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Chronic kidney disease (CKD) is a rapidly rising global health burden that affects

nearly 40% of older adults. Epidemiologic data suggest that individuals at all stages

of chronic kidney disease (CKD) have a higher risk of developing cognitive disorders

and dementia, and thus represent a vulnerable population. It is currently unknown to

what extent this risk may be attributable to a clustering of traditional risk factors such as

hypertension and diabetes mellitus leading to a high prevalence of both symptomatic and

subclinical ischaemic cerebrovascular lesions, or whether other potential mechanisms,

including direct neuronal injury by uraemic toxins or dialysis-specific factors could also

be involved. These knowledge gaps may lead to suboptimal prevention and treatment

strategies being implemented in this group. In this review, we explore the mechanisms

of susceptibility and risk in the relationship between CKD and cognitive disorders.
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INTRODUCTION

The global burden of chronic kidney disease (CKD) is rising with estimated prevalence rates of
11–13% (1), increasing to nearly 40% in persons aged 60+ years (2). Although its contribution
to cardiovascular diseases is well-established (3), the significant impact of CKD on cognitive brain
health is only beginning to emerge. CKD is strongly associated with both cognitive impairment and
dementia, and these associations worsen with declining renal function (4). In this review, we will
discuss the clustering of risk factors associated with dementia in this group as well as the potential
role of novel renal-specific factors. We will endeavor to tease out the role of these putative risk
factors and mechanisms as mediators, confounders, or epiphenomena.

KIDNEY-BRAIN AXIS

The kidney-brain axis refers to a relationship that exists under both physiological and
pathophysiological circumstances. This relationship has been described as the “neglected kidney-
brain axis” (5) because the critical interplay between these two organs that can lead to important
neurological disease pathophysiology has only recently been recognized. The kidney and brain
share similar anatomical and physiological features that render them vulnerable to the impact
of traditional cardiovascular risk factors such as hypertension, diabetes, and smoking (6). Both
organs share a low vascular resistance system, allowing continuous high-volume perfusion (7).
Autoregulation allows constant blood flow despite fluctuations in blood pressure, to maintain
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cerebral perfusion pressure in the brain and GFR in the
kidney. The “strain vessel hypothesis” has been proposed
as a possible mechanism for the relationship between renal
and cerebrovascular diseases whereby juxtamedullary afferent
arterioles in the kidney and cerebral perforating arteries are both
exposed to high pressure and have to maintain large pressure
gradients, rendering them uniquely susceptible to hypertensive
injury (8). This hypertensive vascular injury is then clinically
manifest as proteinuria and progressive GFR decline in the
kidney, and as symptomatic stroke, silent cerebral small vessel
disease and cognitive decline in the brain.

It has also been hypothesized that there may be inflammatory
cross-talk between the two organs that may also contribute to the
cerebrovascular and neuropsychiatric disease burden observed
in patients with CKD (9). This cross-talk between the kidney
and brain may include enhanced cytokine/chemokine release
and production of reactive oxygen species (ROS) in AKI or
CKD leading to neuroinflammation, cytokine interaction with
pathogenic neurotrophic factors through a disrupted blood-brain
barrier, and activation of the brain renin–angiotensin system
(RAS) contributing to oxidative stress via angiotensin II. The
cytokines/chemokine release in CKD activates immune cells,
neurons, and glial cells in the brain creating a cascade with
release of more inflammatory molecules, which locally interact
with neurotrophic factors and with ROS, thus contributing to
neuropsychiatric disorders.

EPIDEMIOLOGY OF COGNITIVE
DISORDERS IN CKD

The prevalence ofMCI in pre-dialysis CKD is reported as variably
being between 25 and 62% (10, 11), compared to rates of 11–
26% in the matched general population (10, 12). In the Reasons
for Geographic and Racial Differences in Stroke (REGARDS)
Study, each 10 mL/min/1.73 m2 decrease in eGFR <60 mL/min/
1.73 m2 was associated with an 11% increase in prevalence
of cognitive dysfunction (13). Haemodialysis patients are three
times more likely to have severe cognitive impairment than age-
matched non-dialysis patients with reported prevalence rates of
30–40% (14).

