of warming on seston stoichiometry, we isolated

multiple strains of the cosmopolitan alga, Chlamydomonas reinhardtii from across the

warmed and ambient mesocosms. We found that warmed isolates had higher C:P and

N:P ratios, shifts that were comparable in direction and magnitude to the effects of

warming on seston stoichiometry. Our results suggest that both species sorting and local

adaptation are likely to play important roles in shaping the effects of warming on bulk

phytoplankton stoichiometry and indicate that major shifts in aquatic biogeochemistry

should be expected in a warmer world.

Keywords: global warming, phytoplankton, stoichiometry, rapid evolution, species sorting

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/journals/microbiology#editorial-board
https://www.frontiersin.org/journals/microbiology#editorial-board
https://www.frontiersin.org/journals/microbiology#editorial-board
https://www.frontiersin.org/journals/microbiology#editorial-board
https://doi.org/10.3389/fmicb.2017.02003
http://crossmark.crossref.org/dialog/?doi=10.3389/fmicb.2017.02003&domain=pdf&date_stamp=2017-10-23
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/microbiology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:g.yvon-durocher@exeter.ac.uk
https://doi.org/10.3389/fmicb.2017.02003
https://www.frontiersin.org/articles/10.3389/fmicb.2017.02003/full
http://loop.frontiersin.org/people/127781/overview
http://loop.frontiersin.org/people/366062/overview
http://loop.frontiersin.org/people/48921/overview


Yvon-Durocher et al. The Temperature Dependence of Phytoplankton Stoichiometry

INTRODUCTION

The stoichiometry of carbon (C), nitrogen (N), and phosphorous
(P) in phytoplankton biomass set important constraints on
the biogeochemistry of aquatic ecosystems, shaping patterns of
nutrient limitation (Elser et al., 2009; Bonachela et al., 2013;
Alexander et al., 2015), recycling (Sterner and Elser, 2002),
material transfer, and C sequestration in planktonic ecosystems
(Galbraith and Martiny, 2015). Until recently it was assumed
that the ratios of these elements were maintained in relatively
fixed proportions (i.e., the Redfield ratio, C:N:P = 106:16:1)
and exhibit tight coupling between organic and inorganic pools
(Geider and La Roche, 2002). It is now widely recognized that
the C:N:P stoichiometry of phytoplankton is highly variable
across multiple spatial, temporal and organizational scales
(Geider and La Roche, 2002). Such variation has been linked
to directional changes in abiotic factors (e.g., light, CO2 and
nutrients), with temperature often cited as a key determinant
of phytoplankton stoichiometry (Woods et al., 2003; Hessen,
2005; Martiny et al., 2013; Toseland et al., 2013; Yvon-
Durocher et al., 2015b). However, despite much recent progress,
we still lack a detailed understanding of the multiple direct
and indirect mechanisms through which temperature controls
phytoplankton stoichiometry across scales of time, space and
biological organization, limiting our ability to forecast impacts
of global warming on macronutrient cycles.

The elemental stoichiometry of a phytoplankton cell is the
result of resource allocation to different subcellular constituents
that vary in their C, N, and P content and together determine the
cell’s macromolecular composition (Shuter, 1979; Daines et al.,
2014). For example, polysaccharides, lipids and carbohydrates
are major sinks for C allocation; proteins represent the major
fraction of the cell’s investment of N, while ribosomal RNA
and phospholipids account for a large part of P allocation
(Geider and La Roche, 2002). Temperature is a key driver
phytoplankton metabolism (Raven and Geider, 1988; Thomas
et al., 2012; Sal et al., 2015; Padfield et al., 2016) and recent
work suggests that changes in temperature alter the cell’s
optimal allocation to C, N and P pools via phenotypic plasticity
(i.e., acclimation; Toseland et al., 2013; Daines et al., 2014).
The “temperature-dependent physiology” hypothesis predicts that
organisms growing at higher temperatures should have higher
N:P ratios because they require fewer P-rich ribosomes, relative
to N-rich proteins, to sustain growth and maintenance (Woods
et al., 2003; Toseland et al., 2013; Yvon-Durocher et al.,
2015b). In phytoplankton, such a shift could occur if the rates
of photosynthesis by N-rich photosynthetic proteins exhibit
weaker temperature dependence than protein synthesis by P-
rich ribosomes (Yvon-Durocher et al., 2015b). A recent meta-
analysis of temperature manipulation experiments on 9 species
of marine and freshwater phytoplankton demonstrated a positive
association between temperature and C:P and N:P ratios, but not
C:N, suggesting that, in support of the “temperature-dependent
physiology” hypothesis, changes in cellular stoichiometry were
attributable to declines in P content as cells acclimate to warmer
temperatures (Yvon-Durocher et al., 2015b). Furthermore, direct
measurements of cellular allocation to RNA in chlorophytes

and diatoms have also revealed rapid declines as populations
acclimate to warmer growth temperatures (Toseland et al., 2013;
Hessen et al., 2017). Evidence in support of the “temperature-
dependent physiology” hypothesis is not unequivocal however,
with acclimation experiments on the marine cyanobacterium
Prochlorococcus revealing that increases in C:P and N:P at higher
temperatures were driven by elevated C and N contents, rather
than declines in P, in warm acclimated cells (Martiny et al.,
2016a). Nevertheless, the current weight of evidence indicates
that physiological plasticity in response to rapid changes in
temperature can cause substantial shifts in algal stoichiometry
within species that are at least as large as those observed across
species, irrespective of the underlying molecular and biochemical
mechanisms.

Phytoplankton stoichiometry exhibits substantial variation
among the major lineages, presumably reflecting their divergent
evolutionary histories (Quigg et al., 2003; Litchman et al., 2007;
Litchman and Klausmeier, 2008; Finkel et al., 2009). Red lineage
algae, which include the diatoms and coccolithophores and
dominate the eukaryotic contribution to contemporary global
marine primary production, have relatively low N:P ratios
(Quigg et al., 2003). In contrast, green lineage algae, which
include the chlorophytes and prasinophytes that dominated
ocean productivity in the Proterozoic and Paleozoic, often
have relatively high N:P ratios (Quigg et al., 2003). Thus,
owing to the substantial differences in stoichiometric traits
that exist among phytoplankton taxa, environmental filtering
of species along thermal gradients has the potential to drive
variation in the bulk stoichiometry of seston when species-level
selection is systematic with respect to temperature and elemental
stoichiometry (Martiny et al., 2016b).

Rapid evolutionary responses to directional environmental
change could also play an important role in shaping the effects
of warming on phytoplankton stoichiometry and biogeochemical
macronutrient cycling. Indeed, recent work experimentally
evolving bothmarine and freshwater phytoplankton under future
temperature and CO2 scenarios have shown that adaptation
can be rapid (<1 year or a few hundred phytoplankton
generations) and often involves changes in stoichiometric traits
(e.g., C:N; Schlueter et al., 2014; Schaum et al., 2016). However,
experiments explicitly investigating rapid evolutionary shifts in
phytoplankton C:N:P stoichiometry in response to warming are
currently lacking. We therefore have limited understanding of
the direction, magnitude and tempo over which stoichiometric
traits might evolve as phytoplankton adapt to warming and
consequently, the contribution of rapid evolution to changes in
biogeochemical cycles.

Here, we use a decade-long warming experiment in outdoor
freshwater ponds to investigate the interplay between species
sorting and rapid evolution in shaping the effects of temperature
on phytoplankton stoichiometry. We first present a detailed
analysis of both seasonal changes in phytoplankton stoichiometry
within ponds as well as the long-term differences between
treatments attributable to experimental warming. We then
assess the role of local adaptation by quantifying changes
in C:N:P stoichometry in strains of the cosmopolitan alga,
Chlamydomonas reinhardtii, isolated from both our ambient and
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warmed ponds. We have previously shown that C. reinhardtii
strains isolated from the warmed and ambient treatments
are locally adapted to the different thermal regimes imposed
by experimental warming and exhibit fitness trade-offs when
reciprocally transplanted in the warmed and ambient treatments
(Schaum et al., 2017). Based on work in both marine and
freshwater systems over latitudinal and temporal (seasonal)
thermal gradients, we expect the C:P and N:P ratios of the seston
in our experiment to increase with warming and exhibit positive
seasonal temperature dependence (Hessen, 2005; Martiny et al.,
2013; Yvon-Durocher et al., 2015b). Given the highly dynamic
nature of phytoplankton communities, we hypothesize that
seasonal variation and treatment effects on bulk stoichiometry
will emerge from temperature driven turnover in the taxonomic
composition of the algal assemblages. However, we also predict
that if temperature driven adjustments in sub-cellular allocation
to C, N and P pools that increase C:P and N:P in warmer
environments (as expected under the “temperature-dependent
physiology” hypothesis) also increase fitness, then they will be
reinforced through evolutionary adaptation. Consequently, we
hypothesize that isolates of the cosmopolitan alga, C. reinhardtii,
that have adapted to the thermal regimes in the warmed
mesocosms will have higher C:P and N:P ratios than their
counterparts from the ambient treatments.

