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Abstract

Background—Small-world network consists of networks with local specialization and global 

integration. Our objective is to detect small-world properties alteration based on cortical thickness 

in mild cognitive impairment (MCI) including stables and converters, and early Alzheimer’s 

disease (AD) compared to controls.

Methods—MRI scans of 13 controls, 10 MCI, and 10 with early AD were retrospectively 

analyzed; 11 MCI converters, 11 MCI stables, and 10 controls from the ADNI website were also 

included.

Results—There were significantly decreased local efficiencies in patients with MCI and AD 

compared to controls; and MCI patients showed increased global efficiency compared to AD and 

controls. The MCI converters experience the worst local efficiency during the converting period to 

AD; the stables, however, have highest local and global efficiency.

Conclusions—The abnormal cortical thickness-based small-world properties in MCI and AD as 

well as the distinct patterns between two MCI subtypes suggest that small-world network analysis 

has the potential to better differentiate different stages of early dementia.

1. Introduction

Brain network is an important concept in the study of brain mechanisms underlying 

disrupted anatomical and functional brain connectivity in many neurological diseases. It 

describes the human brain as a large, interacting, and complex network characterized by 

highly coordinated, efficient, and integrated neuronal activities among specialized and 

widely distributed cerebral cortices [1]. Brain small-world network is a relatively new 

concept, characterized by a class of regional hubs with short communication length and high 

clustering coefficient based on quantitative imaging values such as fMRI or EEG/MEG time 

series, diffusion indices, and volumetric and cortical thickness measurements [2–5]. Based 
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on graph theory, the topological properties of small-world network include many short-

distance neighboring connections and some long-distance connections that are composed of 

numerous nodes (vertices) related to one another by edges (connections) [6]. A few 

advantages of brain small-world topologies have been proposed and described [1, 7]. These 

include maximizing the complexity and plasticity of function while minimizing cost (i.e., 

less neuronal utilization); optimal synchronization of neural activity among different brain 

regions via central hubs; and most importantly, protecting the brain from random failure by 

redundant densely neighbored connections and targeted attacks under disease conditions 

with high resilience by high centrality and clustering. These brain neuronal networks are 

well balanced as well as highly-efficient with local specialization and global integration [8]. 

Compared with traditional decomposition method, small-world network analysis can 

provide globally large-scale and locally clusterwise interregional modulation information of 

real-time brain anatomical and functional organizations. Small-world properties such as 

local and global efficiency have successfully captured different neurological disease 

characteristics including multiple sclerosis, schizophrenia, and Alzheimer’s disease [5, 9–

11].

Cortical thickness is measured with the algorithm that tries to find the globally minimal 

communication distance between gray and white matter media for each local point; and thus 

reflect an integration of global and local 3D morphology [12]. Therefore, it could provide a 

better accurate index for each individual subject and an actual physical characteristic for 

quantitative small-world property analysis [13]. Cortical thickness has been shown to be 

more sensitive than volume measures with increased correlations with the functional, 

structural, and molecular imaging (e.g., 11C-PiB amyloid and 15O-water perfusion) findings 

in normal aging [14, 15], mild cognitive impairment (MCI) [16–18], and Alzheimer’s 

disease (AD) [14, 19, 20]. All these recent findings support the notion of using cortical 

thickness as a potential biomarker to differentiate MCI from AD and controls in both 

cortical and subcortical regions [16, 21]. Further studies pertaining to the conversion from 

MCI to AD (estimated to about 50% within 3 years progression [22] with over 1% incidence 

rate of MCI [23]) have identified certain brain atrophy locations such as medial temporal 

lobe, especially hippocampus and entorhinal cortex, and posterior cingulate cortex to be 

more predictive of disease progression. One of the hallmarks of AD is amyloid pathology 

within the cerebral cortex [24] accompanied by cortical thinning, structural reorganization, 

and recruitment of new areas for functional adaptation [25–27].

