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Cancer is defined as a large group of diseases that is associated with abnormal cell growth,
uncontrollable cell division, and may tend to impinge on other tissues of the body by
different mechanisms through metastasis. What makes cancer so important is that the
cancer incidence rate is growing worldwide which can have major health, economic, and
even social impacts on both patients and the governments. Thereby, the early cancer
prognosis, diagnosis, and treatment can play a crucial role at the front line of combating
cancer. The onset and progression of cancer can occur under the influence of complicated
mechanisms and some alterations in the level of genome, proteome, transcriptome,
metabolome etc. Consequently, the advent of omics science and its broad research
branches (such as genomics, proteomics, transcriptomics, metabolomics, and so forth) as
revolutionary biological approaches have opened new doors to the comprehensive
perception of the cancer landscape. Due to the complexities of the formation and
development of cancer, the study of mechanisms underlying cancer has gone beyond
just one field of the omics arena. Therefore, making a connection between the resultant
data from different branches of omics science and examining them in a multi-omics field
can pave the way for facilitating the discovery of novel prognostic, diagnostic, and
therapeutic approaches. As the volume and complexity of data from the omics studies
in cancer are increasing dramatically, the use of leading-edge technologies such as
machine learning can have a promising role in the assessments of cancer research
resultant data. Machine learning is categorized as a subset of artificial intelligence
which aims to data parsing, classification, and data pattern identification by applying
statistical methods and algorithms. This acquired knowledge subsequently allows
computers to learn and improve accurate predictions through experiences from data
processing. In this context, the application of machine learning, as a novel computational
technology offers new opportunities for achieving in-depth knowledge of cancer by
analysis of resultant data from multi-omics studies. Therefore, it can be concluded that
the use of artificial intelligence technologies such as machine learning can have
revolutionary roles in the fight against cancer.
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INTRODUCTION

Cancer is categorized as one of the pre-eminent causes of human
fatality throughout the world (Tayanloo-Beik et al., 2020).
According to the latest data released by International Agency
for Research on Cancer (IARC), the incidence and mortality of
cancer are estimated at 19.3 million and 10.0 million people,
respectively by 2020. But what adds to the importance of this issue
is that if preventive measures are not implemented, the incidence
of cancer will reach 28.4 million people by the next 20 years (Sung
et al., 2021). Hence, it can be understood that cancer is a serious
problem that human beings struggle with and can have adverse
effects at the level of individuals or communities. In addition, the
cancer issue can have significant impacts on government entities
such as the healthcare and economic systems (Wild, 2019).
Accordingly, achieving the deep knowledge of mechanisms
underlying cancer on a small cell scale can be a big step
towards early prediction, detection, and treatment of cancer
and eventually would have astonishing effects at the global
level (Golemis et al., 2018). In cellular and molecular studies,
cancer is defined as a broad range of diseases in which the cells are
capable to grow and divide in an uninhibited manner and some
cases tend to impinge on other tissues and organs through
metastasis that can affect almost any part of the body
(Tayanloo-Beik et al., 2020). Evidence has documented that
the onset and progression of cancer are not at once. Instead,
the characteristics of the cancerous cells manifest in a step-by-
step process (Frank, 2018). These steps represent the
accumulation of molecular changes over a long period of time
in DNA, RNA, proteins, metabolites, and so on (Chakraborty
et al., 2018). Since the molecular alterations can affect many layers
of cell biology, in recent years the field of omics science and
related technologies have made a great contribution to learn the
rope of mechanisms underlying the onset and progression of
cancer. While the single-layer-omics study have been able to
provide researchers with a deeper insight of view on the identity
of cancer, the complexities of genotype-phenotype-
environmental interactions behind cancer can be achieved
through the integration of different branches of omics as a
multi-omics field in cancer biology. Additionally, multi-omics-
based studies can pave the way for examining various aspects of
cancer such as investigation of cellular responses to treatments
and exploration of novel prognostic, diagnostic, and therapeutic
approaches in cancer management (Menyhárt and Győrffy,
2021). Accordingly, the study of cancer on such a large scale
is associated with a data explosion (Chakraborty et al., 2018). To
access the related data, a variety of online resources in the field of
cancer research in combination with the multi-omics arena are
available to provide a comprehensive understanding of molecular
patterns involved in cancer at the level of genome, transcriptome,
proteome, metabolome, and so on (Das et al., 2020). The
existence of big data in the field of multi-omics studies
requires elaborate computational analysis. Therefore, in light
of rapid advancement in the development of technology, the
field of artificial intelligence (AI) and the related subsets
particularly machine learning (ML) have been able to leap
forward into assisting the analysis of the big data resultant