MATERIALS AND METHODS

Mesocosm Experimental Design
The mesocosm facility was established in 2005 and consists
of 20 artificial ponds of ∼1 m3 volume, 50 cm depth, sited
in southern England (Freshwater Biological Association Rivers
Laboratory, East Stoke, 2◦10′W, 50◦13′N), designed to be broadly
representative of mid-latitude shallow lakes (Yvon-Durocher
et al., 2010). Warming of 4–5◦C above ambient began in half of
the ponds in 2006 by maintaining a constant differential between
thermocouples in a pair of warmed and ambient ponds. The
ponds contain well-established benthic and pelagic communities
including assemblages of macrophytes, phytoplankton, algal
biofilms, and invertebrates; for a detailed description of the
community composition see previous publications from this
facility (Yvon-Durocher et al., 2010, 2015a; Dossena et al., 2012).
Sediments are comprised of 8–10 cm of fine sands with a
developed organic layer of 1–3 cm (Table 2).

Phytoplankton Sampling
The plankton community in each of the mesocosms was
sampled every 2 months between July 2011 and May 2012 (6
sampling occasions in total). The phytoplankton composition
data presented here are reanalyzed from those in Yvon-Durocher
et al. (2015a). The entire water column from the sediment surface
to the water surface was sampled using a 0.8 m-length tube
sampler (Volume: 2 L), which was positioned at random in each
mesocosm on each date. Each sample was passed through a
100µm aperture sieve to remove the zooplankton. A 100mL
sub-sample of <100µm fraction was preserved in 1% Lugol’s
iodine for microscope analysis of the phytoplankton community
composition, while the remaining material was filtered through

a pre-ashed, Whatman GF/F filter (0.7µm nominal pore size) in
duplicate and then immediately frozen at−20◦C prior to analysis
of particulate nutrients.

Seston Stoichiometry
Filters (GF/F) were dried for 48 h at 60◦C. The dry weight
of particulate matter on the filter was calculated and used to
standardize by the sample mass in further analyses. One of the
two filters was acidified (1M HCl) to remove carbonates and
used for the analysis of particulate organic carbon and nitrogen
using a Sercon 20-22 IRMS. The other was used for determining
particulate organic phosphorous on a segmented flow auto-
analyser (Skalar, San++, Breda, Netherlands) following complete
oxidation with potassium persulfate.

Taxonomic Characterization of the
Phytoplankton Community
Phytoplankton <100µm were counted using a LEICA DMIRB
inverted microscope at 400x magnification, following the
Utermöhl method. The microscope was connected to an
interactive image analysis system (LEICA EC3 camera and LAS
software) to allow for a higher magnification. For each sample,
at least 400 individuals (single cell, colony or filament) were
counted, measured and identified. Counts were converted to
volumetric estimates of abundance (organisms mL−1) based on
the volume of sample analyzed, which varied between 1 and
25mL depending on the density of organisms. In total, 171 taxa
were identified, 85% of which were identified to species level;
the remaining 15% were identified to genus or class, or were
undetermined.

Measuring Gross Primary Production
Rates of gross primary production (GPP) were measured over
a 24 h diel cycle for each replicate mesocosm on the sampling
months described above using the free water dissolved oxygen
(DO) change technique (Staehr et al., 2010). Measurements of
DO and temperature were taken every 15min for 24 h at mid-
depth (0.25m) in the water column of each pond with YSI
600XLM multi-parameter Sondes, equipped with 6562 rapid
pulseTM dissolved oxygen sensors. Light intensity was measured
using a Licor spherical quantum sensor (LI-193, Licor USA)
positioned at mid-depth (0.5m) in the water column of a single
ambient mesocosm in the center of the pond array. These
measurements allow for quantification of seasonal variation
in light intensity but do not allow us to quantify potential
differences among treatments in light penetration. Light intensity
was measured every minute and logged as 15-min averages using
a Licor LI-1500 data logger. Prior to deployment, the multi-
parameter Sondes were calibrated in water-saturated air with
a correction for barometric pressure. Calibration accuracy was
verified by monitoring the DO concentration of water-saturated
air for 10min and checking against 100% O2 saturation for the
measured temperature and pressure. Measurements of DO, wind
speed at 1.7m (Cole-Parmer,WS-821), and light intensity at mid-
depth in the water column were used to calculate GPP and Reco

following the methods outlined in Staehr et al. (2010).
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Isolation and Characterization of
Chlamydomonas reinhardtii
We isolated Chlamydomonas, a known cosmopolitan and highly
abundant genus in the heated and ambient mesocosms (Yvon-
Durocher et al., 2015a), by first passing water through a
45µm and then a 20µm filter, followed by serial dilution and
streaking the isolate on to agar-filled pipette tips turned toward
a light source (enabling identification and isolation of motile
autotrophs). Organisms putatively identified as Chlamydomonas
were then grown on agar plates infused with Bold’s Basal
Medium (BBM). Colonies were then picked under a microscope,
transferred back into liquid culture (autoclaved, filtered water
taken from rainwater holding tanks at the mesocosm experiment
supplemented with BBM at 1/3 the standard concentration) and
kept at 18◦C (the average daytime temperature across treatments
at the time of sampling) for 2 weeks in semi-continuous batch-
culture. This yielded concentrations of NO−

3 at 1,000 µmol L−1

and PO3+
4 at 330 µmol L−1. The rationale here was to grow the

isolates under nutrient replete conditions (concentrations of N
and P that were much larger than observed in the mesocosms) so
(i) rates of growth and biomass yields were sufficient to quantify
physiological traits, and (ii) the observed cellular stoichiometry
would not depend on the availability of nutrients in the medium.
Taxonomy of Chlamydomonas was confirmed by microscopy
and using PCR followed by Sanger sequencing within the 18S
sequence using a set of primers with forward sequence GAAG
TCGTAACAAGGTTTCC and reverse sequence TCCTGGTTA
GTTTCTTTTCC. Positive controls were run using p23 primers
amplifying in the RuBisCO region, with forward GGACAGAAA
GACCCTATGAA and reverse TYAGCCTGTTATCCCTAGAG.
This yielded 18 out of the 20 isolates with an at least 99% BLAST
match for C. reinhardtii, 8 from heated and 10 from ambient
mesocosms. These were used throughout the experiments and
the other 2 samples were discarded.

To determine intracellular C, N, and P content,
Chlamydomonas cultures were grown to exponential phase
and the cells counted. A total of 200mL were spun down at
2,500 r.p.m, the supernatant decanted and the samples frozen
immediately in liquid nitrogen until further analysis. Samples
for CN content were freeze-dried, weighed out into tin capsules,
and analyzed for C and N content using a Sercon 20-22 IRMS.
Cell P content was determined via a colorimetric reaction on a
Seal Analytics AA3 flow analyser. Pellets were washed in 0.17M
Na2SO4, transferred to scintillation vials and re-suspended
in 4ml 0.017M MnSO4. The samples were transferred to an
autoclave (1 h, 121◦C), shaken vigorously and centrifuged at
2,500 r.p.m for 30min, the pellet discarded, and the supernatant
brought to 10ml with MillliQ purified water. The samples
were immediately analyzed on the AA3 using the colorimetric
molybdate/antimony method after (Murphy and Riley, 1958).

