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The hippocampal formation is one of the brain systems in which the functional
roles of coordinated oscillations in information representation and communication are
better studied. Within this circuit, neuronal oscillations are conceived as a mechanism
to precisely coordinate upstream and downstream neuronal ensembles, underlying
dynamic exchange of information. Within a global reference framework provided
by theta (θ) oscillations, different gamma-frequency (γ) carriers would temporally
segregate information originating from different sources, thereby allowing networks
to disambiguate convergent inputs. Two γ sub-bands were thus defined according
to their frequency (slow γ, 30–80 Hz; medium γ, 60–120 Hz) and differential power
distribution across CA1 dendritic layers. According to this prevalent model, layer-specific
γ oscillations in CA1 would reliably identify the temporal dynamics of afferent inputs
and may therefore aid in identifying specific memory processes (encoding for medium
γ vs. retrieval for slow γ). However, this influential view, derived from time-averages
of either specific γ sub-bands or different projection methods, might not capture the
complexity of CA1 θ-γ interactions. Recent studies investigating γ oscillations at the θ

cycle timescale have revealed a more dynamic and diverse landscape of θ-γ motifs, with
many θ cycles containing multiple γ bouts of various frequencies. To properly capture
the hippocampal oscillatory complexity, we have argued in this review that we should
consider the entirety of the data and its multidimensional complexity. This will call for a
revision of the actual model and will require the use of new tools allowing the description
of individual γ bouts in their full complexity.

Keywords: hippocampus, oscillations, spatial cognition, navigation, complexity, spatial learning

INTRODUCTION

The ability to represent the surrounding space is crucial for most evolved animals and is at
the core of the ability to navigate in the environment, looking out for food, shelter, or other
behaviorally relevant locations. For an organism to effectively navigate, it should possess the
cognitive representations of critical regions in their environment (e.g., nest locations and food
locations), to recall these regions when the need arises, and the means to exploit relations between
such regions and their immediate position. In other words, the navigating agent constantly needs to
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compare current sensory inputs (i.e., encoding of current
information) with stored memories (i.e., retrieval of past
information). These two seemingly opposed processes (encoding
vs. retrieval) are thought to be mediated by two segregated
areas of the medial temporal lobe: the hippocampal CA3 region
and the entorhinal cortex (EC). Hippocampal CA3, through
its massive recurrent network, would support retrieval of past
memories (Rolls, 2018), whereas the EC (and more precisely its
medial part; MEC) would support encoding of current sensory
information (Brun et al., 2002, 2008; Fyhn et al., 2004; Hafting
et al., 2005). These two regions in turn project to hippocampal
region CA1, which is thought to act as a comparator to determine
if ongoing sensory inputs represent new information that needs
to be stored (Hasselmo et al., 2002). How does CA1 integrate
these different inputs while minimizing interference? Current
hypotheses suggest a critical role for brain oscillations in the
selective routing of information (Fries, 2009). During spatial
navigation, the hippocampus mainly exhibits theta (θ) and
gamma (γ) oscillations. It is now accepted that hippocampal
γ oscillations can be segregated into slow and medium (or
fast, depending on the authors) γ rhythms, each originating
from different brain regions and subserving different cognitive
functions (Colgin et al., 2009; Schomburg et al., 2014). More
recently, studies refining the time scale of analysis have shown
that this model might be too simplistic, with a greater variability
than initially expected. By putting in perspective these different
studies, we have argued in this review that tackling this variability
is needed to fully characterize the hippocampal θ-γ dynamic.

THE γ SUB-BANDS MODEL: A SUITABLE
FRAMEWORK TO UNDERSTAND
HIPPOCAMPAL COMPUTATION

Excellent reviews on the cellular mechanisms responsible for
hippocampal θ (Buzsáki, 2002) and γ oscillations (Buzśaki and
Wang, 2012) have already been published and fell outside
the scope of the present review (see also Wang, 2010, for a
comprehensive survey of the modeling literature).