multi-omics studies (Moezzi et al., 2021) in tackling different
diseases such as cancer (Nicora et al., 2020). ML, one of the
branches of AI, can be used as a computational tool which
attempts to parse input data, recognize patterns, and
ultimately provide some knowledge in the output (Nagy et al.,
2020). In recent years, some advances are being made through the
collaborations between ML and multi-omics data analysis of
cancer which primary intent is to provide a broad view of the
complexities of the patterns involved in the cancer process (de
Anda-Jáuregui and Hernández-Lemus, 2020). To promote
research in the field of ML application in multi-omics data
analysis of cancer, this review initially provides an overview of
understanding the different aspects of cancer biology while
pointing out current methods applied in cancer management.
Then, the role of the multi-omics arena in combination with
oncology studies are highlighted. Subsequently, recent advances
in the application of ML methods in combination with cancer
omics data assessments are particularly described. Finally, several
challenges of applying ML in omics data analysis and some
effective solutions to address these challenges are described.

AN OVERVIEW OF CANCER

The biology of cancer is composed of highly sophisticated
intracellular, intercellular, intertissular, and intersystem
interplays in a step-by-step process at a level of an organism
(Paul, 2020). In order to promote the perception of cancer
process, this is urgent to zoom in and examine each step of
this process separately. Although, various categorize have been
considered for the steps of cancer development, in this review,
carcinogenesis is scrutinized in three general and particular stages
as detailed below (Weston and Harris, 2003):

1) Initiation: According to the last researches, cancer risk factors
can be generally divided into two groups: Intrinsic and non-
intrinsic risk factors. The intrinsic factors have been attributed
to unpredictable random spontaneous mutations which can
take place during the DNA replication process. In contrast, the
non-intrinsic risk factors can be categorized as two
endogenous and exogenous factors that contributed to
carcinogenesis. In a more detailed study of the mentioned
two subgroups, the endogenous risk factors such as the
function of hormones, immune and metabolic systems, or
the genetic susceptibility particularly depend on every
individual’s biological characteristics. Conversely, different
factors related to an individual’s lifestyle such as diet,
obesity, and some viral infections or environmental agents
like exposure to chemicals and hazardous radiations can be
classified as exogenous risk factors (Wu et al., 2018). All of
these categories and more on can play a key role in initiation
of carcinogenesis multistep process by occurrence of genetic
mutations and epigenetic alterations (Belizário, 2018; Sheikh-
Hosseini et al., 2021). In other words, the epigenome and the
genome can have mutual interaction in the onset of cancer.
Indeed, genetic mutations in epigenome-related sequences
can lead to epigenetic changes, and contrariwise,
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epigenomic alterations can lead to mutations in DNA which
both have great contribution in cancer initiation (You and
Jones, 2012). More detailed evaluation findings imply that two
groups of genes, proto-oncogenes and tumor suppressor
genes, are affected by genetic and epigenetic alterations.
Thus, risk factors can have a major contribution in
genomic or epigenomic alterations, which in turn adjust
the expression and the function of proto-oncogenes and
tumor suppressor genes. Accordingly, any dysfunction of
tumor suppressor genes or overexpression of proto-
oncogenes can trigger the cancer promotion step (Wang
et al., 2018).