Dissolved Inorganic Nutrients
Water samples for measuring dissolved inorganic nutrient
concentrations were collected frommid-depth in eachmesocosm
at 9 a.m. on each sampling occasion. Samples were filtered
(Whatmann GF/F) and stored frozen at −20◦C for subsequent

determination of NO−
3 , NO−

2 , NH+
4 , and soluble reactive

phosphorous (SRP) using a segmented flow auto-analyser
(Skalar, San++, Breda, Netherlands) and the methods of
Kirkwood (1996).

Statistical Analyses
Seasonal changes in biotic and abiotic variables often exhibit
highly non-linear patterns of change, particularly in temperate
regions. We therefore used generalized additive mixed effects
models (GAMMs) to characterize the seasonal trends and
overall treatment effects on temperature, light intensity, GPP,
dissolved inorganic nutrients, particulate organic nutrients, and
seston stoichiometry. GAMMs do not prescribe any particular
functional form for the trend; rather its shape is estimated from
the data using penalized regression. GAMMs further account
for hierarchical data structures (Zuur et al., 2009). For example,
our experimental design yielded replicate seasonal responses for
each variable in each treatment. This hierarchical structuremeant
that measurements were non-independent—e.g., measurements
from the same pond will be autocorrelated. We account for this
by treating replicate pond as a random effect on the intercept
of the model, which models deviations among ponds from the
fixed effects as normally distributed with a mean of zero. The full
models were specified as follows

ypt = β + αp + Treatt + fTreat (DOYt) + εpt

εpt = N
(

0, σ 2)

αp = N(0, σ 2) (1)

where ypt is the response variable in pond, p, and time, t, β

is the intercept, which characterizes the median value of the
response variable, “Treat” captures differences in the intercept
between treatments (e.g., “warmed” or “ambient”), αp is a
random effect that characterizes deviations among replicate
ponds from the intercept, which we assume are normally
distributed with a mean of zero and a variance, σ 2. The seasonal
smooth function, fTreat(DOYt), uses a cubic regression spline
to model the seasonal trend in the response variable y, which
is allowed to vary between warmed and ambient treatments.
The model residuals, εpt , are assumed to be drawn from a
normal distribution with a mean of zero and a variance, σ 2.
Model selection entailed fitting a range of models to the data,
starting with the full model and then a series of reduced
models with interaction terms (e.g., different seasonal smooth
functions for each treatment) and main effects removed to test
hypotheses about the potential differences in seasonal changes
in the response variables among treatments. For multi-model
selection we computed small sample-size corrected AIC scores
(AICc) and then compared between models by calculating delta
AICc values and AIC weights using the “MuMIn” package.
When candidate models deviated from the most parsimonious
model (that with the lowest AICc score) by less than two AICc
units, parameters were averaged across those candidate models
using the “model.avg” function in the “MuMIn” package. The
relative importance of the fixed factors in the averagedmodel was
determined using the sum of their relative weights. GAMMswere
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fitted to the data using the “gamm4” package and were conducted
in R (v.3.23).

To assess the relative importance of putative abiotic drivers
in shaping seasonal variation in seston stoichiometry, we fitted
each stoichiometric ratio to the seasonal changes in temperature,
light intensity, dissolved inorganic nitrogen (DIN), and SRP in a
multiple regression mixed effects model using the “lme” function
in the “nlme” package for R.

ln(Rip) = β0 + αp + β1Tip + β2 ln
(

Iip
)

+ β3 ln
(

DINip

)

+β4 ln
(

SRPip
)

+ εip

εip = N
(

0, σ 2)

αp = N(0, σ 2) (2)

where ln(Rip) is the natural logarithm of the ith observation of
the stoichiometric ratio in pond p, β0 is the intercept and αp

is a random effect that characterizes deviations among replicate
ponds from overall the intercept, which we assume are normally
distributed with a mean of zero and a variance, σ 2. The slope
coefficients, β1...n characterize the response of ln(Rip) to the
to the various predictor variables. The model residuals, εip,
are assumed to be drawn from a normal distribution with

a mean of zero and a variance, σ 2. We natural logarithm
transformed the stoichiometric ratios, light intensity, DIN and
SRP to linearize all relationships and ensure data were normally
distributed prior to statistical analyses. We tested for multi-
colinearity by calculating the variance inflation factors (VIF)
for each predictor. In each case VIFs were <2.5 indicating
that multi-colinearity was low. As for the GAMM analyses,
model selection entailed fitting a range of models to the data,
starting with the full model (Equation 2) and then a series
of reduced models with predictors removed to test hypotheses
about the dominant abiotic drivers of seasonal changes in the
stoichiometric ratios. Model selection and model averaging was
conducted in the same way as described above for the GAMM
analyses.

Variation in the taxonomic composition of the phytoplankton
communities between treatments and among sampling months
was indexed as the “score” for each mesocosm along the first axis
of a non-metric multidimensional scaling (NMDS) ordination.
NMDS ordination was conducted on each sampling month using
the “metaMDS” function in the “vegan” package in R based on
a Bray–Curtis dissimilarity matrix derived from log10 (X+1)-
transformed total abundances of the taxa in each mesocosm.
NMDS projected this matrix into a new coordinate space with a
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FIGURE 1 | Seasonal variation in abiotic variables. Seasonal changes and treatment effects on (A) average daily temperature, (B) average daily light intensity,

(C) dissolved inorganic nitrogen, and (D) soluble reactive phosphorous (SRP). Black denotes ambient treatments, red indicates warmed treatments. Fitted lines are
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small number of dimensions (in this case, 10) while preserving
the original Bray–Curtis dissimilarities among samples to the
extent possible. Orthogonal rotation was applied to the axes in
this new coordinate space so as to maximize the variance in
“scores” among samples along the first NMDS axis. Thus, samples
with more similar scores along the first NMDS axis are more
similar to each other with respect to the dominant gradient in
taxonomic composition. We used Permutational Multivariate
Analysis of Variance (PERMANOVA) to test whether Bray–
Curtis dissimilarities between treatments, months and their
interaction were significant.

Because we were interested in assessing the relative
importance of species sorting in shaping the seasonal variation
and effects of experimental warming on seston stoichiometry,
we used the methods described in Baselga and Orme (2012) to
partition beta-diversity into its turnover and nested components.
We quantify beta-diversity (e.g., spatial or temporal differences
in taxonomic composition based on presence-absence data)
using the Sorensen’s Index (βsor), which can be partitioned into
components attributable to species turnover (e.g., spatial or
temporal replacement of species, βturn) and nestedness (e.g.,
where different sites or time points have species compositions
that are nested subsets, βnes).

βsor = βturn + βnes ≡
b

b+ a
+

(

c− b

2a+ b+ c

) (

a

b+ a

)

(3)

where a is the number of species shared between two sites
(or distinct time points), b is the number species unique
to the poorest site and c is the number of species unique
to the richest site. We then estimated the fraction of total
beta-diversity attributable to turnover (e.g., spatial or temporal
replacement of species) as βfrac = βturn/βsor. Using these
metrics, we calculated two forms of beta-diversity. First, for each
sampling month we estimated spatial beta-diversity as pond-
to-pond differences in taxonomic composition, partitioning
out variation among ambient, heated and ambient vs. heated
ponds. Second, we estimated temporal beta-diversity for each
replicate pond by assessing variation in taxonomic composition
among sampling months. For both spatial and temporal beta-
diversity we calculated βfrac = βturn/βsor to assess the relative
importance of taxonomic turnover between the warmed and
ambient treatments as well as over seasonal variation within
mesocosms.

RESULTS

Seasonal Variation and Treatment Effects
on Abiotic Variables
The abiotic variables measured in the mesocosms showed
characteristic seasonality, with temperature and surface water
light intensity reaching maxima in July and minima in January
(Figures 1A,B). The heated mesocosms were, on average, 4.1◦C
(±0.7◦C) warmer than their ambient counterparts over the
entire year (Figure 1A). The seasonality of DIN and SRP
reflected drawdown in the spring and early summer, followed
by regeneration through autumn and winter (Figures 1C,D).

TABLE 1 | Multi-model selection on generalized additive mixed effects models

fitted to the seasonal data.