We hypothesize that the degree and topographic pattern of such cortical adaptive changes 

are different in MCI and AD and can be detected with small-world properties based on 

cortical thickness. Several studies have found disrupted small-world properties in MCI or 

AD patients [5, 9, 28–33]; to our knowledge, no small-world analysis studies have been 

performed in MCI and AD with cortical thickness maps. The aims of this study were to 

characterize the different small-world properties in three aging populations (normal aging, 

MCI, and AD) and to determine the role of small-world properties in discriminating between 

MCI patients who will and will not convert to AD.
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2. Materials and Methods

2.1. Study Population

2.1.1. University of Tennessee Medical Center, Knoxville (UTMCK) Data—All 

subjects were recruited from existing research cohorts [34] at the Cole Neuroscience 

Alzheimer’s Center at the Tennessee Medical Center at Knoxville (UTMCK), and all 

underwent a clinical evaluation that included a history and physical examination. We 

recruited 10 individuals with MCI, 10 patients with early AD, and 13 healthy aging controls. 

The diagnosis of MCI and AD is done according to the National Institute of Neurological 

and Communicative Disorders and Stroke/Alzheimer’s Disease and Related Disorders 

Association research criteria with global scale of clinical dementia rating (CDR < 1) [35]. 

Table 1 details the demographic characteristics of the groups of UTMCK data with no 

statistical differences of age, education, and gender found between groups (P > 0.05).

All subjects were scanned by a Siemens 1.5 T Avanto scanner (Siemens Medical Solutions, 

Erlangen, Germany) with a 12-channel phased-array receive head coil with a parallel 

imaging technique. Head restraint with headphones and cushions was used to immobilize the 

subject to prevent movement artifacts and attenuate echo noise. 3D magnetization prepared 

rapid acquisition gradient echo (MPRAGE) axial images were acquired to be parallel to the 

anterior commissure (AC) and the posterior commissure (PC) line with the following 

parameters: TR/TE/TI = 1160/4.19/600 msec, flip angle = 15°, and resolution = 0.49 × 0.49 

× 1 mm3. In addition, a standard fluid attenuated inversion recovery (FLAIR) imaging, a 

conventional resting state fMRI, and a spinecho multidirectional diffusion weighted 

(MDDW) protocol were also acquired to investigate if functional and structural connectivity 

as well as white matter lesions change with aging (results not included).

2.1.2. ADNI Data—Data used in the preparation of this article were obtained from the 

Alzheimer’s Disease Neuroimaging Initiative (ADNI) database (http://adni.loni.ucla.edu/). 

The ADNI was launched in 2003 by the National Institute on Aging (NIA), the National 

Institute of Biomedical Imaging and Bioengineering (NIBIB), the Food and Drug 

Administration (FDA), private pharmaceutical companies, and nonprofit organizations as a 

$60 million, 5-year public-private partnership. The primary goal of ADNI has been to test 

whether serial magnetic resonance imaging (MRI), positron emission tomography (PET), 

other biological markers, and clinical and neuropsychological assessment can be combined 

to measure the progression of mild cognitive impairment (MCI) and early Alzheimer’s 

disease (AD). Determination of sensitive and specific markers of very early AD progression 

is intended to aid researchers and clinicians to develop new treatments and monitor their 

effectiveness as well as lessen the time and cost of clinical trials.

The Principal Investigator of this initiative is Michael W. Weiner, M.D., VA Medical Center 

and University of California, San Francisco. ADNI is the result of efforts of many 

coinvestigators from a broad range of academic institutions and private corporations, and 

subjects have been recruited from over 50 sites across USA and Canada. The initial goal of 

ADNI was to recruit 800 adults, ages 55 to 90, to participate in the research, approximately 

200 cognitively normal older individuals to be followed for 3 years, 400 people with MCI to 
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be followed for 3 years, and 200 people with early AD to be followed for 2 years. For up-to-

date information, see http://www.adni-info.org/.

We have selected 22 individual data with a diagnosis of MCI to particularly focus on the 

differences of small-world network patterns of MCI subtypes from ADNI website and to 

match the age range of early AD group from the previously mentioned UTMCK database. 

Namely, MCI converters who progressed to a diagnosis of AD and MCI stables who remain 

cognitively stable based on MMSE and other clinical score were studied over a period of 

2~3-years followup with a time interval of 3 to 6months between each study visit. 

Specifically, 11 MCI stables (later MMSEs were greater than 24 and at least one MMSE 

meet 24 ≤ MMSE ≤ 28) and 11 MCI converters (earlier MMSEs meets 24 ≤ MMSE ≤ 28 

and later MMSE < 24) were selected. For MCI converters, MRI 3D T1 image data was 

chosen for small-world network analysis at the closest time point before conversion to 

AD(MMSE < 24). For MCI stables, MRI 3D T1 image data was chosen at the latest follow-

up time point in the ADNI database (all MMSE ≥ 24). In addition, 10 controls (all MMSE > 

28) were selected from ADNI for comparison. The demographic information of ADNI data 

was listed in Table 2. The three groups were age matched, and there was no statistical 

significance of education and gender between groups (P > 0.05).

