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1  |  INTRODUCTION

Neuronal ceroid lipofuscinoses (NCLs; Batten disease) are 
clinically and genetically heterogeneous lysosomal storage 
disorders representing the most common family of genetic 

neurodegenerative disorders in children, characterized by 
seizures, progressive cognitive deterioration, and motor 
and visual impairment.1 Late infantile NCL type 2 (CLN2) 
disease, caused by biallelic pathogenic variants in the 
TPP1 gene,2 is estimated to have an incidence of .22– 9.0 
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Abstract
This study assessed the effectiveness of genetic testing in shortening the time 
to diagnosis of late infantile neuronal ceroid lipofuscinosis type 2 (CLN2) dis-
ease. Individuals who received epilepsy gene panel testing through Behind the 
Seizure®, a sponsored genetic testing program (Cohort A), were compared to chil-
dren outside of the sponsored testing program during the same period (Cohort 
B). Two cohorts were analyzed: children aged ≥24 to ≤60 months with unpro-
voked seizure onset at ≥24 months between December 2016 and January 2020 
(Cohort 1) and children aged 0 to ≤60 months at time of testing with unprovoked 
seizure onset at any age between February 2019 and January 2020 (Cohort 2). 
The diagnostic yield in Cohort 1A (n = 1814) was 8.4% (n = 153). The TPP1 diag-
nostic yield within Cohort 1A was 2.9- fold higher compared to Cohort 1B (1.0%, 
n = 18/1814 vs. .35%, n = 8/2303; p = .0157). The average time from first symp-
tom to CLN2 disease diagnosis was significantly shorter than previously reported 
(9.8 vs. 22.7 months, p < .001). These findings indicate that facilitated access to 
early epilepsy gene panel testing helps to increase diagnostic yield for CLN2 dis-
ease and shortens the time to diagnosis, enabling earlier intervention.
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per 100 000  live births, although this is potentially un-
derestimated.3– 7 Affected children present with language 
delay and seizures between ages 2 and 4 years, and the dis-
ease becomes fatal between ages 8 and 12 years. Clinical 
diagnosis is typically made around age 5 years because of 
low disease awareness and the nonspecific clinical pre-
sentation until neurodegeneration begins. Definitive test-
ing (e.g., TPP1 enzyme testing, TPP1  gene sequencing) 
is often sought late in the diagnostic odyssey, potentially 
preventing disease management benefits.8– 10 For example, 
enzyme replacement therapy (ERT) for TPP1 reduced the 
rate of loss of ambulation and language skills compared 
to historical controls in an open- label, single- arm study.11 
However, although ERT attenuates disease progression, it 
does not reverse neurodegeneration that has already oc-
curred; thus, early diagnosis is key.

This report explored the effectiveness of genetic testing 
to hasten identification of individuals with CLN2 disease.

2  |  MATERIALS AND METHODS

Unrelated children tested through the Behind the 
Seizure®  (BTS) sponsored testing program between 
December 5, 2016 and January 6, 2020 were included 
(WCG Institutional Review Board, 1167406). Relatives 
tested through the sponsored testing program were ex-
cluded. Children aged ≥24 to ≤60 months at the time of 
testing with unprovoked seizure onset at ≥24  months 
were eligible. In February 2019, the eligibility criteria ex-
panded to include children aged 0 to ≤60 months at the 
time of testing with unprovoked seizure onset at any age. 
Ordering clinicians completed the required eligibility cri-
teria and optional medical history (e.g., language or de-
velopmental delays, motor disturbance, family history of 
epilepsy).

DNA samples extracted from blood or saliva were 
tested using a multigene epilepsy panel (125– 183 genes) 
and an optional “preliminary- evidence” panel by next 
generation sequencing as described previously.7  TPP1 
was analyzed using reference transcript NM_000391.3. 
Variants were clinically classified using Sherloc, an Invitae 
variant interpretation system based on guidelines from 
the American College of Medical Genetics and Genomics 
and Association for Molecular Pathology.12,13  Variants 
were categorized as pathogenic (P), likely pathogenic 
(LP), variant of uncertain significance, likely benign, or 
benign. A molecular diagnosis (molecular diagnosis/
diagnoses [MDx]) was determined based on inheritance 
patterns (e.g., two P/LP variants in genes associated with 
autosomal recessive disorders, one P/LP variant in genes 
associated with autosomal dominant disorders, X- linked 
dominant disorders, or X- linked recessive disorders [male 

only]). A negative result (No MDx) was defined as the ab-
sence of an MDx.