Model Df logLik AICc 1AICc Weight

TEMPERATURE

T1 = treat + s(DOY) 6.00 −156.54 326.54 0.00 1.00

T0 = treat + s(DOY, by = treat) 8.00 −160.86 340.29 13.76 0.00

T3 = s(DOY) 5.00 −165.54 342.10 15.56 0.00

T2 = s(DOY, by = treat) 7.00 −169.84 355.65 29.11 0.00

DISSOLVED INORGANIC NITROGEN

DIN3 = s(DOY) 5.00 −54.06 119.13 0.00 0.74

DIN1 = treat + s(DOY) 6.00 −53.95 121.34 2.21 0.25

DIN2 = s(DOY, by = treat) 7.00 −55.75 127.46 8.33 0.01

DIN0 = treat + s(DOY, by = treat) 8.00 −55.59 129.74 10.61 0.00

SRP

SRP1 = treat + s(DOY) 6.00 −51.69 116.82 0.00 0.73

SRP3 = s(DOY) 5.00 −54.17 119.35 2.52 0.21

SRP0 = treat + s(DOY, by = treat) 8.00 −51.89 122.36 5.53 0.05

SRP2 = s(DOY, by = treat) 7.00 −54.47 124.90 8.08 0.01

GROSS PRIMARY PRODUCTION

GPP1 = treat + s(DOY) 6.00 −54.11 121.66 0.00 0.77

GPP3 = s(DOY) 5.00 −56.64 124.31 2.64 0.21

GPP0 = treat + s(DOY, by = treat) 8.00 −55.29 129.14 7.48 0.02

GPP2 = s(DOY, by = treat) 7.00 −57.46 130.88 9.21 0.01

PARTICULATE CARBON

PC3 = s(DOY) 5.00 −56.31 123.63 0.00 0.89

PC1 = treat + s(DOY) 6.00 −57.27 128.00 4.36 0.10

PC2 = s(DOY, by = treat) 7.00 −58.46 132.89 9.26 0.01

PC0 = treat + s(DOY, by = treat) 8.00 −59.36 137.28 13.65 0.00

PARTICULATE NITROGEN

PN3 = s(DOY) 5.00 −68.19 147.40 0.00 0.81

PN1 = treat + s(DOY) 6.00 −68.90 151.24 3.84 0.12

PN2 = s(DOY, by = treat) 7.00 −68.28 152.53 5.13 0.06

PN0 = treat + s(DOY, by = treat) 8.00 −68.99 156.55 9.15 0.01

PARTICULATE PHOSPHOROUS

PP3 = s(DOY) 5.00 −51.52 114.06 0.00 0.54

PP1 = treat + s(DOY) 6.00 −50.81 115.06 1.01 0.33

PP2 = s(DOY, by = treat) 7.00 −50.82 117.61 3.56 0.09

PP0 = treat + s(DOY, by = treat) 8.00 −50.32 119.20 5.15 0.04

C:N RATIO

CN3 = s(DOY) 5.00 −61.44 133.91 0.00 0.74

CN1 = treat + s(DOY) 6.00 −61.32 136.09 2.18 0.25

CN2 = s(DOY, by = treat) 7.00 −63.25 142.46 8.55 0.01

CN0 = treat + s(DOY, by = treat) 8.00 −63.12 144.82 10.91 0.00

C:P RATIO

CP1 = treat + s(DOY) 6.00 −70.76 154.96 0.00 0.63

CP3 = s(DOY) 5.00 −72.51 156.03 1.08 0.37

CP0 = treat + s(DOY, by = treat) 8.00 −73.53 165.63 10.68 0.00

CP2 = s(DOY, by = treat) 7.00 −75.33 166.63 11.67 0.00

N:P RATIO

NP3 = s(DOY) 5.00 −67.60 146.22 0.00 0.54

(Continued)
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TABLE 1 | Continued

Model Df logLik AICc 1AICc Weight

NP1 = treat + s(DOY) 6.00 −66.58 146.61 0.39 0.44

NP2 = s(DOY, by = treat) 7.00 −68.78 153.52 7.31 0.01

NP0 = treat + s(DOY, by = treat) 8.00 −67.78 154.14 7.92 0.01

A range of models testing hypotheses on the effects of the warming treatment (“treat”)

were fitted to the seasonal data; “treat” assess differences in median values warmed and

ambient treatments, while comparisons between s(DOY) and s(DOY, by = treat) assess

whether the shape of the seasonality differs among treatments. Models were compared

via the small sample size corrected Akaike Information Criterion (AICc), delta AICc is the

difference in AICc score relative to the model with the lowest value (most parsimonious

model) and AICc Weight (Wt) is the relative support for the model. The best fitting models

were selected as those returning the lowest AICc score and the highest AICc weight and

are highlighted in bold. Where two models differed in <2 AICc units we averaged the

coefficients between those models.

Median SRP levels over the year were lower in the warmed
treatments (Figure 1D; Table 1).

Seasonal Variation in Primary Production,
Particulate Nutrients and Seston
Stoichiometry
Patterns in GPP and phytoplankton nutrient content reflected
variation in the abiotic variables. GPP peaked in July in both
the warmed and ambient treatments when temperatures and
light levels were maximal (Figure 2A; Table 1). Rates of GPP
were also elevated in the warmed treatments across all sampling
occasions (Figure 2A; Table 1). Seston carbon content peaked in
July, in alignment with the maximal rates of GPP, but exhibited
no difference between the warmed and ambient treatments
(Figure 2B; Table 1). The nitrogen and phosphorous content of
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FIGURE 2 | Seasonal variation in primary production and particulate nutrients. Seasonal changes and treatment effects on (A) gross primary production, (B)

particulate organic carbon, (C) particulate organic nitrogen, and (D) particulate organic phosphorous. Fitted lines are from the fixed effects of the best fitting mixed

effects models. Where red and black fitted lines are present warmed and ambient treatments differed in either the median value and/or the seasonality of the response

variable. Where the fitted line is blue a single function provided the best fit to the data from both treatments.
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the phytoplankton peaked in May and March respectively, in
line with the peaks in DIN and SRP drawdown (Figures 2C,D;
Table 1). Seston phosphorous content was lower on average in
the warmed treatments (Figure 2D; Table 1).

C:N, C:P and N:P ratios all exhibited seasonal variation
(Figure 3; Table 1). C:N ratios were highest in winter and
declined through spring and summer (Figure 3A; Table 1). C:P
and N:P ratios exhibited the opposite seasonal trends, peaking
in the spring and summer and declining through autumn and
winter (Figures 3B,C; Table 1). In line with our predictions, both
C:P and N:P ratios were elevated in the warmed treatments
(Figures 3B,C; Table 1) while the C:N ratio was consistent
between treatments (Figure 3A; Table 1).

Abiotic Drivers of Seston Stoichiometry
To investigate the factors shaping the seasonal variation in
seston stoichiometry we fitted the data for each elemental ratio
to the measured abiotic drivers (temperature, light, DIN, and
SRP) using multiple regression in a mixed effects modeling
framework. The best fitting model for the C:N ratio included
temperature, light, and SRP as predictors (Table 2). C:N ratios
were negatively related to light intensity and positively correlated
with temperature and SRP (Figure 4A). Temperature, light, DIN,
and SRP were all retained as predictors of the C:P ratio in the
best fitting model (Table 2), though support for the inclusion of
SRP and DIN were weak (i.e., they had low summed weights
after model averaging, see Table 2). The C:P ratio was positively
correlated with temperature, and negatively related to light
(Figure 4B). For the N:P ratio, temperature, light and DIN were

all retained in the most parsimonious model (Table 2). The
N:P ratio was positively correlated with temperature and light,
and negatively related to DIN (Figure 4C). Consistent with our
hypotheses, temperature was an important predictor of all the
stoichiometric ratios and was the most important predictor for
the C:P and N:P ratio (i.e., it had the highest summed weight after
model averaging; see Table 2).

