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Abstract: High-resolution focused ion beam lithography has been used to fabricate YBa2Cu3O7-x

(YBCO) wires with nanometric lateral dimensions. In the present work, we investigate Flux-flow
instabilities in nanowires of different widths, showing sudden voltage switching jumps from the
superconducting to the normal state. We present an extensive study on the temperature and field
dependence of the switching characteristics which reveal that voltage jumps become less abrupt
as the temperature increases, and disappear at the vortex-liquid state. On the contrary, the current
distribution at the critical point becomes narrower at high temperatures. Sharp voltage switchings
very close to the critical current density can be obtained by reducing the width of the nanowires,
making them very appealing for practical applications.

Keywords: high-temperature superconducting nanowires; flux-flow instabilities; critical vortex
velocity; switching voltage jumps; single-photon detectors

1. Introduction

New progress in understanding the vortex matter dynamics in high-temperature superconductors,
with a rich and complex vortex phase diagram [1], is both of practical and fundamental interest. Studies
performed in superconductors are predominantly focused on the mechanisms controlling vortex
motion in the limit of low velocity values, very close to the critical current density, Jc. However, a large
number of interesting non-equilibrium physical phenomena are associated with vortex motion at high
flux-flow velocities [2]. In particular, instabilities of the vortex dynamics, under certain conditions
of temperature and magnetic field, induce reversible discontinuous voltage jumps, which abruptly
switch the superconductor to the normal state, with very promising potential applications in ultrafast
superconducting single-photon detectors [3–5]. In those devices, a sample is biased by a current
value very close to the vortex instability, thus the incidence of a single photon produces a hot spot
reducing the local critical current below the bias current with a fast switch from the superconducting
to the normal state [3,6]. With the aim of increasing the reliability and capabilities of these detectors,
the size of the devices should be comparable to the hot spot region (several nm) in order to switch the
whole cross-section to the normal state, thus avoiding parallel superconducting currents. On the other
hand, a good reproducibility and narrow distribution of voltage jumps is necessary for their optimum
performance. In this direction, very extensive research has been made concerning conventional low
temperature superconductors [3–7]. High-temperature superconductors with short coherence length
and fast quasiparticle recombination appear as very promising candidates, enabling higher device
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operating temperatures [8,9]. However, these materials are much less explored mainly due to the
challenging task of fabricating high quality High Temperature Superconductor (HTS) nanostructures.
Progress in this direction, associated with recent advances in nanolithography techniques, has allowed
for the reduction of the size of HTS YBa2Cu3O7-x (YBCO) films down to ~50 nm, opening up the path
for the design of novel HTS devices [9–11].

The nature of voltage jumps induced by vortex flow instabilities can be associated with
different mechanisms. At temperatures close to the transition temperature, Tc, the electron-phonon
interaction dominates at the instability point and switching can be characterized in terms of the
Larkin-Ovchinnikov (LO) instability, associated with a deviation of the quasiparticle distribution
from its equilibrium, resulting in a shrinkage of the vortex core [12]. According to the LO theory,
which assumes a uniform quasiparticle distribution, a magnetic field independent value of the
vortex velocity at the instability point, v*, is expected [12,13]. At low magnetic fields, a non-uniform
distribution of nanoparticles may be considered and a crossover field to a regime determined by a
power law behavior of v* ~ H−1/2 is expected [14]. Both behaviors have been experimentally observed
in low- and high-temperature superconductors [5,15], although other complex v*(H) dependences,
not predicted by the LO model, have also been found at the low field regime [16]. A v* ~ H−1/2 power
law dependence was also obtained in YBCO films measured at low temperatures, T << Tc, where a new
type of instability associated with a vortex core expansion, instead of a vortex shrink as considered
in the LO model, was described [17,18]. Within all these models, however, the presence of pinning,
a key parameter especially when dealing with HTS, was missing. Several experimental and theoretical
works addressing this point found unconventional non-monotonic behaviors of v*(H) [19–21]. In this
work, we analyze the flux-flow instabilities of the vortex lattice in high-temperature superconducting
YBa2Cu3O7-x (YBCO) nanowires with variable widths, offering a tantalizing potential for detector
applications. Besides the attractive overall performance of superconducting nanowires as single-photon
detectors [22], they are highly promising systems for future green electronics, transporting current
without dissipation at nanometric scales [23], as well as for developments in topological quantum-state
engineering [24,25]. In particular, superconducting quantum interference devices (SQUIDs) with
high spatial resolution can be obtained, where the nanostructured superconductor acts as a weak
link [26,27].