Neuronal oscillations are conceived as a mechanism to
precisely coordinate upstream and downstream neuronal
ensembles, underlying the dynamic exchange of information
(Fries, 2009). In the medial temporal lobe, it is proposed that,
within a global reference framework provided by θ oscillations,
different γ-frequency carriers would temporally segregate
information originating from different sources, thereby allowing
a target “reader” area to disambiguate convergent inputs
(Buzsáki, 2010). As such, hippocampal CA1 γ oscillations,
although initially described as forming a single wide frequency
band (40–100 Hz; Bragin et al., 1995), were later dissociated
into two sub-bands according to their frequency (i.e., slow γ,
25–55 Hz; fast γ, 65–140 Hz), and their phase of appearance
related to pyramidal layer θ oscillations (i.e., early phase of
the descending part for slow γ and trough for fast γ; Colgin
et al., 2009). The fact that bursts of slow γ were associated
with increased coherence between CA3 and CA1, whereas
fast γ was associated with increased coherence between the

MEC and CA1, prompted the authors to suggest that these two
independent γ rhythms would selectively “route information”
in the hippocampal entorhinal network (Colgin et al., 2009).
Building on this framework and on the proposed specific role
of CA3 and the MEC in memory processes, the same authors
further proposed that these two γ rhythms in CA1 might
subserve different cognitive operations, i.e., slow γ would be
important for memory retrieval, whereas fast γ would support
memory encoding (Colgin and Moser, 2010). While appealing in
its simplicity, this model nevertheless carries some caveats. First,
while the phase separation of inputs relative to θ oscillation would
indeed allow for a separation of the information (Fries, 2009), the
reported phase of fast γ does not fit with the “separate phases of
encoding and retrieval (SPEAR)” model proposed by Hasselmo
et al. (2002). Second, by using single-site recording in the CA1
pyramidal layer, Colgin et al. (2009) were not able to isolate the
source of the slow- and fast-γ oscillations. Indeed, one should
expect slow γ to be prominent in the CA1 stratum radiatum
(str.rad), the input of CA3 through the Schaffer collaterals,
and fast γ in the CA1 stratum lacunosum-moleculare (str.lm),
the inputs of the MEC layer 3 through the temporo-ammonic
pathway. Finally, while slow and fast γ differentially modulate
place cells sequences according to the purported role of each γ

rhythm (prospective vs. retrospective coding; Bieri et al., 2014),
the authors never actually performed navigation task requiring
allocentric memory [open field in Colgin et al. (2009) and linear
track in Bieri et al. (2014)].

To fill these gaps, Schomburg et al. (2014) performed high-
density multisite recording covering most layers of CA1 to CA3
and dentate gyrus (DG) regions along the transverse axis of
the hippocampus in rats navigating in a linear track, a T maze,
or an open field. Using a powerful source separation technique
and focusing on the hippocampal CA1 area (independent
component analysis; Fernández-Ruiz and Herreras, 2013), they
were able to identify three γ independent components (ICs).
The first component with a strong current sink was localized
in the str.rad (termed rad IC), exhibiting slow-γ oscillations
(30–80 Hz), phase-locked to the descending phase of CA1
pyramidal θ. The second γ component with a strong current
sink was localized to the str.lm (termed lm IC), exhibiting mid-
γ oscillations (60–120 Hz), phase-locked to the peak of CA1
pyramidal θ. Finally, the third component with a current source
was localized in the CA1 pyramidal layer (termed CA1 pyr IC),
exhibiting fast γ (>140 Hz), phase-locked to the through of CA1
pyramidal θ. Based on the location of the current sink/sources
and single-unit recordings (in CA1, CA3, and the MEC), the
authors proposed that slow γ would represent a communication
channel between CA3 and CA1, whereas mid-γ would aid
communication between the MEC and CA1. Importantly, there
is a clear difference in the θ phase between the mid-γ reported by
Schomburg et al. (2014) and the corresponding fast γ reported
by Colgin et al. (2009), which can be due in part to the lack
of source localization in the study by Colgin et al. Nevertheless,
the relative phase of slow and medium γ in the Schomburg
et al. (2014) study is coherent with the SPEAR model (Hasselmo
et al., 2002). Do these different γ components subserve different
cognitive operations? To answer this question, Schomburg and
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colleagues characterized the dynamics of the γ components
during different phases of a T-maze task. They showed that
the θ-γ coupling strength of the rad IC selectively increased in
the center arm of the maze, a place where memory recall is
expected (i.e., in order to guide subsequent behavior). Recently,
Fernández-Ruiz et al. (2021) extended this concept to the DG.
Using the same decomposition method, they characterized three
independent components, namely, a slow-γ IC (30–50 Hz) in the
outer molecular layer of the DG, a mid-γ IC (60–80 Hz) in the
inner molecular layer of the DG, and a fast-γ IC (100–150 Hz)
in the middle molecular layer of the DG, coming from lateral EC
associational and/or commissural, and MEC inputs, respectively.
During spatial learning, fast-γ oscillations synchronize the
MEC and DG, while during object learning, slow-γ oscillations
synchronize the LEC and DG. To assess causality, the authors
performed γ-frequency optogenetic perturbation of MEC and
LEC. This led to reduced DG layer-specific fast- and slow-γ
sub-bands and to learning impairments in a spatial and object
learning task, respectively.