2) Promotion: Once the cells are affected by the initiators factors
and the accumulation of alterations is enough to onset the
cancer, the initiated cells transit to “promotion” step. At this
step, the most important phenomenon is that initiated cells
are susceptible to the effects of promoter’s agents. One of the
functional characteristics of promoter agents is that they
indirectly affect genes. Indeed, unlike initiator factors, they
are non-mutagenic (Weston and Harris, 2003). Functionally,
they can cause alterations in different intracellular processes
such as cell signaling, gene expression, apoptosis, etc. by
interaction with cellular receptors. Hence, the cells would
be triggered to grow and proliferate in an uncontrolled
manner. Consequently, the cells expanded into a colony
and the population of cancer cells increased (Mendelsohn
et al., 2014).

3) Progression and metastasis: The final step of cancer refers to
the irreversible transformation of a benign tumor or pre-
neoplasm into a malignant tumor or neoplasm. At this step
the genome is highly unstable. Consequently, the cells are
susceptible to be affected by more genetic and epigenetic
alterations. These changes can be accompanied by
hyperactivation of proto-oncogenes and hypoactivation or
loos of function of tumor suppressor genes (Weston and
Harris, 2003; Mendelsohn et al., 2014). Additionally,
karyotypic variations, aneuploidy (Sansregret and Swanton,
2017), and polyploidy are observed at this step (Baudoin and
Bloomfield, 2021). As the disease progresses, the cells would
have a strong tendency to separate from the colony and
impinge to other tissues in the body through different
mechanisms underlying the metastasis process. Hence to
disperse the cells from the primary tumor, various
interactions between cancer cells and their
microenvironments such as alterations in the function of
cell junctions and cell adhesions molecules or the initiation
of epithelial-mesenchymal transition, angiogenesis, and
lymphangiogenesis can be the subsequent phenomenons in
the progression of cancer. As a result, the cells can easily
detach from the cancerous cells population and migrate to
other parts of the body through bloodstream (Martin et al.,
2013).

Therefore, according to the alterations of mechanisms
underlying cells during the onset to development of cancer, as
mentioned above, cancer cells acquire several biological features,
including 1) Genomic instability and chromosomal

abnormalities, 2) Indefinite growth and uncontrolled
proliferation potential, 3) Replicative immortality, 4) Evading
growth suppressors and cell death signaling, 5) Remodeling the
extracellular matrix and forming rich and dynamic tumor
microenvironment, 6) Evading immune surveillance and
destruction, 7) Reprograming cellular energetics, 8) Inducing
tumor-promoting inflammation, 9) Activating the angiogenic
switch, 10) Enabling invasion and metastasis, 11) Alteration in
microbiome, which are all known as the hallmarks of cancer
(Fouad and Aanei, 2017;MacCarthy-Morrogh andMartin, 2020).

CURRENT METHODS AND TECHNIQUES
IN CANCER MANAGEMENT

Due to the increasing global cancer incidence rate, any urgent and
prompt prevention and management actions can be an obstacle
to the growing trend of cancer. Consequently, in addition to
significantly increasing the survival rate, the quality of life of the
patients can be improved (Tobore, 2019). Hence, for a more
detailed study of current methods and techniques in cancer
scrutiny, in this review, the cancer management strategies have
been categorized into four levels of prevention, early detection
and diagnosis, treatment, and palliative care according to the
World Health Organization (WHO) guide for effective cancer
control programs that are detailed below (Organization, 2007).

Cancer Prevention
In a general category, cancer prevention can be examined in three
ways, including primary, secondary, and tertiary (Wray et al.,
2018). Primary prevention of cancer is a stage in which the
occurrence of the disease can be obstructed as much as possible
due to applying interventions and efforts at two individual and
community levels. As mentioned earlier, genetic, environmental
factors or the integration of both can be the origin of the different
types of cancers. Therefore, taking any measures to reduce or
eliminate cancer risk factors [e.g., tobacco, alcohol consumption,
dietary habits especially inadequate consumption of fruits and
vegetables, high body mass index (BMI), inadequate physical
activity, reproductive factors, and types of carcinogens] can be an
effective step in preventing cancer (Organization, 2008).