The datasets included standard T1-weighted MR images acquired sagittally using volumetric 

3DMPRAGEwith 0.94 × 0.94mm in-plane spatial resolution, 1.2 mm thick (matrix size 256 

× 256), and 166 sagittal slices at 3T magnetic field strength. All scans were downloaded in 

the DICOM format and converted to the NIFTI format. Detailed information about the MR 

acquisition procedures is available at the ADNI website.

2.2. Thickness and Connectivity Computing

We used the 3D high-resolution anatomical MPRAGE data of each subject to obtain 

structural small-world networks based on cortical thickness measurements using Freesurfer 

software (http://surfer.nmr.mgh.harvard.edu/). Cortical parcellation was performed using the 

fully automated Freesurfer tool, and data was ascertained from the Destrieux cortical atlas 

[36]. Each brain was segmented to derive the boundary between the gray and the white 

matters, and the outer surface of the cortex (the pial surface) to represent the local fine 

curvatures. Bayesian maximum a posteriori algorithm with high flexibility was used to 

incorporate the observed individual surface geometry and the atlas function [37]. The 

thickness vector of total of 148 brain regions of interest (74 ROIs on each brain hemisphere 

from Freesurfer standardized landmarks) was exported from Freesurfer to derive the Pearson 

correlation matrix, which was used to generate small-world graphic topology. Small-world 

properties such as absolute clustering coefficient (Cp), absolute shortest-path length (Lp), 

relative clustering coefficient (γ), and relative path length (λ) were then computed and 

analyzed with in house MATLAB (http://www.mathworks.com/) scripts and programs from 

matlab_bgl (http://www.stanford.edu/~dgleich/programs/matlab_bgl) in each group. These 

particular graph metrics were chosen because they have been used to study a variety of 

clinically important neurodegenerative and psychiatric disorders affecting the central 

nervous system [5, 30, 38].
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2.3. Small-Worldness Analysis

A few key terminologies commonly used in graph theory [3, 39–41] and this work include 

(1) degree (D): equal to the number of connections (edges) attached to each node (ROI); (2) 

clustering coefficients (Cp): measure the number of connections of a node with its nearest 

nodes (neighbors), namely, the fraction of the number of a node’s neighbors that are also 

neighbors of each other, reflecting how efficiently the network exchanges the information at 

the cluster level; (3) betweenness centrality (BC):measure the number of shortest paths 

between pairs of other nodes that pass through the node, reflecting how efficiently the 

network exchanges the information at the global level. Path lengths (Lp) record the length of 

the shortest path between a pair of nodes. BC is high for nodes that are located on many 

short paths in the network and low for nodes that do not participate in many short paths and 

are therefore more peripheral; (4) core number (K): defined as the largest k such that the 

node is still contained in the k-core (the largest subgraph comprising nodes of degree at least 

k), reflecting the rigidity or stability of the network.

The flowchart of the graph analysis performed in this study was sketched in Figure 1: the 

original high-resolution T1 of each subject was loaded in Freesurfer software to compute 

cortical thickness for each of 148 ROIs (Figure 1(a)). Then Pearson correlation between 

every two ROIs across subjects in each group was computed to derive the original 

correlation matrix for each group; and a threshold of r value from 0.2 to 0.95 was applied to 

this correlation matrix for all groups to investigate the small-worldness measures at different 

sparsity (Figure 1(b)). The binarized correlation matrix was used for small-world analysis 

(i.e., Lp, Cp, D, and K) (Figure 1(c)). A random network with the same number of degrees as 

the real network was generated and used as a scaling factor to compute the relative local 

efficiency (γ = Cp/Cp-random ≫ 1) and global efficiency (λ = Lp/Lp-random ≈ 1) at different 

sparsity levels for each group.

To compare with published findings [5], we had also repeated our small-worldness analysis 

using gray matter volume as a measure for UTMCK datasets.

2.4. Statistical Analysis

Voxel-wise 2-sample t-test was applied to test the mean differences of the cortical thickness 

among control, MCI, and AD groups. The significance level P was obtained with and 

without Bonferroni multiple-group comparison adjustment with Bonferroni correction factor 

of 3.

