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Abstract Rett Syndrome is a devastating neurodevelopmental disorder resulting from mutations

in the gene MECP2. Mutations of Mecp2 that are restricted to GABAergic cell types largely

replicate the behavioral phenotypes associated with mouse models of Rett Syndrome, suggesting a

pathophysiological role for inhibitory interneurons. Recent work has suggested that vasoactive

intestinal peptide-expressing (VIP) interneurons may play a critical role in the proper development

and function of cortical circuits, making them a potential key point of vulnerability in

neurodevelopmental disorders. However, little is known about the role of VIP interneurons in Rett

Syndrome. Here we find that loss of MeCP2 specifically from VIP interneurons replicates key neural

and behavioral phenotypes observed following global Mecp2 loss of function.

Rett Syndrome is a severe neurodevelopmental disorder caused by mutations in the gene encoding

methyl-CpG binding protein 2 (MECP2). Children who are affected by Rett develop normally during

the initial year of postnatal life but regress rapidly thereafter, showing loss of motor skills and lan-

guage and developing cognitive impairments, ataxia, respiratory problems, and stereotyped hand

movements (Chahrour and Zoghbi, 2007). Extensive previous work has shown that many Rett-asso-

ciated phenotypes are replicated in Mecp2 loss-of-function mouse models (Chen et al., 2001;

Guy et al., 2001; Shahbazian et al., 2002; Chao et al., 2010; Ito-Ishida et al., 2015). Rett Syn-

drome is strongly associated with seizure (Hagberg et al., 1983; Amir et al., 1999; Chahrour and

Zoghbi, 2007), suggesting a possible role for GABAergic dysregulation in the pathophysiology

underlying these symptoms. Indeed, previous work in mice found that conditional mutations of

Mecp2 that are restricted to GABAergic neurons recapitulate most of the observed phenotypes in

the mouse model (Chao et al., 2010; Ito-Ishida et al., 2015), whereas rescue of Mecp2 solely in

GABAergic neurons ameliorates many phenotypes (Ure et al., 2016). These findings suggest a key

role for the dysregulation of inhibitory interneurons in Rett Syndrome.

One major challenge in exploring GABAergic dysfunction in Rett Syndrome is the diversity of

inhibitory interneurons, which can be subdivided into distinct classes that have different physiology,

synaptic targets, and molecular markers. GABAergic interneurons that co-express vasoactive intesti-

nal peptide (VIP), a sparse population that inhibit other interneurons and pyramidal cells

(Pfeffer et al., 2013; Pi et al., 2013; Prönneke et al., 2015; Garcia-Junco-Clemente et al., 2017;

Chiu et al., 2018), are thought to regulate powerfully the state-dependent function of neural circuits

in the cerebral cortex (Lee et al., 2013; Fu et al., 2014; Kamigaki and Dan, 2017). In recent work,

we found that early perturbation of VIP interneuron function caused profound dysregulation of corti-

cal development, leading to altered neural activity, sensory processing, plasticity, and behavior

(Batista-Brito et al., 2017). VIP cells may thus play a crucial role in cortical circuit development and
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mature function. However, nothing is known about the contribution of VIP interneurons to neurode-

velopmental dysregulation in Rett Syndrome.

Using a mouse model, we generated conditional mutations of Mecp2 in VIP interneurons and

compared these (i) with a conditional pan-interneuron mutation using the Dlx5/6 promoter to drive

embryonic deletion in three major interneuron classes (VIP, parvalbumin-expressing interneurons

[PV], and somatostatin-expressing interneurons [SST]) and (ii) with two conditional mutations in dis-

crete interneuron populations (PV, SST). To identify the distinct contributions of each interneuron

class, we assayed mortality, cortical activity, locomotor and anxiety phenotypes, and social behavior.

Loss of MeCP2 selectively from VIP interneurons replicated key physiological and behavioral pheno-

types observed in the pan-interneuron Dlx5/6 mutants, including altered firing rates, disruption of

high-frequency cortical local field potential (LFP) patterns, and loss of state-dependent modulation

of cortical activity. VIP interneuron-specific mutants further phenocopied impairments in marble

burying and social behavior observed in the Dlx5/6 mutants. Overall, our findings suggest an unan-

ticipated role for VIP interneuron dysfunction in the Mecp2 loss-of-function model of Rett Syndrome.

Results

MeCP2 expression in PV, SST, and VIP interneurons
To confirm that MeCP2 is expressed in three major populations of GABAergic interneurons, we co-

stained sections of cortex from adult mice with antibodies for interneuron markers and MeCP2 (Fig-

ure 1, Figure 1—figure supplement 1). As reported previously (Ito-Ishida et al., 2015), nearly all

PV and SST interneurons expressed MeCP2. In addition, ~80% of VIP interneurons expressed

MeCP2, suggesting a previously unappreciated potential role for this signaling pathway in VIP inter-

neuron development and function.