Seasonal Variation and Treatment Effects
on Phytoplankton Community Composition
The effects of seasonal variation in temperature and the other
abiotic variables, as well as the effect of experimental warming on
the bulk stoichiometry of the phytoplankton, will be mediated by
a combination of factors, including (i) physiological acclimation
of cellular stoichiometry within species; (ii) evolutionary
change in response to the long-term warming treatment; (iii)
environmentally driven species sorting; both in response to
seasonal changes in temperature within ponds as well as
the long-term temperature differential maintained between
the warmed and ambient treatments. To assess the potential
importance of species sorting and temperature-dependent
variation in phytoplankton community composition on seston
stoichiometry we quantified the taxonomic composition and
relative abundance of the phytoplankton communities in the
mesocosms on 6 sampling occasions over an annual cycle.
We found significant variation in phytoplankton community
composition both among treatments [Figure 5A; PERMANOVA,
F(1, 89) = 9.2; P < 0.001] as well as across sampling
occasions [Figure 5A; PERMANOVA, F(5, 89) = 2.3; P < 0.001],
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FIGURE 3 | Seasonal variation in phytoplankton stoichiometry. Seasonal changes and treatment effects on (A) the C:N ratio, (B) C:P ratio, and (C) N:P ratio. Fitted

lines are from the fixed effects of the best fitting mixed effects models. Where red and black fitted lines are present warmed and ambient treatments differed in either

the median value and/or the seasonality of the response variable. Where the fitted line is blue a single function provided the best fit to the data from both treatments.

Dashed lines indicate Redfield ratios.
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TABLE 2 | Model selection on multiple regression mixed effects models fitted to

investigate abiotic drivers of seston stoichiometry.

Model Df logLik AICc 1AICc Weight

C:N RATIO

PAR+SRP 5.00 −63.43 137.88 0.00 0.27

PAR+ SRP +Temp 6.00 −62.28 138.00 0.12 0.26

PAR+Temp 5.00 −64.01 139.03 1.15 0.15

PAR 4.00 −65.32 139.30 1.42 0.13

PAR SRP Temp

〈β〉 −0.39 0.24 0.03

SW 1.00 0.65 0.50

C:P RATIO

PAR+Temp 5.00 −75.67 162.36 0.00 0.22

PAR+ SRP +Temp 6.00 −74.82 163.09 0.73 0.15

DIN+PAR+Temp 6.00 −74.83 163.11 0.75 0.15

DIN+PAR+ SRP +Temp 7.00 −73.58 163.13 0.77 0.15

SRP +Temp 5.00 −76.16 163.33 0.97 0.14

Temp 4.00 −77.39 163.45 1.09 0.13

PAR Temp SRP DIN

〈β〉 −0.38 0.08 0.11 −0.08

SW 0.72 1.00 0.47 0.32

N:P RATIO

Temp 4.00 −68.89 146.44 0.00 0.30

DIN+Temp 5.00 −67.82 146.66 0.22 0.27

PAR+Temp 5.00 −68.35 147.71 1.27 0.16

Temp DIN PAR

〈β〉 0.07 −0.07 0.04

SW 1.00 0.37 0.22

Models including all possible combinations of light (PAR) temperature (Temp), dissolved

inorganic nitrogen (DIN), and soluble reactive phosphorous (SRP) as predictors of

the stoichiometric rations were compared via the small sample size corrected Akaike

Information Criterion (AICc), where delta AICc is the difference in AICc score relative to

the model with the lowest value (most parsimonious model) and AICc Weight (Wt) is the

relative support for the model. The best fitting models were selected as those returning the

lowest AICc score and the highest AICc weight. Where models differed by <2 AICc units

we averaged the coefficients between those models. All models with delta AICc < 2 are

given in the table above with model averaged coefficients, 〈β〉 and the relative importance

of each parameter, given by SW, which ranges from 0 (no models in the final set retain the

parameter) to 1 (all models in the final set retain the parameter).

based on Bray–Curtis dissimilarities. To determine the extent
to which pond-to-pond and month-to-month differences in
species composition (e.g., spatial and temporal beta-diversity
respectively) were driven by species replacements vs. species
losses, we quantified the relative proportion of total beta-
diversity attributable to taxonomic turnover and nestedness
(Baselga and Orme, 2012). On all sampling months, spatial beta-
diversity was driven primarily by turnover in species composition
among ponds, which was consistent when comparing across
treatments—e.g., on average, beta-diversity attributable to
taxonomic turnover was responsible for 78% of total beta-
diversity (Figure 5B). Similarly, temporal beta-diversity within
ponds also predominantly reflected turnover in composition
rather than nestedness (Figure 5C). These analyses demonstrate
that ∼80% of the variation in taxonomic composition of
the phytoplankton communities both in response to seasonal
changes in temperature and the effects of experimental warming
were driven by replacements of species.

Effects of Thermal Adaptation on
Phytoplankton Stoichiometry
The green alga, C. reinhardtii, was one of the most abundant
(top 10% of all species across the meta-community) and widely
distributed taxa across the meta-community, with established
populations in all warmed and ambient mesocosms. To
investigate whether thermal adaptation resulted in changes in
cellular stoichiometry that might contribute to the effects of
warming on bulk seston stoichiometry we measured C:N:P
ratios in strains of C. reinhardtii isolated from the warmed
and ambient treatments. Differences in the stoichiometric ratios
between the warmed and ambient isolates closely matched the
treatment effects on bulk seston stoichiometry. The C:N ratios
were not significantly different between warmed and ambient
isolates [Figure 6A; ANOVA Type-III; F(1, 16) = 2.52, P =

0.13]. The C:P ratio was significantly elevated in the warmed
isolates [Figure 6B; ANOVA Type-III; F(1, 16) = 6.40, P =

0.02], in line with the higher seston C:P ratios observed in the
warmed treatments and the positive correlation between seasonal
variation in temperature and bulk phytoplankton stoichiometry
(Figures 3, 4). TheN:P ratio wasmarginally, but not significantly,
elevated in the warmed isolates [Figure 6C; ANOVA Type-
III; F(1, 16) = 2.49, P = 0.13]. This weaker effect of warming
on the N:P ratio was also consistent with the smaller effect
size of warming on the seston N:P ratio (Figure 3) and the
weaker seasonal temperature dependence of phytoplankton N:P
(Figure 4), relative to the effects of warming and temperature on
the C:P ratio.

DISCUSSION

Understanding how ecosystem-level properties, like the bulk
stoichiometry of plankton, are shaped by selection on trait
variation within and across species is key to improving
predictions of global change on biogeochemical cycles (Hagstrom
and Levin, 2017). Central to this issue is a grasp of the
relative importance of rapid evolution (i.e., changes in the
frequency of traits within species populations) and species
sorting (i.e., changes in the frequency of traits attributable
different species) in shaping how ecosystem-level properties
respond to environmental change (Lomas et al., 2014). We
tackled this issue by assessing the extent to which the effects
of long-term experimental warming and seasonal changes in
temperature on the C:N:P stoichiometry of phytoplankton in
pond mesocosms reflected temperature-dependent changes in
the composition of the communities vs. evolutionary shifts
in stoichiometric traits within component species. We found
that warming resulted in substantial shifts in phytoplankton
community composition, consistent with temperature-driven
species sorting. Furthermore, isolates of C. reinhardtii from
warmed mesocosms had higher C:P and N:P ratios than their
ambient counterparts, with shifts that were comparable in
direction and magnitude to the effects of warming on seston
stoichiometry. These analyses suggest that both species sorting
and rapid local adaptation could have contributed to the effects
of warming on bulk phytoplankton stoichiometry.
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FIGURE 4 | Abiotic drivers of phytoplankton stoichiometry. Correlations between seasonal variation in (A) light intensity (PAR) and the C:N ratio, (B) temperature and

the C:P ratio and (C) temperature and the N:P ratio. For each stoichiometric ratio the predictor with the highest summed weight is plotted (see Table 2 for statistics).

Fitted lines are from the fixed effects of the best fitting mixed effects models. Black denotes ambient treatments, red indicates warmed treatments.

We found higher average C:P and N:P ratios driven by
lower particulate P content in the seston from the warmed
mesocosms, as well as positive correlations between seasonal
changes in temperature and C:P and N:P ratios in both the
warmed and ambient treatments. These findings add to a growing
body of evidence demonstrating positive covariance between
temperature and C:P and N:P ratios in aquatic and terrestrial
autotrophs (Reich and Oleksyn, 2004; Martiny et al., 2013;
Toseland et al., 2013; Yvon-Durocher et al., 2015b). However,
a critical question concerning the mechanisms underlying these
patterns is the extent to which they are driven by evolutionary
flexibility in stoichiometric traits within species vs. temperature
driven turnover in taxonomic composition along thermal
gradients.