Altogether, these seminal studies set the stage for what we
decided to call the “sub-bands model.” The premise of this
model is that if there are different rhythms generated by different
brain regions, they must subserve different cognitive operations.
However, a problem with influential models is that they tend
to inform research in the field, biasing the interpretation of
results and narrowing the spectrum of hypotheses that could be
considered, e.g., to explain disruptions of function in pathology.
For example, a decrease in hippocampal slow-γ power observed
in several rodent models of Alzheimer’s disease (Gillespie et al.,
2016; Iaccarino et al., 2016; Mably et al., 2017) was linked to
retrieval impairment (Mably and Colgin, 2018; Etter et al., 2019)
in accordance to the purported role of those oscillations in
memory retrieval.

A SUITABLE MODEL, BUT SURELY TOO
RESTRICTIVE

As stated in the “Introduction” section, a navigating agent
constantly needs to compare current sensory inputs (i.e.,
encoding of current information) with stored memories (i.e.,
retrieval of past information). To gain a better temporal
resolution, one can study γ dynamic at the θ time-scale level
(Dvorak et al., 2018; Lopes-dos-Santos et al., 2018; Zhang et al.,
2019), a proposed unit of computation (Lisman, 2005; Lisman
and Buzsáki, 2008). By using various methods of γ detection in a θ

cycle by cycle manner (γ detector reported by Dvorak et al., 2018,
Ensemble Empirical Mode Decomposition of a γ signal reported
by Lopes-dos-Santos et al., 2018 and unsupervised clustering
reported by Zhang et al., 2019), these studies showed a more
complex landscape than initially proposed (with an increasing
number of θ-γ motifs, with up to 5 prototypic motifs reported by
Lopes-dos-Santos et al., 2018; Figure 1). Overall, all the studies
agreed on the presence of at least three different γ oscillations,
similar to the definition put forward by Schomburg et al. (2014)
(Figure 1). Collectively, they support the concept that different γ

frequencies subserve different cognitive operations by channeling

information in specific pathways (refer to Zhou et al., 2019, for a
critical view on the existence of a “real” slow-γ oscillation in the
hippocampal network). At the first sight, they seem to consolidate
the current γ sub-bands model. However, they also all report
high diversity of coupling patterns across θ cycles, with most
of the cycle containing multiple γ events. In other words, each
θ cycle can simultaneously contain slow- and medium-γ events
(Figure 1). This diversity was always mentioned, but surprisingly
not properly studied, as they all acknowledge restricting analyses
to either the highest amplitude γ events (Dvorak et al., 2018) or
the one fitting the best canonical clustered results (Lopes-dos-
Santos et al., 2018; Zhang et al., 2019). As such, they analyzed
only a part of the available landscape of θ-γ motif (36% of all
θ cycles reported by Lopes-dos-Santos et al., 2018). What does
that imply in terms of local computation? It was indeed assumed
that each θ cycle would subserve a specific function based on
the associated dominant γ oscillation: in CA1, θ cycles with
slow γ would be “retrieval cycles,” whereas cycles with mid-
γ would be “encoding cycles” (Colgin et al., 2009; Bieri et al.,
2014; Schomburg et al., 2014). The fact that θ cycles mostly
contain multiple, low-amplitude, different γ events complexifies
this hypothesis (Bagur and Benchenane, 2018). What is the role
of a θ cycle with concomitant, same-amplitude slow and medium
γ? Can one θ cycle promote different cognitive operations?
As an example of possible complexity, Lopes-dos-Santos and
colleagues have shown that each θ-nested spectral component
(tSC, equivalent of a specific θ-γ motif) represents a distinct
spiking dynamic of distinguishable cell ensembles (Lopes-dos-
Santos et al., 2018). Since each θ cycle does not present a single
tSC but a weighted combination of multiple tSC, what will be
the output of such θ cycles (e.g., multiple assemblies co-firing and
sequential ordering of different assemblies).

Most, if not all, of the aforementioned studies have focused
on the interaction between multiple γ and single θ oscillations
(CA1 pyramidal θ). However, it was recently shown that θ

oscillations themselves in the dorsal hippocampus are not a
unitary process. Using ICA decomposition, López-Madrona et al.
(2020) identified three independent θ ICs contributed by different
synaptic pathways, namely, the first in the str.rad, the second
in the str.lm, and the third in the mid-molecular layer of the
DG. Thus, as there are multiple γ, there may also be multiple
θ, opening the way to a potential combinatorial explosion of the
number of possible θ-γ configurations.