2. Materials and Methods

High quality YBCO thin films, with a thickness of 150 nm, were grown on LaAlO3 (LAO) single
crystal substrates (CrysTec, Berlin, Germany) by chemical solution deposition (CSD). Samples were
prepared from metalorganic solutions with stoichiometric quantities of Y, Ba, and Cu anhydrous
trifluoroacetate (TFA), deposited by spin-coating on 5 × 5 mm2 substrates. After a film drying process,
the organic matter of the deposited films was decomposed at ~300–400 ◦C and crystalized at a high
temperature (~750–800 ◦C) in a controlled humid atmosphere. Finally, the superconducting phase was
achieved by oxygen annealing at 450 ◦C. Sample texture was characterized by full X-ray diffraction
θ–2θ spectrums showing a good epitaxial growth, with just (00l) reflections detected [28]. We initially
prepared, by standard optical photo-lithography, YBCO micro-bridges with a width of 30 µm and a
length of 100 µm, in a four-point configuration. Patterned bridges were covered with a protecting
Au capping layer of 50 nm, grown by thermal evaporation, to avoid oxygen desorption or sample
degradation during the nanowire fabrication [29,30]. The width of the initial micro-bridge was reduced
to the nanoscale by performing lateral cuts using a Carl Zeiss Crossbeam 1560 XB system (Carl Zeiss
AG, Oberkochen, Germany) equipped with a scanning electron microscope (SEM) and a focused
ion beam (FIB) column. This very powerful technique can be used to direct fabricate complex 3D
nanometric structures by FIB lithography while imaging the sample by SEM. An accurate optimization
of the FIB milling parameters (beam voltage, beam current, and dose) was performed in order to
obtain high-resolution nanoscale patterns without damaging the superconducting properties during
the milling process [31,32]. The patterned micro-bride was narrowed by performing several steps with
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successive cuts, in which we decreased the current dose from 200 pA to 10 pA, using a constant ion
energy of 30 keV, as sketched in Figure 1a–c. A cross-section SEM image of a patterned nanowire is
shown in Figure 1d, where the different cuts can be seen. A zoomed-in view corresponding to the
white rectangle is displayed in Figure 1e, where a good homogeneity of the YBCO patterned nanowire
through the thickness can be clearly appreciated.
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Figure 1. (a–c) Schematic representation of the milling process used to fabricate the nanowires. Red,
orange, and yellow colors represent milling doses of 200 pA, 50 pA, and 10 pA, respectively. (d) Tilted
SEM image of an 80-nm wide nanowire. (e) Zoom-in image of the nanowire cross-section (region
marked with dots in (d)).

By using this approach, we were able to fabricate nanowires ~1 µm in length with the desired
width, w, from w = 700 nm down to w = 80 nm, maintaining good superconducting performances.
Figure 2 shows top view SEM images of the different nanowires used for this study. The critical
temperature of patterned nanowires was in the range of Tc ~ 87–92 K, and the critical current
density was Jc ~ 3–5 MA/cm2 at 77 K and in the self-field. It should be noted that before measuring
the nanowires we ensured that they exhibited a homogeneous cross-section, without any porosity,
precipitates, or other visible defect (as observed in Figure 1e) in order to obtain reliable results.
The porosity and defects observed in the top view images shown in Figure 2 correspond to the
Au capping layer that was deposited on top of the YBCO to prevent any damage during the FIB
milling process.

In-field electrical transport measurements were performed in a 9 T Physical Property Measurement
System from Quantum Design (San Diego, CA, USA). We measured current-voltage curves (I-V) at
different temperatures and magnetic fields, up to the switching point. The applied magnetic field was
kept perpendicular to the film and the applied current was maintained in maximum Lorentz Force
configuration. Additionally, self-field transport measurements and switching current distributions
were realized in a Heliox VL Oxford Instruments system (Oxford Instruments, Oxford, UK) equipped
with homemade lines and EMI, RC, and Cooper Powder filters. Switching current distributions at
different temperatures were performed by current biasing the nanowires with a ramp at a constant
rate of 155 mA/s, using a threshold voltage of 50 mV. The bias current at the critical point was
recorded by repeating the measurement 5000 times, allowing us to obtain switching current distribution
histograms [33,34].
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Figure 2. SEM images of patterned nanowires width (a) w = 80 nm, (b) w = 250 nm, (c) w = 300 nm,
and (d) w = 700 nm.