Diagnostic yield was calculated based on the propor-
tion of children with any MDx (All MDx) or an MDx in 
TPP1 (CLN2 disease MDx). Two cohorts tested through 
the sponsored program were compared to children tested 
outside of the program. Cohort MDx1A included children 
aged ≥24 to ≤60  months at the time of testing with un-
provoked seizure onset at ≥24  months who were tested 
through the BTS program at any time during the study 
period. Cohort 1A was compared to children aged ≥24 
to ≤60  months with seizure onset at any age who were 
tested outside of the program during the same time pe-
riod (Cohort 1B). Cohort 2A included children aged 0 to 
≤60  months at the time of testing with unprovoked sei-
zure onset prior to testing who received testing through 
the BTS program between February 2019 and January 
2020. Cohort 2A was compared to children aged 0 to 
≤60 months who were tested outside of the BTS program 
during the same time period (Cohort 2B). Some children 
from Cohorts 1A and 1B were also included in Cohorts 2A 
and 2B due to overlapping criteria. Differences in age were 
calculated by two- sample t- test (R 4.1.1).

Relationships between various clinical symptoms and 
MDx status were explored in Cohort 1A. Proportions of 
patients with history of each clinical characteristic were 
calculated including only data for items where either 
“yes” or “no” were selected; items that were left blank or 
where “unknown” was selected were not assumed to be 
indicative of negative history. T- tests and Fisher exact tests 
assessed statistical significance between outcome groups 
(p ≤  .05 was considered significant). Average time from 
seizure onset to diagnosis in Cohort 1A was compared 
to a historical control8 by calculating T- score (https://
www.socsc istat istics.com/tests/ stude nttte st/defau lt.aspx). 
Statistical comparisons were conducted using a two- sided 
p- value (R 4.1.1).

3  |  RESULTS

Among 4246 children tested through the BTS program 
(Table S1, Figure S1), 629 (14.8%) received an MDx in 
82  genes. The 10  most common MDx were in PRRT2 
(n = 100), SCN1A (n = 91), KCNQ2 (n = 56), UBE3A (n = 
25), MECP2 (n = 21), SCN2A (n = 20), STXBP1 (n = 19), 
TPP1 (n = 18), GABRB3 (n = 17), and TSC2 (n = 17; Table 
S2). All 18 (.42%) children with an MDx in TPP1 were 
aged 36– 48 months at time of testing. Clinicians reported 
a high index of suspicion for NCL and/or CLN2 disease for 
33 children tested through the sponsored program; eight 
(24.2%) received an MDx, including CLN2 disease (n = 3; 
Table S3).

https://www.socscistatistics.com/tests/studentttest/default.aspx
https://www.socscistatistics.com/tests/studentttest/default.aspx
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In Cohort 1A (n = 1814), the All MDx rate was 8.4% 
(n = 153; Figure 1A), with the remaining 91.6% (n = 1661) 
with No MDx. CLN2 disease MDx was determined in 
1.0% (n = 18) of children (Figure 1B), representing 11.8% 
(18/153) of All MDx. In Cohort 1B (n  =  2,303), the All 
MDx rate was 15.0% (n = 346), with the remaining 85.0% 
(n = 1957) with No MDx (Figure 1A). Eight (.35%) chil-
dren with an MDx received a CLN2 disease MDx (Figure 
1B). The rate of CLN2 disease MDx in Cohort 1A was 2.9- 
fold higher compared to Cohort 1B (1A n = 18/1814 vs. 
1B n = 8/2303; p =  .0157), likely because of differences 
in eligibility criteria targeting timing of seizure onset 
rather than the statistically (but not clinically) significant 
differences in age at time of testing (43.6 ± 9.8 vs. 41.0 ± 
10.4 months, p < .001; Table S1).

In Cohort 2A (n  =  3572), the MDx rate was 16.2% 
(n = 578), with the remaining 83.8% (n = 2994) receiving 
No MDx (Figure 1A). Twelve children (.34%) had a CLN2 
disease MDx (Figure 1B). In Cohort 2B (n  =  1860), the 
MDx rate was 19.5% (n = 363) and the remaining 80.5% 
(n  =  1497) of children had No MDx (Figure 1A). Four 

(.22%) children had a CLN2 disease MDx (Figure 1B). 
The rate of CLN2 disease MDx in Cohort 2A was 1.5- fold 
higher compared to Cohort 2B, although age at time of 
testing was statistically (but not clinically) different (27.5 
± 18.1 vs. 26.0 ± 17.9, p = .00253; Table S1), demonstrat-
ing the effectiveness of targeted testing programs in en-
riching testing cohorts for rare diseases.