To identify the unique contributions of VIP interneurons to the neural and behavioral phenotypes

observed following Mecp2 deletion (Chao et al., 2010), we generated four lines of conditional dele-

tion mice lacking MeCP2 specifically in VIP (VipCre+/–Mecp2 f/y; VIP mutants), PV (PvalbCre+/–Mecp2 f/

y; PV mutants), or SST (SstCre+/–Mecp2 f/y; SST mutants) interneurons, or in all three populations of

GABAergic interneurons (Dlx5/6Cre+/–Mecp2f/y; Dlx5/6 mutants) (Anderson et al., 1997;

Zerucha et al., 2000; Monory et al., 2006; Wang et al., 2010) by crossing Mecp2f/f animals

(Samaco et al., 2008) to interneuron-specific Cre lines. In each case, conditional mutants were com-

pared to Cre-negative Mecp2f/y controls. We first examined the efficacy of conditional removal of

MeCP2 from targeted interneuron populations in the cortex of Cre+Mecp2f/y animals, finding near-

complete removal of MeCP2 expression in each of the targeted interneuron classes (Figure 1C).

Mecp2 deletion from different interneuron populations differentially impacted survival. We found

that the mean age of death in Mecp2–/y (71.5 ± 8.7 days; n = 13; p<0.00001; H = 57.06), Dlx5/6

mutants (118.5 ± 15.2 days; n = 10; p<0.00001; H = 45.63), and SST mutants (172.5 ± 12.2 days;

n = 16; p<0.0001; H = 36.30), but not PV (493.5 ± 6.5 days; n = 18; p>0.99; H = �3.50) or VIP

mutants (447.5 ± 52.5 days; n = 8; p>0.99; H = 2.20), was significantly decreased compared to that

of Mecp2f/y controls (464.7 ± 19.9 days; n = 38). There was no difference in the mean age of death

between control and wild-type animals (p>0.99; H = 1.82; Kruskal-Wallis test with Dunn’s post-test;

Figure 1D).

Seizure incidence following Mecp2 mutation
Previous work identified a characteristic seizure phenotype resulting from Mecp2 deletion in the

brain (Chao et al., 2010) and found that loss of MeCP2 from SST-expressing cells may confer a late-

onset tendency towards seizure (Ito-Ishida et al., 2015). We therefore evaluated the incidence of

seizure in each of the three interneuron-specific Mecp2 deletion lines from weaning through to late

adulthood. We compared the impact of MeCP2 depletion from VIP, PV, or SST interneuron popula-

tions with simultaneous depletion from all three interneuron classes using the Dlx5/6Cre line. We fur-

ther compared the interneuron-specific mutation mice with Mecp2f/y littermate controls. To identify

the relative impact of Mecp2 loss of function in GABAergic cells compared to loss of function of

Mecp2 in all cells, we also compared seizure incidence in the interneuron-specific deletion mice with

that in mice carrying a complete knockout of the Mecp2 gene (Mecp2–/y).
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MeCP2 depletion from specific interneuron populations had markedly different effects on seizure

incidence (Figure 1—figure supplement 2A-B). We found that 100% of Mecp2–/y (n = 10) and Dlx5/

6 mutant (n = 13) mice exhibited at least one seizure, compared to only 52.9% of SST mutants

(n = 36), 35.0% of PV mutants (n = 22), and 37.5% of VIP mutants (n = 8). In comparison, the seizure

rates in Mecp2f/y controls and in wild-types were 17.1% (n = 38) and 0% (n = 20), respectively, sug-

gesting a small contribution of the floxed allele to the seizure phenotype (Ito-Ishida et al., 2015).

The mean age of initial seizure was significantly earlier in Mecp2–/y mutants, but not the Dlx5/6, PV,

SST, or VIP mutants, compared to Mecp2f/y controls (Figure 1—figure supplement 2B).
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Figure 1. MeCP2 is expressed in three major GABAergic interneuron classes. (A) Co-staining for interneuron

markers (green) and MeCP2 (red) reveals a high degree of co-expression in VIP (left), PV (middle), and SST (right)

interneurons in the cortex. Scale bar denotes 100 mm. (B) Expanded view of insets 1–3 from panel (A). (C) Crossing

interneuron-specific Cre lines with the conditional Mecp2 line results in near-complete removal of MeCP2

expression from each target population in mutants (M) as compared to controls (C) (n = 4 mice per group). (D)

Cumulative distribution plots of survival for controls (CON; black; n = 38), wild-types (WT; magenta; n = 10), and

Mecp2-/y (KO; gray; n = 10), Dlx5/6 (DLX; red; n = 13), VIP (orange; n = 8), PV (green; n = 22), and SST (cyan;

n = 36) mutants. *, p<0.05.

The online version of this article includes the following source data and figure supplement(s) for figure 1:

Source data 1. Statistical values for Figure 1, Figure 1—figure supplement 1, and Figure 1—figure supplement

2.