To investigate the role of species sorting we quantified
the extent to which differences in phytoplankton communities
between the warmed and ambient treatments as well as across
sampling months, reflected turnover in species composition
(e.g., replacement of species across space and/or time). We
found that ∼80% of the variation in phytoplankton composition
among treatments and sampling months could be attributed
to taxonomic replacements (e.g., turnover as opposed to
nestedness). This result demonstrates that the composition of
the phytoplankton communities were highly dynamic both in
response to seasonal abiotic change and sustained increases
in temperature between the treatments. Consequently, this
result implies that species sorting and associated changes in
community-wide traits could have played an important role
in shaping the effects of temperature on bulk stoichiometry,
consistent with recent work in marine ecosystems (Irwin et al.,

2015; Edwards, 2016; Martiny et al., 2016b). Temperature-driven
species sorting could affect community-level bulk stoichiometry
in two ways. First, phytoplankton stoichiometry is known to
exhibit substantial variation among the major taxonomic clades
(Quigg et al., 2003; Finkel et al., 2016). For example, red lineage
algae, which include the diatoms, have relatively low N:P ratios,
while green lineage algae, which include the chlorophytes, tend
have higher N:P ratios (Quigg et al., 2003). Thus, changes in
phytoplankton community composition, where taxa with high
average C:P and N:P ratios are favored in warmer environments
and those with low values are abundant in cooler conditions
could conceivably be an important factor shaping the effects
of temperature on bulk phytoplankton stoichiometry. Second,
it is also possible that C:N:P stoichiometry is phenotypically
plastic with respect to temperature change in a consistent way
across species (Yvon-Durocher et al., 2015b) and the observed
turnover in community composition reflects selection for traits
other than stoichiometry. In this case, the composition of the
community changes with temperature and the stoichiometry of
the constituent species also shift with temperature, not because
different taxa have divergent stoichiometry, but because the
reaction norm for temperature-driven stoichiometric plasticity is
conserved across species. Unfortunately, our data do not allow
us to differentiate between these two possibilities, as this would
require detailed acclimation experiments to be conducted on
a wide range of the species that comprise the phytoplankton
communities in the experiment. It is important to note however,
these two scenarios are not mutually exclusive and there is
evidence for both conserved temperature driven stoichiometric
plasticity across species (Yvon-Durocher et al., 2015b) as well as
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FIGURE 5 | Seasonal variation and treatment effects on phytoplankton community structure. (A) Non-metric multidimensional scaling (NMDS) of phytoplankton

community composition comparing treatment effects across sampling months (1 = Jan, 3 = Mar, 5 = May, 7 = Jul, 9 = Sep, 11 = Nov). (B) Seasonal variation in the

fraction of total beta-diversity among ponds that is attributable to taxonomic turnover (βturn/βsor), here black boxes encompass variation in βturn/βsor among ambient

replicates, red show variation between warmed replicates and gray denotes variation in beta-diversity derived from comparisons among warmed vs. ambient

replicates. (C) Treatment effects on βturn/βsor derived from temporal comparisons of community composition among sampling months within each mesocosm. Tops

and bottoms of boxes in box-whisker plots correspond to the 25th and 75th percentiles, horizontal white lines correspond to medians, whisker extents correspond to

1.5 × the interquartile range.
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A
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B

FIGURE 6 | Effects of experimental warming on physiological and stoichiometric traits of C. reinhardtii isolates. (A) Cell size at 18◦C, (B) Growth rate at 18◦C, (C)

Stoichiometric ratios. Black indicates the ambient treatments and red the warmed. Tops and bottoms of boxes in box-whisker plots correspond to the 25th and 75th

percentiles, horizontal white lines correspond to medians, whisker extents correspond to 1.5 × the interquartile range and blue points are outliers.

systematic taxonomic variation in average C:N:P ratios (Quigg
et al., 2003; Finkel et al., 2016).

To investigate whether rapid evolutionary shifts in
stoichiometric traits in response to warming played a role
in the effects of warming on phytoplankton bulk stoichiometry
we isolated the abundant and cosmopolitan alga C. reinhardtii,
which was present across both warmed and ambient treatments.
We have previously shown, through reciprocal transplants,
that isolates of C. reinhardtii are locally adapted with respect
to the warming treatment, with warmed isolates incuring a
reduction in competitive fitness when transplanted to ambient
temperatures and ambient isolates having reduced fitness when
exposed to warming (Schaum et al., 2017). Our analyses here
demonstrate that the warm-adapted isolates had C:P ratios
that were 33% higher than their ambient counterparts. This
within taxon response was remarkably close to the overall
effect size on average bulk seston C:P with ratios that were 38%
higher in the warmed treatments. The N:P ratio was marginally,
but not significantly elevated in the warm-adapted isolates
of C. reinhardtii. However, notwithstanding the absence of a
significant treatment effect, the effect sizes between the isolates
and the bulk community response to warming in the N:P ratio
were also very similar, a 21 and 27% increase in response to
warming in the isolates and the bulk seston respectively. These
results demonstrate that selection on stoichiometric traits within
and across species in response to warming are of a similar
direction and magnitude, implying that that thermal adaptation
also likely contributed the shifts in bulk seston stoichiometry in
response to long-term experimental warming.

Our findings of elevated C:P and N:P ratios with increases
in temperature, both at the species- and community-levels, are

broadly consistent with the “temperature-dependent physiology”
hypothesis, which predicts that fewer P-rich ribosomes are
required at warmer temperatures owing to the increased
efficiency of ribosomes at higher temperatures (Woods et al.,
2003; Toseland et al., 2013; Yvon-Durocher et al., 2015b). Average
C:P and N:P ratios both in the seston and in the isolates of
C. reinhardtii were however very low (seston C:P = 16.6, seston
N:P = 6.3; isolate C:P = 17.2, isolate N:P = 4.2), indicating that
luxury uptake and storage of phosphorous may have contributed
significantly to the cellular P content. Given the nanomolar
concentrations of SRP in the mesocosms, luxury storage of P,
which is known to be an adaptation to severe nutrient limitation,
is a plausible explanation for the very low C:P and N:P ratios.
Nevertheless, growth rates and cell sizes of the C. reinhardtii
strains were comparable between the warmed and ambient
isolates (see Figure 6) indicating that whilst luxury P storage
might explain the overall low C:P and N:P ratios it is unlikely to
be the underlying driver of the effects of warming.

The low C:P and N:P ratios in the seston appear at odds with
the nanomolar concentrations of SRP in the mesocosms and
raise the fundamental question of where the algae are sourcing
the phosphorous required to sustain such high C:P and N:P
ratios. It is notable, that many of the algae that are numerically
dominant in both the warmed and the ambient mesocosms are
capable of mixotrophic growth (e.g., C. reinhardtii, Cryptomonas
spp., Gymnodinium spp.) and are known to supplement their
nutritional requirements with resource uptake via osmotrophy
or phagotrophy (Spero and Morée, 1981; Tranvik et al., 1989;
Tittel et al., 2005). The fact that seston C:P and N:P ratios are
only weakly correlated with seasonal changes in SRP suggests
that uptake of P from organic sources (dissolved organic P or P
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associated with bacterial prey) could be an important component
of the phosphorous biogeochemistry of these oligotrophic
systems.

Overall our experiments demonstrate a striking coherence
between stoichiometric responses to temperature change
between the long-term warmed and ambient mesocosms, across
seasonal variations in temperature, and between strains of a
cosmopolitan alga isolated from the long-term experiment. The
consistency in the effects of temperature in driving increases in
C:P and N:P stoichiometry both within species as an adaptive
response to the long-term warming as well as at the community
level via species sorting, implies that temperature driven
adjustments in sub-cellular allocation to C, N and P pools that
increase C:P and N:P in warmer environments increase fitness
and can be reinforced through ecological and evolutionary
processes. Our findings demonstrate highly conserved responses
of elemental stoichiometry to temperature across multiple

spatial, temporal and organizational scales and highlight that
profound changes in aquatic biogeochemistry should be expected
in a warmer world.