CKD is in fact one of the strongest risk factors for mild
cognitive impairment (MCI) and dementia as demonstrated by
a recent 6-year population-based longitudinal study in which
the impact of CKD on risk of MCI and dementia was exceeded
only by stroke and chronic use of anxiolytics (15). Even early
stages of CKD are associated with cognitive impairment (16). In
a pediatric study of 340 patients (ages 6–21) with mild–moderate
CKD, a longer duration of CKD was associated with reduced
attention and executive function, with a doubling of the odds of
poor performance for every 4.6 years of disease exposure (17).
However, in the Three-City (3C) Study, a longitudinal cohort of
9,294 adults aged 65 years and over, although the cross-sectional
findings suggested that duration of disease was more relevant
than the level of GFR; in the longitudinal analysis, rapid eGFR
decline (>4 ml/min/1.73m2/yr) was more strongly associated
with cognitive decline and incident dementia (18). It may be the

case that duration of CKD is particularly relevant in children and
adolescents during periods of critical neurodevelopment (19).

In another recent, large population-based study, CKD was
associated with a higher dementia risk [hazard ratio (HR), 1.71;
95% confidence interval (CI)], 1.54–1.91 in eGFR 30–59 ml/min
and HR 2.62, 1.91–3.58 in eGFR<30 ml/min] compared with
eGFR of 90–104 ml/min (20). In this study, both the severity
of CKD and steeper kidney function decline were associated
with dementia. It was found that as many as 10% (95% CI 6–
14%) of dementia cases could be attributed to CKD, a proportion
higher than that attributed to other dementia risk factors such as
cardiovascular disease and diabetes.

As a measure of kidney function, proteinuria also appears to
bemore strongly associated with cognitive decline than low eGFR
for reasons that are unclear (21, 22). This finding is however
consistent with recently published meta-analyses data on the
relationship between low eGFR, proteinuria, and stroke risk
(23, 24).

The prevalence of dementia among haemodialysis patients
is 8–37% with the risk increasing linearly with age (12, 25).
Prevalence rates are broadly similar (4–33%) for patients on
maintenance peritoneal dialysis (12, 26) but fall for kidney
transplant recipients (7–22%) (27, 28). Although there may be a
selection bias in terms of transplant candidates, improvements
in cognitive scores in parallel with favorable structural and
functional changes in white matter integrity have been described
1 year after kidney transplantation (29). However, these changes
may not be sustained in frail recipients (27). Older adults
on haemodialysis with a diagnosis of Alzheimer’s disease or
dementia have a >2-fold risk of mortality compared to those
without these diagnoses (25).

MECHANISMS OF SUSCEPTIBILITY AND
RISK

Mechanisms underlying the pathogenesis of MCI and
dementia in CKD are poorly understood. Both vascular and
neurodegenerative hypotheses have been proposed (Figure 1)
(5, 30). In support of the vascular hypothesis, there is a high
prevalence of cardiovascular risk factors, such as hypertension
and diabetes mellitus, as well as a significant burden of both
symptomatic and subclinical cerebrovascular disease (31). On the
contrary, consistent with the neurodegenerative hypothesis, the
accumulation of uraemic toxins can cause cerebral endothelial
dysfunction and has been implicated in cognitive decline (32).
However, this binary view of potential pathogenesis for CKD-
related neurocognitive disorders is likely an over-simplistic
summary of a multi-factorial process that likely includes
elements of both hypotheses. We will outline the evidence for
these cognitive risk factors, some of which are shared by the
general population, and some of which are renal-specific.

Age and Sex Differences
The greatest risk factor for Alzheimer’s disease (AD) is advanced
age (33). Prevalence of AD shows a steep increase with age, from
0.6% in the group age 65–69 years to 22.2% in the group aged
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FIGURE 1 | Mechanisms of susceptibility and risk in the relationship between CKD and cognitive disorders.

90 years and older (34). Age also contributes to the etiology
and progression of CKD. The aged kidney undergoes a range
of structural and functional changes that can lead to disordered
inflammation and renal fibrosis, rendering the kidney vulnerable
to acute insults and increasing the risk of CKD progression (35).
These changes may be part of a broader process of systemic
persistent inflammation causing inflammatory aging known as
“inflammageing”. This condition is characterized by elevated
levels of blood inflammatorymarkers (36), a high susceptibility to
cerebrovascular disease and dementia (37, 38), and is exacerbated
by uraemia and dialysis dependency (39).