Figure supplement 1. MeCP2 expression in conditional deletion mice.

Figure supplement 2. Seizure incidence following conditional deletion of Mecp2 from GABAergic interneurons.
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Altered patterns of cortical and hippocampal activity following Mecp2
mutation
To examine the cellular and local network consequences of MeCP2 loss, we performed electrophysi-

ological recordings in the cortex and hippocampus of awake animals. MeCP2 loss from interneurons

caused alterations in the cortical LFP, a measure of local network activity (Figure 2A–B). MeCP2

depletion caused a modest change in LFP power, measured during periods of quiescence, in the 3–

6 Hz range in the Dlx5/6 mutants (p=0.03; Kruskal-Wallis test with Dunn’s post-test), but not in other

groups (Figure 2C). However, we observed a robust broadband decrease in high-frequency LFP

activity in the Dlx5/6 mutants that was replicated in the VIP mutants, but not PV or SST mutants

(Figure 2A). Quantification of high-frequency activity around the gamma (40–55 Hz) band revealed a

significant decrease in gamma-range activity in both the Dlx5/6 (p=0.005) and VIP mutants (p=0.04;

Kruskal-Wallis test with Dunn’s post-test; Figure 2D). We further found a loss of spike-field coher-

ence in the gamma band in Dlx5/6 and VIP mutants (Figure 2—figure supplement 1). By contrast,

hippocampal recordings revealed a loss of gamma-range LFP power in the Dlx5/6 mutants that was

replicated by the SST mutants (Figure 2—figure supplement 2), suggesting potentially distinct cell-

type-specific roles in different brain areas.
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Figure 2. Altered state-dependent cortical activity following Mecp2 deletion from VIP interneurons. (A) Population-averaged normalized cortical power

spectra during quiescent sitting periods for Dlx5/6 mutants (red), VIP mutants (orange), PV mutants (green), and SST mutants (blue) compared to

Mecp2f/y controls (black). (B) Example cortical LFP traces and raster plots for regular spiking (RS), putative pyramidal neurons during quiescence (Q,

blue) and locomotion (L, red) periods in a Mecp2f/y control (CON), a Dlx5/6 mutant, and a VIP mutant. (C) Cortical relative LFP power in the 3–6 Hz

band in during quiescent periods in Mecp2f/y controls (black; n = 12) and in Dlx5/6 (red; n = 5), VIP (orange; n = 6), PV (green; n = 6), and SST (cyan;

n = 8) mutants. (D) Cortical relative LFP power in the 40–55 Hz band during quiescence. (E) Population-averaged single-unit firing rate of cortical RS

cells during quiescence in Mecp2f/y controls (n = 7) and Dlx5/6 (n = 5), VIP (n = 5), PV (n = 5), and SST (n = 7) mutants. (F) Modulation of single-unit

firing rate at locomotion onset in each group, measured as an index value. *, p<0.05; **, p<0.01; ***, p<0.001.

The online version of this article includes the following source data and figure supplement(s) for figure 2:

Source data 1. Statistical values for Figure 2, Figure 2—figure supplement 1, Figure 2—figure supplement 2, and Figure 2—figure supplement 3.

Figure supplement 1. Alteration in the temporal pattern of spiking.

Figure supplement 2. Altered hippocampal activity patterns in Mecp2 mutants.

Figure supplement 3. No difference in neural activity among control groups.
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Perturbation of interneurons during development can result in elevated firing rates due to loss of

synaptic inhibition and the reorganization of neural circuits (Close et al., 2012; Rossignol et al.,

2013; Batista-Brito et al., 2017). We therefore recorded cortical firing activity in awake mice with

Mecp2 mutations (Figure 2B). Single-unit recordings revealed that loss of MeCP2 in the Dlx5/6

mutants led to a three-fold increase in the firing rates of regular-spiking, putative excitatory pyrami-

dal neurons as compared to that in control animals (p=0.004), and this finding was replicated in the

VIP (p=0.03) and SST (p=0.002; Kruskal-Wallis test with Dunn’s post-test) mutants (Figure 2E).

In previous work, we found that cortical firing rates are robustly modulated by changes in behav-

ioral state, and are typically increased at the onset of locomotion (L) as compared to quiescence (Q)

(Vinck et al., 2015). Loss of normal VIP interneuron activity reduces this state-dependent cortical

modulation (Fu et al., 2014; Batista-Brito et al., 2017). To determine whether MeCP2 loss from VIP

interneurons impairs this function, we examined state-dependent modulation in the Mecp2 mutants.