Nonparametric 2-sample rank-sum test was applied to test the median differences of the 

estimated small-world parameter Ϭ = γ/λ from each group after multiple-group Bonferroni 

correction in Matlab.

3. Results

3.1. Cortical Thickness Analysis

Based on UTMCK data, the cortical thinning ROIs in individuals with both MCI and AD 

compared to normal controls were found in the left posterior cingulate, left pars orbitalis, 

Zhou and Lui Page 5

ISRN Geriatr. Author manuscript; available in PMC 2014 November 18.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



left medial occipitotemporal and lingual sulci, right middle occipital, and right lateral 

occipito-temporal-fusiform gyri (P < 0.01, Table 3).

Based on ADNI data, compared to controls, there was a gradual decrease of cortical 

thickness from MCI stables to MCI converters (Figures 2(a) and 2(b)), and the most 

significant thinning areas are in the posterior cingulate and inferior temporal cortex with P ≤ 

0.0001 comparing MCI converters to controls (results of right hemisphere not shown). The 

significant cortical thinning areas (P < 0.05) in MCI converters compared to MCI stables 

were found in the regions of inferior temporal gyri, middle frontal, posterior cingulate, 

pericallosal, left lateral occipito-temporal fusiform, and posterior collateral transverse 

temporal sulci, with the most significant reduction in the inferior temporal cortex with P < 

0.01. The statistical comparison results of two MCI subtypes in comparison with control 

groups at significance level of P < 0.01 are listed in Table 4.

3.2. Small-Worldness Analysis

For UTMCK data, small-worldness systematic analysis showed that in controls, the 

precuneus and subparietal (nodes of default mode network) regions have the highest 

centrality and the central insular (nodes of sensory and emotional network) and posterior 

cingulate (nodes of default mode network) have the highest clustering coefficient, while the 

postcentral (nodes of somatosensory network) and superior occipital (visual network) have 

the highest core numbers. Other hub regions identified via BC with the criteria (≥Mean + 2 

SD) include inferior triangular, superior, marginal, and orbital frontal areas; superior parietal 

sulcus, superior precentral, and inferior occipital regions.

The alterations of small-world properties in patients with MCI and AD were shown in 

Figure 3. Compared to controls (Figure 3(a)), the correlation matrix showed more blocked 

structures in MCI (Figure 3(b)) and reduced interregional connectivity in AD (Figure 3(c)). 

The small-world decomposition analysis showed a small-worldness characteristics (γ ≫ 1, λ 

≈ 1) in all three populations and also the reduction of γ and λ with the reduction of sparsity 

(Figures 4(a) and 4(b)). The AD patients showed lower relative and absolute clustering 

coefficient (Figures 4(a) and 4(c)) compared to control, indicating a reduction of local 

efficiency in AD patients. The MCI patients also showed lower relative clustering 

coefficient compared to controls (Figure 4(a)), but, on the other hand, with shortest relative 

and absolute path lengths compared to control and AD groups (Figures 4(b) and 4(d)). 

Compared to cortical thickness as a variable, small-worldness analysis using gray matter 

volume showed no such changes between controls and patients.

Based on ADNI data, Figure 5 showed the small-world property differences between MCI 

stables and MCI converters. There was a different pattern of correlation matrix between the 

two groups. In the MCI stables, BC and core number surface mapping (Figures 5(a)–5(d)) 

showed similar pattern to controls, with frontal, temporal, surrounding cingulate, and small 

parietal regions being the “core hubs.” In MCI converters, surface mapping (Figures 5(e)–

5(h)) showed a more chaotic distribution of centrality and core number and 6(b) showed a 

reduction of γ (≫1) and λ (≈1) with the reduction of sparsity in ADNI data. Compared to 

control and MCI stables groups, MCI converters showed lowest absolute clustering 

coefficient (Figure 6(c)). MCI stables, however, showed highest relative and absolute 
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clustering coefficient among three groups, as well as shortest relative and absolute path 

lengths (Figures 6(a)–6(d)). In addition, after correcting for multiple-group comparison, the 

average Ϭ parameter was significantly different between the MCI converters and stables (P 

= 0.045), indicating different brain networks recruited in two MCI subgroups.