There are also key sex differences in the prevalence of both
dementia and CKD. A European meta-analysis found that the
pooled prevalence of AD was 7.02 per 1,000 person-years in
men and 13.25 per 1,000 person-years in women (40). Women
account for approximately two-thirds of patients with AD
and related dementias in both Europe and the US (41, 42).
This disparity is thought to be attributable to women’s greater
longevity since risk of developing dementia increases with age
and there may be a competing mortality risk for men that can
confound HR estimation of dementia (43, 44). However, a recent
study showed that incident midlife hypertension was associated
with greater memory decline in women and suggested that
such discrepancies in risk factor-disease associations could also
potentially contribute to heterogeneity of AD disease prevalence
in later life (45). Similarly, several other key vascular risk factors
such as hyperlipidaemia, diabetes mellitus and atrial fibrillation
also appear to be associated with greater risk of stroke in
women compared to men which may contribute to downstream
dementia burden (46). The proportion of women with pre-
dialysis CKD is also higher than that of men, a difference that is
also likely accounted for by the longer life expectancy of women,

but nonetheless renders them especially vulnerable to accelerated
“inflammageing” and the enhanced effects of vascular risk factors,
and consequently, to diseases of brain aging such as stroke and
dementia (47). Therefore, both age and sex could account for
confounding and epiphenomenal association in the relationship
between CKD and cognitive impairment.

Education Level
A low educational level is associated with an increased
incidence of clinical AD or dementia (48). It has been
suggested that education could delay the clinical expression
of dementia symptoms by increasing the neocortical synaptic
density (the “brain reserve” hypothesis) (49). Others have
proposed that educational and occupational attainment provide
a reserve against dementia, enabling this group to cope
with advanced pathological changes of the disease more
effectively by maintaining function longer (the “cognitive
reserve” hypothesis) (50). However, it may also be the case that
those with greater educational attainment and associated higher
socioeconomic status may be exposed to fewer neurotoxins
and have fewer cardiovascular risk factors that may contribute
to vascular/neurodegenerative brain disorders (the “brain
battering” hypothesis) (51).

Similarly, low educational and occupational levels have been
associated with CKD and worse kidney outcomes (52). CKD
risk, albuminuria, and reduced eGFR rates are all higher among
participants with low educational level compared to those
with high educational level. Exploratory longitudinal mediation
analysis suggest that the association between education and
CKD can partly be explained by diabetes and the modifiable
risk factors, body mass index (BMI), waist-to-hip ratio
(WHR), smoking, potassium and hypertension (53). Thus, low
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educational attainment is another potential confounder in the
association between CKD and cognitive disorders with some
evidence of synergy as subtle GFR decline is associated with
more rapid cognitive decline in those with lower educational
levels (54). However, more recent data in the general population
suggests that higher cognitive reserve may not diminish the
adverse effects of covert vascular brain injury (55).

Hypertension
The causal relationships between hypertension, CKD and
dementia are particularly complex as hypertension could be
potentially both a confounder and mediator in the relationship
between CKD and dementia.

Many observational studies report hypertension to be an
important risk factor for dementia (56–58) and in a recent
meta-analysis of randomized clinical trials, blood pressure
lowering with antihypertensive agents compared with control
was significantly associated with a lower risk of incident dementia
or CI (59). The relationship between hypertension and cognitive
decline may be mediated through cerebrovascular disease (60,
61) or via augmentation of neurodegenerative mechanisms. At
autopsy, hypertensive older adults also have evidence of greater
AD pathology in the brain, including neurofibrillary tangles
and neuritic amyloid-beta (Aβ) plaques (62). Positron emission
tomography studies have shown that the extent of Aβ deposition
in the brain is positively associated with higher BP (63). The
chronicity of past hypertension appears to be most important.
Multiple studies have indicated that it is the occurrence of midlife
hypertension and its persistence into late life that is one of the
leading risk factors for late-life dementia (64, 65).

It follows then that since hypertension occurs in 67–
92% of patients with CKD (66), that the adverse cognitive
consequences could be accentuated in this group. However,
although premorbid mid-life to late-life blood pressure is
strongly associated with MCI and dementia in the general
population, its role in dementia pathogenesis in CKD is
unknown. A recent systematic review andmeta-analysis of stroke
risk in CKD suggested that most of the risk in this setting may be
attributable to long-term blood pressure burden (23). Premorbid
blood pressure may therefore also play a similarly central role
in the etiology of cognitive dysfunction in CKD, though this has
not been previously shown. In an analysis of 8,563 hypertensive
adults in the SPRINT trial, they found that a ≥30% decline in
baseline eGFR and incident eGFR <60 ml/min/1.73 m2 were
associated with an increased incidence of probable dementia and
MCI, independent of the intensity of hypertension treatment
(67). This highlights a potential synergy between hypertension
and kidney disease in the pathogenesis of CI and dementia.