Both pan-interneuron MeCP2 loss in the Dlx5/6 mutants (p=0.004) and MeCP2 loss specific to VIP

interneurons (p=0.02; Kruskal-Wallis test with Dunn’s post-test), but not other interneuron
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Figure 3. Loss of MeCP2 in VIP interneurons disrupts behavior. (A) Mean time spent in the open arms of the

elevated plus maze for Mecp2f/y controls (CON; black; n = 18) and Dlx5/6 (red; n = 5), VIP (orange; n = 5), PV

(green; n = 7), and SST (cyan; n = 14) mutants. (B) Mean percentage of marbles buried by controls (n = 16) and

by Dlx5/6 (n = 5), VIP (n = 8), PV (n = 6), and SST (n = 12) mutants. (C) Left: preference index for time spent with an

unfamiliar conspecific in a small holding cage versus an empty cage for Mecp2f/y controls (n = 16) and Dlx5/6

(n = 7), VIP (n = 6), PV (n = 5), and SST (n = 14) mutants. Right: preference index for approaches made to within 5

cm of the conspecific or the empty holding cage for each group. **, p<0.01; ***, p<0.001.

The online version of this article includes the following source data and figure supplement(s) for figure 3:

Source data 1. Statistical values for Figure 3, Figure 3—figure supplement 1, and Figure 3—figure supplement

2.

Figure supplement 1. Social behavior preferences are disrupted by Mecp2 deletion from VIP interneurons.

Figure supplement 2. No difference in behavior among control groups.
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populations, led to decreased state-dependent modulation of single-unit cortical firing rates, mea-

sured as a modulation index [(FRL–FRQ)/(FRL+FRQ)] (Figure 2F). We did not find any differences in

neural activity between Mecp2f/y controls, wild-types, and VipCre controls, suggesting that these

results arise from cell type-specific Mecp2 loss of function (Figure 2—figure supplement 3).

Behavioral phenotypes associated with interneuron-specific Mecp2
mutation
Previous work has linked Mecp2 mutations in GABAergic interneurons to key impairments in motor,

repetitive, and social behaviors (Moretti et al., 2005; Chahrour and Zoghbi, 2007; Samaco et al.,

2008; Chao et al., 2010; Kaufmann et al., 2012; He et al., 2014; Ito-Ishida et al., 2015). We there-

fore examined the behavioral consequences of VIP-specific Mecp2 mutations. In agreement with

previous work (Chao et al., 2010; Ito-Ishida et al., 2015), we found no significant impairments in

percentage of time spent in the open arms of the elevated plus maze task, a measure of anxiety

(Carobrez and Bertoglio, 2005), for the Dlx5/6, VIP, PV, or SST mutants compared to controls

(Figure 3A). Likewise, we found no impairment in locomotor behavior in the open field assay in any

of the mutants (Figure 3—figure supplement 1A). By contrast, we found a significant impairment in

marble burying, a measure of motor and repetitive behavior (Thomas et al., 2009; Silverman et al.,

2010), in the pan-interneuron Dlx5/6 mutants compared to the controls (p=0.007). The deficit

observed in the Dlx5/6 mutants was fully replicated in the VIP mutants (p=0.001; Kruskal-Wallis test

with Dunn’s post-test), but not in the PV or SST mutants (Figure 3B).

We tested social interaction behaviors in each Mecp2 deletion line using the three-chamber socia-

bility task (Nadler et al., 2004). Control animals exhibited a significant preference for a chamber

containing a conspecific over an empty chamber (Figure 3C, Figure 3—figure supplement 1B). By

contrast, the pan-interneuron Dlx5/6 mutants exhibited a reverse preference for the empty chamber

(p=0.002). The VIP mutants (p=0.002; Kruskal-Wallis test with Dunn’s post-test), but not the PV or

SST mutants, fully replicated the effects of the pan-interneuron deletion, showing a significant pref-

erence for the empty chamber over the conspecific.

In addition to altered overall social preferences, Mecp2 deletion affected the number of

approaches mice made towards conspecifics. Control animals made more approaches to the con-

specific than to the empty holding cage (Figure 3C). By contrast, the Dlx5/6 mutants made more

approaches to the empty holding cage than to the conspecific animal (p=0.01). The VIP mutants

(p=0.01; Kruskal-Wallis test with Dunn’s post-test), but not the PV or SST mutants, fully replicated

these effects of pan-interneuron deletion, approaching the empty holding cage more than the con-

specific. Together, these data suggest that VIP interneurons may contribute to the deficits in social

behavior caused by global Mecp2 dysfunction. We did not find any differences in behavior between

Mecp2f/y controls, wild-types, and VipCre controls (Figure 3—figure supplement 2), suggesting that

these behavioral impairments arise as a consequence of cell-type-specific MeCP2 deletion.

Discussion
Our results reveal an unanticipated role for VIP interneurons in the Mecp2 loss-of-function model of

Rett Syndrome. On the basis of previous characterizations of the Mecp2 model (Chahrour and

Zoghbi, 2007; Samaco et al., 2008; Chao et al., 2010; He et al., 2014; Ito-Ishida et al., 2015), we

examined interneuron contributions to several major categories of neural dysregulation: mortality

and seizure, cortical activity patterns, anxiety and repetitive behaviors, and social behavior. We

found that Mecp2 deletion from VIP interneurons recapitulates major phenotypes observed follow-

ing pan-interneuron Mecp2 deletion at the levels of both neural activity and behavior

(Supplementary file 1).