4. Discussion and Conclusions

Consistent with the previously published literature [13, 14], we found reduced cortical 

thickness in MCI and AD compared to controls in several regions of temporal lobe. We have 

found a typical distribution pattern of small-world network and its key hubs in healthy 

control group [40]. Patients with both MCI and AD showed disrupted small-world properties 

with significantly reduced local efficiency compared to controls. We found no such 

reduction of small-worldness based on gray matter volume measure, indicating that cortical 

thickness is a sensitive measure to reflect the different degrees of cortical topographic 

changes as disease progresses from MCI to AD stage. Moreover, the finding of increased 

global efficiency in patients with MCI compared with controls and AD may reflect a 

compensative mechanism for decreased local efficiency. Such network-based findings 

beyond the original structural cortical thickness results might also indicate an intermediate 

or unpredictable status in our mixed UTMCK MCI population.

Specifically, the progressive development of MCI is a transitional state between age-related 

normal cognitive decline and dementia (AD) [42, 43], and we found reduced cortical 

thickness in converters compared to stables in a few regions involving most prominently 

inferior temporal and posterior cingulate. During the converting period to AD, the 

converters experience the worst local efficiency compared to control and stables. The 

stables, however, are in a more appropriate adaptive state with highest local and global 

efficiency compared to control and converters. These brain plasticity changes in MCI stables 

suggest a compensatory mechanism for the reduced cortical thickness (e.g., inferior 

temporal and anterior cingulated regions) found in MCI stables compared to controls. Our 

findings of MCI converters are consistent with the observations of He et al. and Risacher et 

al. [44, 45] who found that these patients were extremely vulnerable to targeted attacks on 

the pivotal nodes and links of the structural brain network compared to the controls.

The underlying pathological mechanisms of variable cortical thinning and the corresponding 

changes of its network properties are still unclear. For example, the regions in which 

amyloid deposition tends to be prominent from PET imaging data such as the prefrontal, 

gyrus rectus, precuneus, and lateral temporal regions are not consistent with the areas in 

which prominent thinning (e.g., temporal, fusiform, and posterior cingulate regions from our 

results and others) is found [38]. The regional cortical thinning may reflect pathological 

burdens to a more global degree of disruption of anatomic configuration of cortical mantle 

[38]. The small-world property alterations in MCI and AD patients revealed through cortical 

thickness measure are thus possibly due to the accumulation effects of amyloid or tauopathy 

that might occur in the early course of the disease.

Despite the present findings, our results of global brain network changes in MCI and AD 

patients were still preliminary given the relatively small sample size of two data cohorts. 
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While there were no statistical age and gender differences between groups in our data 

cohorts, our results could improve by including more demographically similar subjects. The 

age and gender as well as age by gender interaction differences in cortical thickness (e.g., 

temporoparietal and frontal regions) and small-world network analysis (i.e., asymmetry) had 

been reported recently [8, 46].

Future longitudinal comparative analysis of characterizing small-world properties with 

different connectivity measures is needed to further elucidate the functional neuroplasticity 

mechanisms in MCI and AD. Extending the thickness analysis to some subcortical regions 

(e.g., thalamic and striatal ROIs) and testing our hypothesis in larger groups of subjects 

warrant further work.

The brain supports both specialized and integrative functions. Small-world network consists 

of well-balanced networks with local specialization and global integration. By investigating 

small-world property alterations, we can identify early neuroplastic changes in MCI that are 

not seen using the traditional decomposition methods. Therefore, this may play a role in 

differentiating different subtypes of MCI from AD and normal aging controls. Recently, an 

fMRI acquisition as short as 2 minutes can predict the small-world properties [47] and 

provides a new and promising tool for the application of graph theory in easy clinical set. 

We await more MCI subtype samples and longitudinal studies [48] to validate our findings.
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Figure 1. 
(a) The original T1 of each subject was processed with Freesurfer software to derive cortical 

parcellation (148 cortical ROIs) based on normalized template. The thickness map generated 

in Freesurfer was projected on the surface to derive the average cortical thickness of each 