AUTHOR CONTRIBUTIONS

GYD and MT conceived the study. GYD and CS conducted the
experiments. GYD analyzed the data. GYD wrote the manuscript
and all authors contributed to revisions.

ACKNOWLEDGMENTS

This study was supported by a grant from the Natural
Environment Research Council of the UK (NE/H022511/1)
awarded to MT and GYD a Leverhulme Trust research grant
(RPG-2013-335) awarded to GYD, and an ERC starting grant
awarded to GYD (677278 TEMPDEP).

REFERENCES

Alexander, H., Jenkins, B. D., Rynearson, T. A., and Dyhrman, S. T.
(2015). Metatranscriptome analyses indicate resource partitioning between
diatoms in the field. Proc. Natl. Acad. Sci. U.S.A. 112, E2182–E2190.
doi: 10.1073/pnas.1421993112

Baselga, A., and Orme, C. D. L. (2012). betapart: an R package
for the study of beta diversity. Methods Ecol. Evol. 3, 808–812.
doi: 10.1111/j.2041-210X.2012.00224.x

Bonachela, J. A., Allison, S. D., Martiny, A. C., and Levin, S. A. (2013). A model
for variable phytoplankton stoichiometry based on cell protein regulation.
Biogeosciences 10, 4341–4356. doi: 10.5194/bg-10-4341-2013

Daines, S. J., Clark, J. R., and Lenton, T. M. (2014). Multiple environmental
controls on phytoplankton growth strategies determine adaptive responses of
the N: P ratio. Ecol. Lett. 17, 414–425. doi: 10.1111/ele.12239

Dossena, M., Yvon-Durocher, G., Grey, J., Montoya, J. M., Perkins, D. M.,
Trimmer, M., et al. (2012). Warming alters community size structure
and ecosystem functioning. Proc. R. Soc. B Biol. Sci. 279, 3011–3019.
doi: 10.1098/rspb.2012.0394

Edwards, K. F. (2016). Community trait structure in phytoplankton: seasonal
dynamics from a method for sparse trait data. Ecology 97, 3441–3451.
doi: 10.1002/ecy.1581

Elser, J. J., Andersen, T., Baron, J. S., Bergstrom, A. K., Jansson, M.,
Kyle, M., et al. (2009). Shifts in Lake N:P stoichiometry and nutrient
limitation driven by atmospheric nitrogen deposition. Science 326, 835–837.
doi: 10.1126/science.1176199

Finkel, Z. V., Beardall, J., Flynn, K. J., Quigg, A., Rees, T. A. V., and Raven,
J. A. (2009). Phytoplankton in a changing world: cell size and elemental
stoichiometry. J. Plankton Res. 32, 119–137. doi: 10.1093/plankt/fbp098

Finkel, Z. V., Follows, M. J., Liefer, J. D., Brown, C. M., Benner, I., and Irwin,
A. J. (2016). Phylogenetic diversity in the macromolecular composition of
microalgae. PLoS ONE 11:e0155977. doi: 10.1371/journal.pone.0155977

Galbraith, E. D., and Martiny, A. C. (2015). A simple nutrient-dependence
mechanism for predicting the stoichiometry of marine ecosystems. Proc. Natl.
Acad. Sci. U.S.A. 112, 8199–8204. doi: 10.1073/pnas.1423917112

Geider, R. J., and La Roche, J. (2002). Redfield revisited: variability of C: N:
P in marine microalgae and its biochemical basis. Eur. J. Phycol. 37, 1–17.
doi: 10.1017/S0967026201003456

Hagstrom, G. I., and Levin, S. A. (2017). Marine ecosystems as complex adaptive
systems: emergent patterns, critical transitions, and public goods. Ecosystems

20, 1–19. doi: 10.1007/s10021-017-0114-3
Hessen, D. O. (2005). Seasonal seston stoichiometry: effects on zooplankton

in cyanobacteria-dominated lakes. J. Plankton Res. 27, 449–460.
doi: 10.1093/plankt/fbi018

Hessen, D. O., Hafslund, O. T., Andersen, T., Broch, C., Shala, N. K., and
Wojewodzic, M. W. (2017). Changes in stoichiometry cellular RNA and
alkaline phosphatase activity of chlamydomonas in response to temperature
and nutrients. Front. Microbiol. 8:18. doi: 10.3389/fmicb.2017.00018

Irwin, A. J., Finkel, Z. V., Mueller-Karger, F. E., and Ghinaglia, L. T. (2015).
Phytoplankton adapt to changing ocean environments. Proc. Natl. Acad. Sci.
U.S.A. 112, 5762–5766. doi: 10.1073/pnas.1414752112

Kirkwood, D. (1996). Nutrients: Practical Notes on Their Determination in Sea

Water. Copenhagen: International Council for the Exploration of the Sea.
Litchman, E., and Klausmeier, C. A. (2008). Trait-Based Community

Ecology of Phytoplankton. Annu. Rev. Ecol. Evol. Syst. 39, 615–639.
doi: 10.1146/annurev.ecolsys.39.110707.173549

Litchman, E., Klausmeier, C. A., Schofield, O. M., and Falkowski, P. G. (2007).
The role of functional traits and trade-offs in structuring phytoplankton
communities: scaling from cellular to ecosystem level. Ecol. Lett. 10, 1170–1181.
doi: 10.1111/j.1461-0248.2007.01117.x

Lomas, M. W., Bonachela, J. A., Levin, S. A., and Martiny, A. C. (2014). Impact
of ocean phytoplankton diversity on phosphate uptake. Proc. Natl. Acad. Sci.
U.S.A. 111, 17540–17545. doi: 10.1073/pnas.1420760111

Martiny, A. C., Ma, L., Mouginot, C., Chandler, J. W., and Zinser, E. R.
(2016a). Interactions between thermal acclimation, growth rate, and phylogeny
influence prochlorococcus elemental stoichiometry. PLoS ONE 11:e0168291.
doi: 10.1371/journal.pone.0168291

Martiny, A. C., Pham, C. T. A., Primeau, F. W., Vrugt, J. A., Moore, J. K., Levin,
S. A., et al. (2013). Strong latitudinal patterns in the elemental ratios of marine
plankton and organic matter. Nat. Geosci. 6, 279–283. doi: 10.1038/ngeo1757

Martiny, A. C., Talarmin, A., Mouginot, C., Lee, J. A., Huang, J. S., Gellene, A. G.,
et al. (2016b). Biogeochemical interactions control a temporal succession in the
elemental composition of marine communities. Limnol. Oceangr. 61, 531–542.
doi: 10.1002/lno.10233

Murphy, J., and Riley, J. P. (1958). A single solution method for the
determination of soluble phosphate in sea water. J. Mar. Biol. Assoc. 37, 9–14.
doi: 10.1017/S0025315400014776

Padfield, D., Yvon-Durocher, G., Buckling, A., Jennings, S., and Yvon-Durocher,
G. (2016). Rapid evolution of metabolic traits explains thermal adaptation in
phytoplankton. Ecol. Lett. 19, 133–142. doi: 10.1111/ele.12545

Quigg, A., Finkel, Z. V., Irwin, A. J., Rosenthal, Y., Ho, T. Y., Reinfelder, J. R.,
et al. (2003). The evolutionary inheritance of elemental stoichiometry inmarine
phytoplankton. Nature 425, 291–294. doi: 10.1038/nature01953

Raven, J. A., and Geider, R. J. (1988). Temperature and algal growth. New Phytol.