Patients who have Rett Syndrome exhibit respiratory impairments and seizure (Chahrour and

Zoghbi, 2007), and these phenotypes are replicated in mouse models following deletion of Mecp2

from all GABAergic cells (Chao et al., 2010; Ito-Ishida et al., 2015). In agreement with previous

work (Ito-Ishida et al., 2015), we found that Mecp2 loss of function in SST interneurons conferred a

late seizure phenotype. However, conditional mutations of Mecp2 in VIP interneurons did not

increase seizure or mortality rates. Mecp2 knockout animals had significantly earlier seizure onset

and mortality than the Dlx5/6 mutants, supporting previous findings that global loss of MeCP2 in

excitatory neurons also contributes to seizure (Goffin et al., 2014; Meng et al., 2016) and that
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respiratory impairments in the Mecp2 knockouts may increase early mortality (Chen et al., 2001;

Guy et al., 2001). In comparison, a previous study did not observe a seizure phenotype in Dlx5/6

mutants, possibly as a result of methodological differences (Chao et al., 2010). We observed a low

rate of late-onset seizure in the MeCP2f/y control animals, indicating that the decrease in MeCP2 lev-

els associated with the conditional allele (Samaco et al., 2008) may be associated with epileptogenic

consequences in addition to some mild behavioral phenotypes.

Recordings in the cortex of awake mice revealed a robust impact of Mecp2 deletion on the pat-

tern of cortical activity. We found a decrease in high-frequency LFP activity in the Dlx5/6 mutants

that was replicated in the VIP mutants. In particular, VIP mutants exhibited a decrease in cortical

gamma-range activity, which is associated with cognition and sensory processing (Cardin, 2016;

Cardin, 2018a) and which may be impaired in Rett Syndrome (Peters et al., 2015). Although hippo-

campal gamma-range activity was also affected in the Dlx5/6 mutants, these effects were associated

with SST rather than with VIP interneuron mutations, suggesting potential heterogeneity of the cir-

cuit-level impact of Mecp2 deletion across brain areas. Loss of MeCP2 in the Dlx5/6 mutants was

associated with a three-fold increase in cortical firing rates, and this increase was replicated in the

VIP and SST mutants.

In the healthy cortex, transitions between behavioral states, such as quiescence and arousal or

locomotion, are associated with robust modulation of cortical firing rates. (Niell and Stryker, 2010;

McGinley et al., 2015; Vinck et al., 2015; Tang and Higley, 2020). However, loss of MeCP2 in the

VIP and Dlx5/6 mutants caused a profound dysregulation of this state-dependent modulation. This

loss of modulation is unlikely to result from a ‘ceiling effect’ caused by increased overall firing rates,

as putative excitatory neurons in the SST and VIP mutants exhibited equally enhanced firing but only

the VIP mutants showed a loss of state-dependent modulation. VIP interneurons are thought to play

a key role in regulating the state-dependent modulation of cortical circuits, partly via strong inhibi-

tion of SST interneurons and consequent disinhibition of pyramidal neurons (Pi et al., 2013;

Fu et al., 2014; Prönneke et al., 2015; Karnani et al., 2016; Muñoz et al., 2017). We

had previously found that developmental perturbation of VIP interneurons by conditional deletion of

the schizophrenia-associated gene ErbB4 caused a similar loss of state-dependent cortical regulation

(Batista-Brito et al., 2017). Together, these findings suggest that disruption of state-dependent cor-

tical dynamics may be a common outcome of disease mechanisms affecting VIP interneurons.

Previous work has highlighted alterations in repetitive and motor behaviors, but not anxiety, fol-

lowing GABAergic deletion of Mecp2 (Chao et al., 2010; Ito-Ishida et al., 2015; Ure et al., 2016).

We therefore examined the impact of Mecp2 deletion from VIP interneurons on locomotor and anxi-

ety phenotypes. None of the Mecp2 loss-of-function mutations resulted in anxiety-related or loco-

motor phenotypes in the elevated plus maze or the open field, respectively, in agreement with

previous work (Chao et al., 2010; Ito-Ishida et al., 2015). However, the pan-interneuron Dlx5/6

mutants exhibited deficits in marble burying, a task that is susceptible to altered anxiety and OCD-

like behaviors as well as changes in fine motor function (Thomas et al., 2009; Silverman et al.,

2010). Cell-type-specific mutations of Mecp2 in VIP interneurons, but not in the PV or SST popula-

tions, phenocopied this behavioral impairment.