Stroke
Stroke is associated with an increased risk of subsequent
dementia. In a large meta-analysis of symptomatic stroke
patients, 10% of patients had dementia before first stroke, 10%
developed new dementia soon after first stroke, and more than a
third had dementia after recurrent stroke (68).

There are also strong associations reported between CKD
and cerebrovascular disease (30). Meta-analyses of cohort studies

and trials indicate that reduced GFR is associated with a 40%
greater risk of stroke and that proteinuria is associated with
a 70% greater risk (69) even after adjusting for traditional
cardiovascular risk factors. In terms of potential mechanisms,
there is a high prevalence of shared vascular risk factors including
hypertension, diabetes mellitus, and atrial fibrillation but “non-
traditional” risk factors such as anemia, hyperuricemia, and
mineral-bone disorders may also play a role (70).

Importantly, several of the predictors of post-stroke dementia
(68) are common in the CKD population including older age
(35), low educational attainment (52), premorbid disability, (71)
and vascular risk factors such as diabetes mellitus and atrial
fibrillation (AF) (72). In addition, CKD is associated with several
stroke-specific factors (68) that are predictive of post-stroke
dementia including higher stroke severity and greater risk of
recurrence (73).

Small Vessel Disease
Cerebral small vessel disease (SVD) is a major etiologic factor
in dementia (74). This may relate to a reduction in cerebral
blood flow (75), and impaired cerebral autoregulation (76). SVD
and AD pathology are thought to interact in important ways
(77). Chronic cerebral inflammation due to vascular risk factors
exposure and genetic modulators (apoE4) may lead to increase
Aβ production while chronic SVD (arteriosclerosis, cerebral
amyloid angiopathy) and vascular inflammation may drive
inefficient perivascular and cell-mediated Aβ clearance (78).

SVD is highly prevalent in patients with CKD (79) and it
is associated with all subtypes including white matter lesions
(WML) (80), silent cerebral infarctions (SCI) (81), perivascular
spaces (PVS) (82), and cerebral microbleeds (CMB) (83). Over
half of all CKD or dialysis-dependent patients have evidence
of SCI on imaging studies (84, 85). These associations may
relate to the “strain vessel hypothesis” (8), shared cardiovascular
risk factor burden (81), or perhaps genetic pleiotropy may
play a role in younger populations (86). SCI in the presence
of CKD has been associated with executive dysfunction (87).
This pattern of cognitive change with prominent impairment
of executive function and processing speed has also been
observed in maintenance haemodialysis patients (88), consistent
with cognitive deficits associated with cerebrovascular disease
(89). It is therefore unclear whether CKD is a risk factor
for dementia independent of either symptomatic or subclinical
cerebrovascular disease.

Diabetes Mellitus and Obesity
A recent meta-analysis of over 2 million participants showed
that individuals with type 2 diabetes are at ∼60% greater risk
for the development of dementia compared with those without
diabetes (90). Those with a younger age of diabetes onset
and cardiovascular comorbidity are particularly at risk (91).
Several mechanisms for the link between diabetes and dementia
have been proposed including brain metabolic dysfunction as
a driver for AD pathology (92), with impairments in insulin
transport through the blood-brain barrier, insulin signaling, and
resultant decreased cerebral glucose utilization (93). In addition,
hyperglycemia may lead to neurotoxicity, vascular injury, and
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accumulation of advanced glycation end products (94). Nearly
one third of CKD is attributable to diabetic nephropathy (3)
and even patients with mild-moderate stages of diabetic kidney
disease have been found to have occult neurocognitive disorders
(95), highlighting the role of diabetes as a potential confounding
factor in this pathway.

Increasing evidence suggests that obesity, highly prevalent in
the CKD population (96) and estimated to account for ∼20–
25% of kidney disease worldwide (97), is also an independent
risk factor for dementia. In an analysis of 6,582 participants
from the English Longitudinal Study of Aging, individuals with
baseline obesity had about a 30% increased risk of dementia
even after adjusting for sex, baseline age, apolipoprotein E-ε4
(APOE-ε4), education, physical activity, smoking, marital status,
hypertension and diabetes (98). Similar to diabetes though, excess
adiposity is linked with a change in brain energy metabolism, the
accumulation of brain lesions and brain volume loss leading to
neurodegeneration (99).