3. Result and Discussion

Figure 3a displays the current-voltage, I-V characteristics measured for a 300-nm-wide nanowire
at 5 K and 1 T. I-V curves were obtained by increasing the current up to a maximum value, Imax,
and decreasing it back to zero. It is worth noting that an identical behavior is obtained for the two
curves measured at Imax = 16 mA and 18 mA. A sharp voltage transition from the superconducting
to the normal state is produced at the critical point, determined by the critical current and voltage
values I* = 15.8 mA and V* = 5 mV, respectively. The superconducting state is recovered by decreasing
the current to zero again. As we will show below, repeated cycling of the current pulses gives
identical results, signifying good reproducibility of the sharp voltage transition induced. However,
a complete reversible curve is found if we apply a maximum current value just below the critical
point, Imax = 15.7 mA < I*, suggesting that an important role of the switching mechanism is played
by flux-flow instabilities rather than thermal self-heating effects. A set of I-V curves measured by
increasing the applied current, at 1 T and different temperatures, is shown in Figure 3b. A very sharp
transition is observed in the curves measured at 75 K, 60 K, and 5 K, with a larger voltage jump to the
normal state obtained at lower temperatures. The switching becomes much softer as the temperature
is increased closer to Tc.
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Figure 3. (a) I-V characteristics measured at 5 K and 1 T on a 300-nm-wide nanowire for a maximum
applied current Imax = 18 mA (closed blue circles), 16 mA (open green circles), and 15.8 mA (magenta
stars). (b) I-V curves measured at 1 T for a 300-nm-wide nanowire at different temperatures.
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Figure 4 depicts a complete picture of the switching process at different temperatures and magnetic
fields. Figure 4a shows the I-V characteristics obtained for a 300-nm-wide nanowire at 1 T and for a
continuous range of temperatures from 75 K to 90 K. Curves measured at low temperatures show a
negative curvature, characteristic of a vortex-solid state. The transition to the vortex-liquid state is
determined at the irreversibility temperature, Tirr, where an inversion of the curvature is detected [35]
(curve depicted with open symbols at Tirr = 87 K in this case). The associated resistance values,
determined at each point of the I-V curves as dV/dI, are shown in Figure 4c. This kind of representation
is very convenient to identify the curves that undergo a voltage switching transition, since at the
switching point the value of dV/dI becomes higher than the resistance in the normal state.

We evaluate the value of the normal state resistance from the I-V curve measured at 90 K, being
~0.01 V/mA, and we observe that vortex instabilities show lower voltage jumps as the temperature
increases, and completely disappear at the vortex-liquid state. Figure 4b,d show the same analysis
performed at a fixed temperature of T = 82 K as a function of the magnetic field, showing similar
features, with vortex instability jumps observed below the irreversibility field of Hirr ~ 3 T.
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Figure 4. (a) I-V characteristics measured for a 300-nm-wide nanowire at (a) 1 T and different
temperatures ranging from 75 K to 90 K with steps of 0.2 K. (b) 82 K at different applied magnetic
fields ranging from 0 to 9 T with steps of 10 mT. (c,d) Derivative values dV/dI of curves shown in (a,c),
respectively. Open symbols show the irreversibility points.

In the following, we show the analysis of vortex instabilities performed in nanowires of different
widths. Figure 5a depicts the I-V characteristics obtained at 65 K and 1 T, normalized to its self-field
current density, Ic. Abrupt voltage jumps are observed in all cases at different values of I* and V*.
Figure 5b plots the value of the current at the switching point, I*, normalized to Ic, determined at 1 T
and two different temperatures, as a function of the nanowire width, w. We found that the switching
current can be finely tuned by means of the applied magnetic field, temperature, and through the
modification of the nanowire width. A monotonic behavior is observed with a decrease of the ratio
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I*/Ic approaching the value of I*/Ic ~ 1, as reducing w. This tendency reveals the high potentiality to
use narrow nanowires in detector devices based on temperature-induced voltage switching jumps.
Narrow nanowires with values of I*/Ic ~ 1 would be operative by using current bias values below Ic,
thus strongly reducing dissipative heating effects.
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Figure 5. (a) I-V characteristics obtained for different nanowires at 65 K and 1 T. (b) I*/Ic as a function
of the width of the nanowire, at 1 T and different temperatures. (c) Magnetic field dependence of P* at
5 K, for nanowires with w = 700 nm (squares), 300 nm (circles), and 80 nm (stars). (d) Magnetic field
dependence of v* at 5 K, for nanowires with w = 700 nm (squares), 300 nm (circles), and 80 nm (stars).
Dashed lines indicate a v* ~ H−1/2 and solid lines v* ~ H−m dependences.