Abnormal or reduced social behavior is a hallmark of many autism spectrum disorder models, and

has previously been shown in mice lacking MeCP2 in all GABAergic populations (Chao et al., 2010;

Ito-Ishida et al., 2015). We found that the pan-interneuron Dlx5/6 Mecp2 mutants exhibited a rever-

sal of normal social preferences in the three-chamber sociability assay, preferring an empty chamber

to one containing a conspecific. Notably, Mecp2 deletion from VIP, but not from PV or SST, inter-

neurons fully replicated this phenotype. SST-specific deletion led to loss of any social preference,

suggesting a potential contribution of both VIP- and SST-expressing cells to deficits in social behav-

ior following global Mecp2 loss of function. Together, these results suggest a previously unknown

and potentially important role for VIP interneuron dysregulation in social behavior deficits in the

Mecp2-deletion model.

Overall, our behavioral findings in the Dlx5/6, PV and SST mutants are in general agreement with

previous work (Supplementary file 1). The PvalbCre line used here largely expresses Cre recombi-

nase in PV interneurons, along with some thalamocortical projection neurons (Hippenmeyer et al.,

2005; Cardin et al., 2009). In comparison, the Pvalb-2A-Cre line used in some previous work

(Goffin et al., 2014; Ito-Ishida et al., 2015) also expresses Cre in a subset of cortical pyramidal neu-

rons and additional thalamic nuclei (Madisen et al., 2010). These differences may contribute to the
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more severe behavioral phenotypes and early mortality previously observed in the Pvalb-2A-Cre line

(Ito-Ishida et al., 2015). Other work examining the consequences of Mecp2 deletion in the PvalbCre

line likewise found only mild behavioral phenotypes (He et al., 2014). However, as the PV promoter

only becomes active postnatally, our findings do not preclude a substantial contribution of embry-

onic Mecp2 deletion from PV interneurons to Rett Syndrome phenotypes.

We find a unique impact of Mecp2 deletion from VIP interneurons. Despite being few in number

(Rudy et al., 2011), VIP interneurons are targets of multiple neuromodulatory systems and play criti-

cal roles in state-dependent regulation of local neural circuits (Pi et al., 2013; Fu et al., 2014; Gar-

cia-Junco-Clemente et al., 2017; Muñoz et al., 2017), making them a potential key point of

vulnerability in neurodevelopmental disease. Although our electrophysiology results are specific to

cortex and hippocampus, the three interneuron classes examined here exhibit distinct cellular- and

circuit-level properties and play key roles across many brain areas that contribute to behavior. In

addition, dysregulation of one GABAergic population is probably amplified by extensive synaptic

connectivity with other inhibitory interneuron classes (Pfeffer et al., 2013; Cardin, 2018a). Indeed,

our previous work suggests that developmental disruption of VIP interneuron activity may have mul-

tiple circuit-level consequences, including loss of synaptic inhibition of other interneurons, altered

experience-dependent plasticity, and dysregulated cortical circuit maturation, in addition to ongoing

perturbation of normal adult function. Mecp2 loss of function across multiple GABAergic interneuron

classes may thus exert diverse influences on neural and behavioral deficits in Rett Syndrome.

Materials and methods

Animals
All experiments were approved by the Institutional Animal Care and Use Committee of Yale Univer-

sity. We used the Dlx5/6Cre (JAX#008199; Monory et al., 2006), PvalbCre (JAX#008069;

Hippenmeyer et al., 2005), SstCre (JAX#013044; Taniguchi et al., 2011), and VipCre (JAX#010908;

Taniguchi et al., 2011) mouse lines to target all forebrain GABAergic interneurons, parvalbumin-

expressing interneurons (PV), somatostatin-expressing interneurons (SST), and vasoactive intestinal

peptide-expressing interneurons (VIP), respectively. We crossed each Cre line to the conditional

Mecp2 line (Mecp2f/f; JAX# 007177; Guy et al., 2001). In each case, we assayed male mice that

were hemizygous for the floxed Mecp2 allele and heterozygous for Cre. All crosses were made on a

C57BL/6J background (JAX#000664). Control animals were Cre-negative male mice that

were hemizygous for the floxed Mecp2 allele (Mecp2f/y). We further compared Mecp2f/y mice with

age-matched wild-type C57Bl/6 mice (JAX#000664) and VipCre mice (JAX#010908). In a subset of

experiments, we compared the interneuron-specific crosses with male mice from the Mecp2 knock-

out line (Mecp2–/y; JAX#003890; Guy et al., 2001). All behavioral assays were performed at P120

except for those involving the Dlx5/6Cre+/–Mecp2 f/y animals, which were assayed at P90 due to

their early morbidity. All behavioral and electrophysiological assays were carried out in animals with

no prior seizure incidence.