Depression and Sleep Disorders
Approximately 25% of CKD patients report symptoms of a
major depressive disorder (100) with high rates of under-
treatment described (101). In particular, hemodialysis patients
with a greater burden of depressive symptoms perform worse
on tests of cognition related to processing speed and executive
function, suggesting that depression could therefore be a
potential mediating or contributing factor in the relationship
between CKD and cognitive disorders (102).

Similarly, sleep disorders are highly prevalent in CKD with
a spectrum of manifestations described including insomnia,
sleep fragmentation, daytime somnolence, sleep apnoea, altered
circadian rhythm, and restless legs syndrome (103). Sleep
disorders are also highly linked to cognitive impairment and
dementia and are often representative of underlying brain
pathology (104). The glymphatic system is responsible for
clearance of ∼60% of β-amyloid clearance and since this occurs
primarily during sleep (105), which is altered during CKD, it has
been proposed that glymphatic fluid transport may be suppressed
in CKD, leading to an accumulation of potentially neurotoxic
waste products (106).

Genetic Factors
The role of genetic factors in the pathogenesis of cognitive
dysfunction in CKD has been largely unexplored (106). In
younger patients, some rare genetic syndromes have been
described that can cause both kidney disease as well as
neurocognitive disorders including tuberous sclerosis (107),
Fabry disease (108), and Bardet-Biedl Syndrome (109). In
general, compared with noncarriers, children with genetic kidney
disease score significantly poorer on all measures of intelligence,
anxiety/depressive symptoms, and executive function (110).

A genetic cause has been described in 10% of adult patients
with CKD (111), and this figure can rise to 37% of those
with positive family history, many of whom have extra-renal
features (112). However, it is not known whether there is a
similar tendency toward neurocognitive disorders in this group.
Several single-nucleotide polymorphisms (SNPs) associated with

kidney disease (113) are in exons for genes that also expressed
in the brain including in the striatum (SLC47A1, KLHDC7A
and SLC25A45; from the Allen Brain Atlas database), cortex
(EDEM3, PPM1J, and CERS2; from the Human Protein Atlas
database) and the cerebellum and hippocampus (TSPAN9
and EPB41L5; from the Human Protein Atlas database).
Furthermore, some are in genes linked to Alzheimer’s disease
(CACNA1S; WikiPathways database).

Two genome-wide association studies have also previously
indicated genetic pleiotropy between kidney and cerebrovascular
disease, particularly with large artery atherosclerotic and small
vessel stroke (86, 114). In the most recent of these studies
that leveraged large-scale data from international consortia, a
locus at 2q33 showed pairwise associations between urinary
albumin:creatinine ratio and both small vessel stroke and
white matter hyperintensities (WMH), indicating that 2q33
may play a role across small vessel pathologies in both
the kidney and brain through microalbuminuria, small vessel
stroke, and WMH, and that there may be a shared common
pathway among cerebral and renal manifestations of small vessel
disease (114).

Uraemia and Neuroinflammation
The accumulation of uraemic toxins is proposed to cause cerebral
endothelial dysfunction and contribute to cognitive disorders
in CKD (32). High uraemic toxin concentrations of guanidine
compounds such as creatinine, guanidine, guanidinosuccinic
acid, and methylguanidine have been found in CKD patients
in strategic brain regions for cognition, such as the thalamus,
mammillary bodies, and cerebral cortex (115). Haemodialysis
efficiently eliminates water-soluble toxins and improves acute
uraemic encephalopathy, but is relatively ineffective for protein-
bound or medium-sized toxins that may contribute to chronic
cognitive dysfunction in patients with ESKD (106). Of particular
interest is Neuropeptide Y, a polypeptide that has been
implicated in some neurodegenerative and neuroimmune
disorders (116), and that is also present in high levels in
CKD (117).

Inflammation has also been suggested as a mediator of
cognitive decline in CKD (118). The intensity of systemic
inflammation, as indicated by elevations in multiple markers
of inflammation, including interleukin-1β (IL-1β), interleukin-6
(IL-6), tumor necrosis factor–α (TNF-α), and C-reactive protein
(CRP), appears to increase as kidney function declines (119).
Both cross-sectional and longitudinal studies have shown that
that CRP and fibrinogen are independently associated with
deterioration in some domains of cognitive function in patients
with CKD (120, 121), though these studies are vulnerable to type
1 error from multiple testing.