110, 441–461. doi: 10.1111/j.1469-8137.1988.tb00282.x
Reich, P. B., and Oleksyn, J. (2004). Global patterns of plant leaf N and P in relation

to temperature and latitude. Proc. Natl. Acad. Sci. U.S.A. 101, 11001–11006.
doi: 10.1073/pnas.0403588101

Frontiers in Microbiology | www.frontiersin.org 13 October 2017 | Volume 8 | Article 2003

https://doi.org/10.1073/pnas.1421993112
https://doi.org/10.1111/j.2041-210X.2012.00224.x
https://doi.org/10.5194/bg-10-4341-2013
https://doi.org/10.1111/ele.12239
https://doi.org/10.1098/rspb.2012.0394
https://doi.org/10.1002/ecy.1581
https://doi.org/10.1126/science.1176199
https://doi.org/10.1093/plankt/fbp098
https://doi.org/10.1371/journal.pone.0155977
https://doi.org/10.1073/pnas.1423917112
https://doi.org/10.1017/S0967026201003456
https://doi.org/10.1007/s10021-017-0114-3
https://doi.org/10.1093/plankt/fbi018
https://doi.org/10.3389/fmicb.2017.00018
https://doi.org/10.1073/pnas.1414752112
https://doi.org/10.1146/annurev.ecolsys.39.110707.173549
https://doi.org/10.1111/j.1461-0248.2007.01117.x
https://doi.org/10.1073/pnas.1420760111
https://doi.org/10.1371/journal.pone.0168291
https://doi.org/10.1038/ngeo1757
https://doi.org/10.1002/lno.10233
https://doi.org/10.1017/S0025315400014776
https://doi.org/10.1111/ele.12545
https://doi.org/10.1038/nature01953
https://doi.org/10.1111/j.1469-8137.1988.tb00282.x
https://doi.org/10.1073/pnas.0403588101
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/microbiology#articles


Yvon-Durocher et al. The Temperature Dependence of Phytoplankton Stoichiometry

Sal, S., Alonso-Sáez, L., Bueno, J., Garcia, F. C., and López-Urrutia, Á.
(2015). Thermal adaptation, phylogeny, and the unimodal size scaling
of marine phytoplankton growth. Limnol. Oceangr. 60, 1212–1221.
doi: 10.1002/lno.10094

Schaum, C. E., Barton, S., Bestion, E., Buckling, A., Garcia-Carreras, B.,
Lopez, P. (2017). Adaptation of phytoplankton to a decade of experimental
warming linked to increased photosynthesis. Nat. Ecol. Evol. 1, 94.
doi: 10.1038/s41559-017-0094

Schaum, C. E., Rost, B., and Collins, S. (2016). Environmental stability affects
phenotypic evolution in a globally distributed marine picoplankton. ISME J.

10, 75–84. doi: 10.1038/ismej.2015.102
Schlueter, L., Lohbeck, K. T., Gutowska, M. A., Groeger, J. P., Riebesell, U., and

Reusch, T. B. H. (2014). Adaptation of a globally important coccolithophore
to ocean warming and acidification. Nat. Clim. Chang. 4, 1024–1030.
doi: 10.1038/nclimate2379

Shuter, B. (1979). Amodel of physiological adaptation in unicellular algae. J. Theor.
Biol. 78, 519–552. doi: 10.1016/0022-5193(79)90189-9

Spero, H. J., and Morée, M. D. (1981). Phagotrophic feeding and its importance to
the life cycle of the holozoic dinoflagellate, gymnodinium fungiforme. J. Phycol.
17, 43–51. doi: 10.1111/j.1529-8817.1981.tb00817.x

Staehr, P. A., Bade, D., Van de Bogert, M. C., Koch, G. R., Williamson, C., Hanson,
P., et al. (2010). Lake metabolism and the diel oxygen technique: state of
the science. Limnol. Oceanogr. Methods 8, 628–644. doi: 10.4319/lom.2010.
8.0628

Sterner, R., and Elser, J. J. (2002). Ecological Stoichiometry the Biology of

Elements from Molecules to the Biosphere. Princeton, NJ: Princeton University
Press.

Thomas, M. K., Kremer, C. T., Klausmeier, C. A., and Litchman, E. (2012). A
global pattern of thermal adaptation in marine phytoplankton. Science 338,
1085–1088. doi: 10.1126/science.1224836

Tittel, J., Bissinger, V., Gaedke, U., and Kamjunke, N. (2005). Inorganic carbon
limitation and mixotrophic growth in Chlamydomonas from an acidic mining
lake. Protist 156, 63–75. doi: 10.1016/j.protis.2004.09.001

Toseland, A., Daines, S. J., Clark, J. R., Kirkham, A., Strauss, J., Uhlig, C.,
et al. (2013). The impact of temperature on marine phytoplankton
resource allocation and metabolism. Nat. Clim. Chang. 3, 979–984.
doi: 10.1038/nclimate1989

Tranvik, L. J., Porter, K. G., and Sieburth, J. M. (1989). Occurrence of bacterivory
in Cryptomonas, a common freshwater phytoplankter. Oecologia 78, 473–476.
doi: 10.1007/BF00378736

Woods, H. A., Makino, W., Cotner, J. B., Hobbie, S. E., Harrison, J. F., Acharya,
K., et al. (2003). Temperature and the chemical composition of poikilothermic
organisms. Funct. Ecol. 17, 237–245. doi: 10.1046/j.1365-2435.2003.00724.x

Yvon-Durocher, G., Allen, A. P., Cellamare, M., Dossena, M., Gaston, K. J.,
Leitao, M., et al. (2015a). Five years of experimental warming increases
the biodiversity and productivity of phytoplankton. PLoS Biol. 13:e1002324.
doi: 10.1371/journal.pbio.1002324

Yvon-Durocher, G., Dossena, M., Trimmer, M., Woodward, G., and Allen, A. P.
(2015b). Temperature and the biogeography of algal stoichiometry.Global Ecol.
Biogeogr. 24, 562–570. doi: 10.1111/geb.12280

Yvon-Durocher, G., Jones, J. I., Trimmer, M., Woodward, G., and Montoya, J. M.
(2010). Warming alters the metabolic balance of ecosystems. Philos. Trans. R.
Soc. B Biol. Sci. 365, 2117–2126. doi: 10.1098/rstb.2010.0038

Zuur, A., Ieno, E., Walker, N., and Saveliev, A. (2009). Mixed Effects Models and

Extensions in Ecology with R. New York, NY: Springer Verlag.

Conflict of Interest Statement: The authors declare that the research was
conducted in the absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

Copyright © 2017 Yvon-Durocher, Schaum and Trimmer. This is an open-access

article distributed under the terms of the Creative Commons Attribution License (CC

BY). The use, distribution or reproduction in other forums is permitted, provided the

original author(s) or licensor are credited and that the original publication in this

journal is cited, in accordance with accepted academic practice. No use, distribution

or reproduction is permitted which does not comply with these terms.

Frontiers in Microbiology | www.frontiersin.org 14 October 2017 | Volume 8 | Article 2003

https://doi.org/10.1002/lno.10094
https://doi.org/10.1038/s41559-017-0094
https://doi.org/10.1038/ismej.2015.102
https://doi.org/10.1038/nclimate2379
https://doi.org/10.1016/0022-5193(79)90189-9
https://doi.org/10.1111/j.1529-8817.1981.tb00817.x
https://doi.org/10.4319/lom.2010.8.0628
https://doi.org/10.1126/science.1224836
https://doi.org/10.1016/j.protis.2004.09.001
https://doi.org/10.1038/nclimate1989
https://doi.org/10.1007/BF00378736
https://doi.org/10.1046/j.1365-2435.2003.00724.x
https://doi.org/10.1371/journal.pbio.1002324
https://doi.org/10.1111/geb.12280
https://doi.org/10.1098/rstb.2010.0038
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/microbiology#articles

	The Temperature Dependence of Phytoplankton Stoichiometry: Investigating the Roles of Species Sorting and Local Adaptation
	Introduction
	Materials and Methods
	Mesocosm Experimental Design
	Phytoplankton Sampling
	Seston Stoichiometry
	Taxonomic Characterization of the Phytoplankton Community
	Measuring Gross Primary Production
	Isolation and Characterization of Chlamydomonas reinhardtii
	Dissolved Inorganic Nutrients
	Statistical Analyses

	Results
	Seasonal Variation and Treatment Effects on Abiotic Variables
	Seasonal Variation in Primary Production, Particulate Nutrients and Seston Stoichiometry
	Abiotic Drivers of Seston Stoichiometry
	Seasonal Variation and Treatment Effects on Phytoplankton Community Composition
	Effects of Thermal Adaptation on Phytoplankton Stoichiometry

	Discussion
	Author Contributions
	Acknowledgments
	References