Immunohistochemistry
For immunofluorescent staining of brain tissue, mice were perfused with 4% paraformaldehyde and

post fixed for an hour before transferring into successive sucrose solutions at 15% and 30%. 20 mm

thick cryosections were prepared for immunohistochemistry (IHC). Tissue was incubated with 1.5%

normal goat serum (NGS) (Life Technologies) and 0.1% Triton X-100 (Sigma) in PBS for 60 min at

room temperature. Sections were incubated with primary antibodies (Rat Anti-Somatostatin 1:250

[Millipore MAB354]; Anti-parvalbumin 1:1000 [Sigma P3088]; Anti-VIP 1:250 [ImmunoStar 20077];

Anti-MeCP2 1:250 [Millipore 07–013]) in the blocking buffer overnight at 4˚C. After washing three

times with buffer, sections were incubated with secondary antibodies for 1 hr at room temperature

(secondary antibodies: Alexa Fluor 488, 594 or 647 [Life Technologies, 1:1000]). Finally, coverslips

were mounted using ProLong Gold Mounting Medium with DAPI (Life Technologies) and imaged at

10x. Quantifications were performed in Adobe Photoshop. Pictures were divided into a grid measur-

ing 1 � 1 mm in total and cells were counted in each grid square. The number of cells positive for

antibody staining against MeCP2 was counted to assay the proportion of co-expressing cells.
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Headpost surgery and wheel training
For recordings performed in awake animals, mice were initially handled for 5–10 min/day for 5 days

prior to a headpost surgery. On the day of the surgery, the mouse was anesthetized with isoflurane

and the scalp was shaved and cleaned three times with betadine solution. An incision was made at

the midline and the scalp resected to each side to leave an open area of skull. Two skull screws

(McMaster-Carr) were placed at the anterior and posterior poles. Two nuts (McMaster-Carr) were

glued in place over the bregma point with cyanoacrylate and secured with C&B-Metabond (Butler

Schein). The Metabond was extended along the sides and back of the skull to cover each screw,

leaving a bilateral window of skull uncovered over primary visual cortex. The exposed skull was cov-

ered with a layer of cyanoacrylate. The skin was then glued to the edge of the Metabond with cyano-

acrylate. Analgesics were given immediately after the surgery and on the two following days to aid

recovery. Mice were given a course of antibiotics (Sulfatrim, Butler Schein) to prevent infection and

were allowed to recover for 3–5 days following implant surgery before beginning wheel training.

Once recovered from the surgery, mice were trained with a headpost on the wheel apparatus.

The mouse wheel apparatus was 3D-printed (Shapeways Inc) in plastic with a 15 cm diameter and

an integrated axle and was spring-mounted on a fixed base. A programmable magnetic angle sensor

(Digikey) was attached for continuous monitoring of wheel motion. Headposts were custom-

designed to mimic the natural head angle of the running mouse, and mice were mounted with the

center of the body at the apex of the wheel. On each training day, a headpost was attached to the

implanted nuts with two screws (McMaster-Carr). The headpost was then secured with thumb screws

at two points on the wheel. Mice were headposted in place for increasing intervals on each succes-

sive day. If signs of anxiety or distress were noted, the mouse was removed from the headpost and

the training interval was not lengthened on the next day. Mice were trained on the wheel for up to 7

days or until they exhibited robust bouts of running activity during each session. Mice that continued

to exhibit signs of distress were not used for awake electrophysiology sessions.

Locomotion detection
Wheel position was extracted from the output of a linear angle detector. We used a change-point

detection algorithm that detected statistical differences in the distribution of locomotion velocities

across time (see Vinck et al., 2015; Batista-Brito et al., 2017). Quiescent periods that lasted longer

than 20 s were selected for analysis. For analysis of modulation with changes in behavioral state, we

selected trials for which the preceding quiescent period lasted longer than 20 s, average speed until

the next locomotion offset point exceeded 1 cm/s, and running lasted longer than 2 s.

Extracellular recordings
LFP recordings were made with tetrodes (Thomas Recording GMBH, Germany) targeted to layers 2/

3 and 5 of visual cortex and to the CA1 field of the dorsal hippocampus (AP: +1.5–2 mm; ML: 1.2–

1.75, Paxinos and Franklin, 2001). Signals were digitized and recorded with a DigitalLynx 4SX sys-

tem (Neuralynx, Bozeman MT). All data were sampled at 40 kHz and recordings were referenced to

the cortical surface. LFP data were recorded with a bandpass 0.1–9000 Hz filter.

Spike sorting
Spikes were clustered using previously published methods (Vinck et al., 2015; Batista-Brito et al.,

2017). We first used the KlustaKwik 3.0 software (Kadir et al., 2013) to identify a maximum of 30

clusters using the waveform energy and the energy of the waveform’s first derivative as clustering

features. We then used a modified version of the M-Clust environment to separate units manually.

Units were accepted if a clear separation of the cell relative to all the other noise clusters was

observed, which generally was the case when isolation distance (ID) (Schmitzer-Torbert et al.,

2005) exceeded 20 (Vinck et al., 2015). We further ensured that maximum contamination of the ISI

(inter-spike-interval) histogram did not exceed 0.1% at 1.5 ms.