With the aim of analyzing the nature of the vortex instability jumps in the patterned nanowires,
we evaluated the dissipation power, P*, and dissipation vortex velocity, v*, at the critical point. From
the non-hysteretic curve shown in Figure 3a, self-heating effects appear to be excluded as the main
mechanism in the switching process. Further evidence of that is given in Figure 5c, which shows
the dissipation power, evaluated as P* = I*V*, for different nanowires at 5 K, as a function of the
magnetic field. A monotonic increasing dependence is found, which dismisses thermal runaway
mechanisms as being mainly responsible for the voltage jumps, since in that case P* should be magnetic
field-independent [36]. The vortex velocity at the critical point was determined as v* = V*/Lµ0H, where
L is the length of the nanowire. Figure 5d shows the values of v* obtained for several nanowires
at 5 K as a function of the magnetic field. A clear v*(H) dependence is observed for the whole
magnetic field range evaluated, which is not consistent with the constant v* values predicted by the
LO instability theory [12,13]. At high fields (H > 1 T), the values of v* obtained for the different
nanowires merge, following a power low dependence that can be fitted as v* ~ H−1/2, also observed in
many other systems, and associated to different mechanisms [14,18,19]. At low fields, the v* values
differ from sample to sample, being lower for the narrower nanowires. In this regime, the magnetic
field dependence of v* can be fitted with a power law behavior with a variable exponent, v* ~ H−m,
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in agreement with vortex instability processes affected by pinning effects [22]. Although the specifics
of the origin of the observed power law dependencies are beyond the scope of this work, the role
of mesoscopic effects and vortex lattice rearrangements, essential when dealing with nanometric
bridges [31,37], should also play a key role.

Finally, we discuss on the reproducibility of the switching process in YBCO nanowires. To do
so, we measured a large number of I-V curves at an applied field of zero and a fixed temperature for
a nanowire with w = 300 nm, and we determined the number of curves that switched at a certain
I* value. Figure 6a shows the obtained histograms with the probability density of the switching
current, p(I*), centered at the midpoint <I*>, for different temperatures. We obtained very narrow
switching current distributions with some small broadening as the temperature is lowered. Figure 6b
shows the temperature evolution of the standard deviation, σ, obtained from several histograms.
A very good reproducibility of the switching point is observed at all temperatures, with σ ~ 0.03%
at high temperatures (T > 20 K) and a small monotonic increase up to σ ~ 0.05% at 4 K. This result
indicates that by tuning the operating temperature one can tip the balance among the height of the
voltage jump and the width of the switching current distribution. By increasing the temperature,
very narrow distributions can be obtained, although in this case the voltage jumps will be less
pronounced (Figure 3b). Although the analysis of the switching current distribution was performed on
a particular nanowire, we show that the switching critical point can be finely tuned by the nanowire
width (Figure 5b), pointing out that the reproducibility of the instability jumps if a homogenous
nanowire cross-section is assured (as depicted in Figure 1e).
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Figure 6. (a) Histograms of probability density of the switching current for a 300-nm-wide nanowire,
p(I*), as a function of I*, normalized to the average value <I*>. The X-axis extends from I*/<I*> = 0.996
to 1.004 in all of the histograms measured at different temperatures. (b) Temperature dependence of
the standard deviation obtained from the p(I*) histograms.

4. Conclusions

Flux-flow instabilities were studied in YBCO nanowires patterned by high-resolution focused
ion beam lithography. Patterning conditions were fully optimized in order to achieve high quality
superconducting nanowires of different widths, ranging from 700 nm to 80 nm. Sharp switching
transitions from the superconducting to the normal state were observed in I-V characteristics for all
nanowires, over a large range of magnetic fields and temperatures, in the vortex-solid state. The vortex
velocity at the critical point appears to be dependent on the nanowire width, showing complex
magnetic field dependences, indicating that pinning, vortex rearrangement, and mesoscopic effects
may play a crucial role in the nature of vortex instability jumps. Very reproducible abrupt voltage
jumps with narrow switching current distributions were obtained where the switching point can be
tuned by choosing the operating temperature, magnetic field, and nanowire width. In nanowires with
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widths of 50 nm, the switching current at the critical point approaches the critical current density,
being particularly interesting for practical applications.
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