Differences in timing of genetic testing and clini-
cal characteristics based on genetic testing results (i.e., 
No MDx, All MDx, CLN2 disease  MDx) were assessed 
in Cohort 1A. Average time from seizure onset to test-
ing for No MDx, All MDx, and CLN2 disease MDx was 
8.4 months, 6.9 months, and 9.8 months, respectively. A 
significant difference was observed in the mean time from 
first seizure to genetic testing among the No MDx and All 
MDx groups (8.4 vs. 6.9 months, p <  .05). CLN2 disease 
was diagnosed significantly earlier in individuals than 
is typically the case for this disease (average time from 
first symptom = 9.8 ± 7.4 months vs. 22.7 ± 9.8 months,8 
p < .001). Average age at time of testing was similar for all 
three groups (Figure S2).

F I G U R E  1  Diagnostic yield of 
positive molecular diagnoses within and 
outside of the Behind the Seizure® (BTS) 
sponsored program. (A) Overall and 
(B) ceroid lipofuscinosis type 2 (CLN2) 
disease diagnostic yield among children 
stratified by age at time of testing and age 
at seizure onset. Outside of BTS, age at 
seizure onset was unknown and age at 
time of testing was used. MDx, molecular 
diagnosis/diagnoses.
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Differences in the clinical presentation were ob-
served; those in the All MDx or CLN2 Disease MDx 
groups more often had language and/or motor delay, 
an abnormal electroencephalogram, and an abnormal 
magnetic resonance imaging compared to the No MDx 
cohort (p < .05 in all comparisons; Table 1, Figure S3). 
Developmental delays preceding seizure onset were 
more prevalent in the All MDx cohort compared to the 
No MDx group (60.7 vs. 35.0%; p < .001), whereas these 
differences were observed, but not statistically signifi-
cant, in the CLN2 Disease MDx group (66.7% vs. 35.0%, 
p = .074). Family history of epilepsy was not associated 
with molecular genetic testing outcome (25.5%, All 
MDx; 36.9%, No MDx; p = .13).

4  |  DISCUSSION

Although up to 40% of early life epilepsies have been 
reported to have genetic causes,14  genetic testing is un-
derutilized, and there are limited professional consensus 
guidelines advocating such testing early in the diagnos-
tic workup in routine clinical practice. However, a recent 
CLN2 disease management guideline does recommend 
genetic testing to confirm biochemical findings,15 and 
multigene testing has been recommended in cases of 
unexplained seizures for early diagnosis of CLN2 dis-
ease.5 The offering of an expanded genetic testing panel 
allowed the BTS program to provide an MDx to children 
affected with both CLN2 disease and other genetic epilep-
sies even when that program had targeted a clinical pres-
entation consistent with CLN2 disease.

A CLN2 disease MDx was returned to 1.0% of chil-
dren in Cohort 1A, representing 11.8% of all MDx in 
Cohort 1A (n = 18/153), and was 2.9- fold higher com-
pared to Cohort 1B, demonstrating how the program has 
helped identify affected individuals for a rare condition 
with a nonspecific phenotype by increasing awareness 
among clinicians and reducing barriers for patients 
to pursue testing. The overall MDx rate was lower in 
Cohort 1A (8.4%) compared to all other cohorts (1B, 
15.0%; 2A, 16.2%; 2B, 19.5%). Although the diagnostic 
yield is expected to be lower for the older cohort, the 
variance is likely due not only to differences in age at 
testing but also to age at seizure onset per eligibility cri-
teria (≥24 months), highlighting the benefits of expand-
ing the eligibility criteria of the sponsored program.

Furthermore, the average time from the first symptom 
to CLN2 disease MDx in the sponsored program was signifi-
cantly shorter (by approximately 1 year) compared to the 
natural history published average (9.8 vs. 22.7 months8), 
suggesting that the program encourages earlier testing. 
Early MDx has significant clinical impact in children with 

epilepsy by enabling earlier initiation of treatment that 
may attenuate clinical deterioration (e.g., US Food and 
Drug Administration- approved treatments for CLN2 dis-
ease11) or by avoiding therapies that are contraindicated 
(e.g., valproic acid for POLG,16 sodium channel blockers 
for loss of function MDx in SCN1A17), as well as helping 
patients and family with early disease and genetic coun-
seling for reproductive decision- making.8,17  The BTS 
testing program has demonstrated that the association of 
language delay and motor impairments are more common 
in younger children with a recognizable monogenic eti-
ology for epilepsy, including CLN2 disease, as compared 
to children without a single- gene disorder. Individuals in 
the latter group possibly suffer from genetic generalized 
epilepsies. Although this study was limited by the change 
in eligibility criteria and limited clinical information from 
children tested outside of the program, the data presented 
here support the calls for clinical practice guidelines to 
consider the utilization of genetic testing as a first- tier test 
for individuals with epilepsy early in the diagnostic jour-
ney, or with neurodegenerative diseases presenting with 
epilepsy, such as CLN2 disease.18 Ways to improve clinical 
decision- making and outcomes through better awareness 
of the possibility of a definitive MDx of CLN2 disease is 
yet another area with great potential for future study.
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