Electrophysiology analysis
The firing rate was computed by dividing the total number of spikes a cell fired in a given period by

the total duration of that period. To examine whether firing rates were significantly changed around

locomotion onset, we computed the firing rate in the [�0.5, 0.5] s window around locomotion onset
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(L; as in Vinck et al., 2015) and compared this to the firing rate in the [�5,–2] s quiescence (Q)

period before locomotion onset by computing a modulation index ([FRL–FRQ]/[FRL+FRQ]). All LFP

power analyses were made using data from quiescent periods after animals had been stationary for

a minimum of 20 s and excluding data from within 10 s of the next locomotion bout. Relative power

in the specified frequency bands was measured as a ratio between power in those bands and the

total power. Spike-field coherence measures were performed as previously described (Miri et al.,

2018), analysis code available at https://github.com/jesscardin/Miri-Vinck-et-al (Cardin, 2018b; copy

archived at https://github.com/elifesciences-publications/Miri-Vinck-et-al). Power spectra were nor-

malized to total power for visualization purposes.

Seizure detection
All mice were handled for at least 10 min each day throughout the study. During the daily handling

regime, the mice were assessed for seizures. If a seizure did occur, the mouse was immediately

returned to its home cage. Seizure severity was scored using the Racine scale (1: Mouth and facial

movement, 2: Head nodding, 3: Forelimb clonus, 4: Forelimb clonus and rearing, 5: Forelimb clonus,

rearing, and falling). Seizures were defined as events reaching Racine scale levels 4 or 5, with animals

exhibiting rearing and forelimb clonus or rearing, forelimb clonus, and falling.

Morbidity analysis
After weaning at P21, all mice were monitored every day throughout the study. All deaths were

noted, and animals were tracked daily until P500.

Behavioral analysis
The elevated plus maze, marble-burying, and sociability assays were performed under low-level (20–

25 lux) illumination. In each assay, mice were given 15 min to acclimate to the behavioral assay

room. In all cases, the researcher was blind to the genotypes of the mice until after all behavioral

data were scored.

Elevated plus maze
Custom Labview software was used to control a camera recording the mouse’s locomotion in the

maze. At the beginning of the session, the mouse was placed at the center of the maze and allowed

to freely move on either arm for five minutes. At the end of the session, the mouse was returned to

the home cage and the maze was cleaned for the next mouse. Video recordings of mouse behavior

were hand-scored to determine the amount of time spent in the open and closed arms of the maze.

Open field
The open field assay was performed in a 30 cm square box divided into nine quadrants. Custom

software (Labview) was used to control a camera recording the mouse’s path in the box. At the start

of the session, the mouse was placed in the center quadrant of the box and allowed move freely for

20 min. After the time elapsed, the mouse was returned to the home cage and the box was cleaned

for the next mouse. ImageJ software was used to analyze the total distance traversed by the mouse.

Marble burying
12 marbles were evenly placed in a cage with 1 inch of clean bedding. Custom Labview software

was used to control a camera recording the mouse’s activity in the cage. The mouse was placed in

the center of the cage with the marbles and allowed to explore the cage for 20 min. At the end of

the session, the mouse was returned to the home cage and the marbles were cleaned with a 10%

bleach solution.

The proportion of marbles buried was analyzed in ImageJ using the ‘analyze particles’ function to

compare the initial and final exposed surface area of the marbles.

Sociability
The sociability apparatus was divided into three equal areas with Plexiglas dividers, each with an

opening allowing access to neighboring chambers. Custom Labview software was used to control a

camera that recorded the mouse’s activity in the chamber. An unfamiliar age- and sex-matched
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conspecific mouse (reared in separate cages, C57BL/6 genotype) was placed into a small cylindrical

holding cage in one side of the chamber and an identical empty holding cage was placed in the

other side. The location of the conspecific was randomly varied across trials. At the beginning of the

session, the test mouse was placed in the central chamber and habituated to the central chamber

for ten minutes. The dividers were then removed to allow the mouse to move freely among all the

chambers for ten additional minutes. At the end of the session, the mice were returned to their

home cages and the apparatus was cleaned. Video recordings of the mouse’s behavior were scored

to determine the amount of time spent in each of the three partitions and the number of approaches

that the test mouse made to the conspecific and the empty holding cage. An approach was defined

as the test mouse coming within a 5-cm radius of a cage or making contact with a holding cage.

Social preferences were calculated both as comparisons of raw values and as index values for time

spent ([TimeC-TimeE]/[TimeC+TimeE]) and approaches ([AppC-AppE]/[AppC+AppE]), where C denotes

conspecific and E denotes the empty container.

Statistical analysis
Paired and unpaired non-parametric tests generated in GraphPad Prism (version 8 for Mac; San

Diego CA) were used throughout the study to accommodate non-normal data distributions. Animals

were used as the ‘n’ in all analyses. Exact p values and estimation statistics are reported in the

source data files for all tests. All group data are shown as box-and-whisker plots in which the bars

denote the minimum and maximum of the distribution and the box denotes the first and third quar-

tiles and the median.
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