Dialysis-Specific Factors
It is increasingly recognized that haemodialysis is associated
with both acute and chronic brain injury (122, 123). Even in
clinically stable patients undergoing intermittent haemodialysis,
it can cause cerebral oedema via an increase in brain water
content and from reverse osmotic shift due to urea (124) or other
newly formed brain osmoles (125). Global cerebral blood flow has
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FIGURE 2 | The potential impact of dialysis-associated neurovascular injury on cognition.

also been shown to decline acutely by 10% during hemodialysis
(126). Thus, in the setting of acute brain injury, there is a risk
of secondary brain injury in what’s now referred to as dialysis-
associated neurovascular injury (DANI) (Figure 2) (122).

In the chronic setting, it has been shown that every 10 mmHg
drop from baseline in mean arterial pressure during a dialysis
session is associated with a 3% increase in ischaemic events (127).
Nearly one-quarter of haemodialysis sessions feature cerebral
ischaemic events and these intradialytic events correlate with
decreased executive cognitive function at 12 months.

In a prospective cohort study of about 100 chronic
haemodialysis patients, cerebral arterial mean flow velocity
(MFV) was demonstrated to decline significantly during dialysis
and this decline correlated with intradialytic decline in cognitive
function (128). Decline in MFV also correlated significantly
with progression of white matter burden and cerebrovascular
disease at 12 months follow-up. Haemodialysis is thus capable of
inducing transient “cerebral stunning,” analogous to myocardial
stunning, and may be a major mechanism of cerebral injury and
accelerated cognitive decline in dialysis-dependent patients.

Beta-Amyloid Pathology
The role of beta-amyloid (Aβ) pathology in the relationship
between CKD and cognitive decline in poorly understood. Serum
Aβ levels have been shown to be significantly higher in CKD
patients, possibly related to reduced renal clearance of Aβ protein
from peripheral blood (129). Cystatin-C, a low-molecular weight
protein that is used to estimate GFR, has also been demonstrated
to colocalize with beta-amyloid in the brain (130).

However, there is some evidence from animal and small
human studies that peripheral clearance of Aβ by dialysis could
help to reduce the amyloid plaque burden in the brain (131).
In one study, plasma Aβ levels before and immediately after

peritoneal dialysis in 30 patients with newly diagnosed CKD
and in APP/PS1 mice were measured. In both cases, plasma
Aβ40 and Aβ42 levels were significantly reduced after dialysis.
In the animal model, PD resulted in a decrease in Aβ levels
in the brain interstitial fluid with reduced plaque deposition.
Dialysis solution appeared to account for only 10% of Aβ

removal suggesting that the remaining clearance was mediated
by efflux transport of Aβ across the BBB and enhancement
of endogenous clearance pathways. The dialysis-treated mice
showed reduced levels of hyperphosphorylated tau in the brain,
suggesting a slowing of neurodegeneration along with decreased
inflammation. Attenuated cognitive decline was demonstrated by
improved performance on the Y-maze and open-field tests.

Brain Aβ deposition also appears to be lower in maintenance
haemodialysis patients (132). Clearance rates of both peptides
during one haemodialysis session were 22% and 35% for Aβ42
and Aβ40, respectively (133). By inducing peripheral Aβ sink
and stimulating Aβ efflux from the brain, it has been suggested
that haemodialysis could be considered as an anti-amyloid
treatment strategy.

CONCLUSIONS

CKD is strongly associated with MCI and dementia, and the
pathogenesis is likely multifactorial, incorporating elements of
both vascular disease as well as neurodegenerative processes.
Patients with CKD appear to have a clustering of susceptibility
and risk factors associated with dementia including lower
cognitive reserve (advancing age, lower educational and
occupational attainment), cardiometabolic risk factors
(hypertension, diabetes, obesity, stroke), neuropsychiatric
comorbidities (depression, sleep disorders) and renal-specific
factors (uraemia, inflammation, intradialytic “cerebral
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stunning”). From an epidemiological perspective, it remains
challenging to disentangle independently causal associations
from intermediate mediators, confounders, and epiphenomena.
Further research is needed to fully elucidate the role of genetic
factors and Aβ pathology in this relationship. In an aging
population, targeting novel modifiable risk factors such as CKD
and associated multimorbidity may help reduce the global
burden of dementia.
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