As a concluding, near tautological, remark, we would like
to stress that any method for the unsupervised extraction
of classes of oscillatory events will end up finding them.
The exact number of identified patterns will depend on the
specificities of the experimental dataset and algorithm used
but will always nevertheless remain a discrete integer number
as the applied methods are designed to do so. In front of
the inflation of the number of possibly relevant θ-γ patterns
exhibited by the recent literature, and the diversity of γ

sub-bands definition across aforementioned studies (see Zhou
et al., 2019), it may be legitimate to wonder whether the
paradigm of looking for discrete classes of events is well-
grounded. From a complex dynamics perspective, a neural
circuit with recurrent excitatory and inhibitory interconnections
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FIGURE 1 | Decomposing theta-gamma oscillations in discrete motifs do not capture the full gamma diversity. (A) Schematic representations of the main
theta-gamma motifs found in the literature. Gamma frequency is color-coded (blue corresponding to slow-gamma, purple to mid-gamma and green to fast-gamma).
Note the inflation of the different motifs since the initial proposal by Colgin et al. (2009) (from 2 in Colgin et al., 2009 to 5 in Lopes-dos-Santos et al., 2018). (B) Top:
Raw example of theta-gamma motifs found in hippocampal CA1 pyramidal layer (reproduced from Figure 1B of Zhang et al., 2019
https://doi.org/10.7554/eLife.44320.002). Bottom: Schematic representation of the above theta-gamma motifs. Note that only few theta cycles present a prototypic
motif as described in (A). In fact, most of the theta cycles can be described as a weighted combination of the different prototypic motifs.

is supposed to give rise to oscillations that are not well-
behaved and tuned metronomes but can fluctuate in frequency
as a function of noisy background inputs (Brunel and
Wang, 2003; Brunel and Hansel, 2006). Such stochastic-like
oscillations, despite their highly transient and irregular nature,
can still be fit for functions as selective information routing,
thanks to emergent self-organization mechanisms (Palmigiano
et al., 2017). It may thus be that the diversity of θ-γ
oscillatory patterns displayed by neural recordings is not the
manifestation of the coexistence of multiple, discrete generation
mechanisms or sources, but instead the unique, diverse output
of a common underlying circuit dynamics, non-linear and
complex in nature.

It is noted that a similar debate has also occurred in the
literature concerning the diversity of cortical interneurons, that
may exist as a large number of discrete types with different
functions (Markram et al., 2004; Burkhalter, 2008) and form
an interneuron continuum (Parra et al., 1998) or a structured
continuum with smooth tendencies (Battaglia et al., 2013).

CONCLUSION AND PERSPECTIVES: IS
θ-γ LANDSCAPE RANDOM OR
COMPLEX?

In this review, we have argued that the current model of
hippocampal θ-γ oscillations might not capture the complexity of

CA1 θ-γ interactions despite the evident appeal of its simplicity
and the functional link to memory processes. Indeed, rather than
containing a given γ event, most of the θ cycles contain multiple,
low-amplitude, γ bouts. Furthermore, many of the observed γ

frequencies do not fit well into a classification involving only
a few discrete γ types. Should these low-amplitude events be
dismissed as noise? To properly describe hippocampal oscillatory
complexity, we believe the entirety of the data should be taken
into consideration (without assuming that the strongest γ events
are the only ones carrying information). This will require the use
of new tools that do not assume a priori that certain classes of
γ rhythms exist but instead enable the description of individual
γ bouts in their full complexity. Individual oscillatory events
may have wildly fluctuating frequency, amplitude, and phase with
respect to ongoing θ. However, these fluctuations could still be
correlated to behavior and memory processing but in a collective
and synergistic manner. Individual features of oscillatory activity
may be only weakly informative about behavior because of their
apparent randomness. However, multiple features taken together
may still carry relevant information that individual features
do not (Wibral et al., 2017). Such a situation may occur if
the observed oscillatory events do not arise in all theoretically
possible configurations of features but are sampled on a low-
dimensional manifold in state space (Chaudhuri and Fiete,
2016). This representation would constrain dynamic trajectories,
creating interdependencies between them, possibly modulated
by context. In such a view, there would not be discrete classes
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of oscillatory events but a lower-dimensional space of possible
modes of oscillation that the system can smoothly explore
along time, possibly under the biasing influence of the
exogenous or endogenous input drive. Machine learning
approaches could then be used to learn these manifolds without
fully determining oscillatory modes and their relations to
behavior so as to decode and extract the complex information
hidden in the apparent stochasticity of the observed activity
time-series.
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