ROI (in mm unit). (b) For each group, the thickness vectors of each ROI that consists of the 

thickness of all subjects within that group were derived. And the Pearson’s correlation 

between the thickness vectors of every two ROIs (interregional correlation) was computed 

and applied with a threshold with P < 0.05 (different r values based on the number of 

subjects in each group) to derive the correlation matrix. (c) The graphical topology of the 

binarized correlation matrix. Each ROI was denoted as node and each suprathreshold 

connectivity based on thickness vectors was denoted as edge. The nodes at the center of the 

graph with a “star-” shape-like edges have high betweenness centrality (BC), shown in red 

color, while the nodes in the center of the local cluster (satellite) have high clustering 

coefficient (Cp), shown in yellow color.
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Figure 2. 
The color showed significant cortical thinning areas in MCI patients compared to controls 

(corrected P < 0.05) based on ADNI data in the left hemisphere with smoothing 

interpolation in Freesurfer. MCI converters less than controls in lateral (a1) and medial 

views (a2), MCI stables less than controls (b1, b2), and MCI converters less than MCI 

stables (c1, c2). The cortical thinning areas in MCI converters compared to stables include 

mainly the inferior temporal and pericallosal regions.
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Figure 3. 
Correlation matrix and quantitative comparison of the 3 groups. Top row (a)–(c): cortical 

thickness-based interregional binarized correlation matrix represents human brain structural 

network constructed using cortical thickness of 148 ROIs within each group. The correlation 

matrix showed reduced connectivity in AD patients (c) compared to controls (a) and MCI 

patients (b); more blocked hubs in patients with MCI compared to control and AD patients 

(c).
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Figure 4. 
Controls (blue), MCI (green), and early AD patients (red) all showed a small-world 

characteristics in three population with reduction of γ (≫1) in (a) and reduction of λ (≈1) in 

(b) with the reduction of sparsity. AD patients showed lowest absolute clustering coefficient 

(a), indicating a reduction of local efficiency in AD patients. MCI patients showed lower 

relative cluster coefficient compared to controls (a), shortest relative path lengths (b), and 

lowest absolute path lengths (d) compared to AD and controls, indicating a compensatory 

mechanism with global efficiency in MCI stables. Error bar denotes standard deviation.
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Figure 5. 
The two MCI subtypes (stables and converters) have very different small-world properties 

as shown by the correlation matrix (a) and (e), surface distributions of betweenness 

centrality (b) and (f), clustering coefficient (c) and (g), and core numbers (d) and (h).
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Figure 6. 
Controls (blue), MCI stables (MCI S, green), and MCI converters (MCI C, red) all showed 

small-world characteristics with reduction of γ (≫1) in (a) and reduction of λ (≈1) in (b) 

with the reduction of sparsity. MCI converters showed lowest relative clustering coefficient 

(a) as well as lowest absolute clustering coefficient (c), indicating a reduction of local 

efficiency in MCI converters. MCI stables, however, had highest relative and absolute 

clustering coefficient (a) and (c) as well as shortest relative and absolute path lengths (b) and 

(d), indicating a compensatory mechanism of local and global efficiency in these MCI 

stables. Error bar denotes standard deviation.
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Table 1

Demographics of UTMCK data with means and standard deviations of age, education, and MMSE in each 

group. There were no statistical differences of age, education, and gender between the three groups with P > 

0.05.

Group AD MCI Control

Number of subjects 11 10 13

Age (y) 73.91 ± 11.00 68.89 ± 9.61 65.92 ± 12.11

Education (y) 12.67 ± 1.63 16.00 ± 4.00 16.14 ± 2.97

MMSE (/30) 21.36 ± 2.69 28.00 ± 1.00 29.92 ± 0.28

Male, % 36 60 23

Female, % 64 40 77
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Table 2

Demographics of ADNI data with means and standard deviations of age, global CDR, and MMSE in each 

group. There were no statistical differences of age and gender between the three groups with P > 0.05. The 

MMSE latest score for MCI converters was chosen as the measure right after conversion and for MCI stables 

and controls was selected as the latest measure in the database.

Group MCI converters MCI stables Control

Number of subjects 11 11 10

Age (y) 75.38 ± 8.65 75.43 ± 5.27 76.66 ± 9.86

Education (y) 15.46 ± 3.80 14.90 ± 3.35 16.90 ± 1.66

Global CDR 0.50 ± 0.02 0.50 ± 0.01 0.00 ± 0.01

MMSE baseline 26.09 ± 0.94 27.55 ± 1.44 29.50 ± 0.97

MMSE latest 20.09 ± 5.32 26.09 ± 0.94 29.70 ± 0.48

Male, % 73 73 40

Female, % 27 27 60
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