In addition, preventive interventions at the community level
are mainly dependent on policies and social measures on a large
scale. In this type of actions, decisions and policies at the level of
public health may be influenced by various factors such as culture,
economic, politics, the interests of individuals, etc., but still, any
partnership between different government entities and even
cooperation with national and international institutions or
universities to predict and implement smart measures in the
field of cancer can lead to effective results (Puska, 2021).

Cancer Early Detection
In general, the treatability ratio of cancer is inversely related to the
time of diagnosis. In other words, the delay in diagnosis results in
difficult treatment. Therefore, according to statistics obtained
from comparison of patient survival rates in the early and late
stages of the cancer process, it can be inferred that any faster
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action in early detection and diagnosis of cancer patients can
significantly increase the chance of cancer treatability, enhance
general health rate, and reduce mortality rate as well (Chen et al.,
2020). To achieve these goals, health care providers apply two
screening and early diagnosis approaches to seize the initiative in
the early detection stage (Organization, 2007).

In a simple expression, the screening approaches refer to a set
of methods in which the people with a high risk of cancer or
people in the asymptomatic period can be distinguished in a
population. Additionally, the identification of precancerous
lesions with a high tendency to become cancerous, the
presence of cancer, and prevention of the impact of
established cancer in a patient are some of the aims of
screening methods in the early detection stage. Accordingly, it
can be deduced that screening methods can mostly have a part in
secondary and tertiary prevention of cancer. Similar to any other
methods, screening can also face some challenges in tracking
diseases. For instance, screening methods may have less
sensitivity and specificity in some cases (Schiffman et al.,
2015). Furthermore, some of the screening methods are
invasive and can lead to physical damages (e.g., colonoscopy
and pap test). In addition to physical damages, patients may
experience psychological harm as a result of anxiety before being
examined or the pressure and tension from awareness of test
results. Along with other disadvantages of screening methods,
overdiagnosis and subsequently overtreatment of the disease
remains challenging, which may have adverse effects on
patients. However, screening recommendations still can be a
complementary step towards early intervention and prevention
of cancer progression and as one point of view, it is hoped that in
the light of the rapid development of technologies, more accurate
and efficient screening tests with fewer adverse effects will be
available or the efficiency of the current methods will be
improved (Wardle et al., 2015).

In addition to screening methods, early diagnosis strategies
also play important roles in the early detection of cancer. Early
diagnosis strategies can be defined as a set of methods and
measures that aim to distinguish symptomatic patients in the
early stages of the disease process. To promote this step, applying
some strategies such as raising awareness, knowledge, and
education in the field of cancer, timely, accurate, and patient-
centered diagnosis by themedical doctor to determine the stage of
the disease, and providing appropriate therapeutic and practical
strategies, are some of the main approaches which have a great
contribution to increase treatability and subsequently improve
the survival rate, and the quality of life in cancer patients
(Organization, 2017).

Cancer Treatment
In the past, cancer treatment was limited to a few specific
methods, such as surgery, and radiotherapy. Since, there was
no therapeutic approach to treat systemic diseases caused by
metastasis, scientists sought to find a solution to the problem.
Therefore, chemotherapy using cytotoxic drugs has been
proposed as a suitable solution to increase the long-term
recovery rate, which after 60 years is still used as an important
and fundamental approach in the treatment of various types of

cancer (Crawford, 2013). Although these traditional methods are
still common today, they may be associated with different
complications (Bidram et al., 2019). For example, although
surgery is an essential and important approach in the
treatment of cancer, it can have major contribution to the
flow of cancer cells in the blood and the formation of
metastatic foci. On the other hand, surgery can inactivate anti-
tumor immunity and make cancer cells more aggressive which
can lead to the recurrence of the disease (Tohme et al., 2017).
Hence, in recent years, researchers have sought to take an
important step toward improving the treatment rate of cancer
patients by applying some of these classical therapies with each
other (Im et al., 2016; Zaghloul et al., 2018) or by employing them
with new adjuvant therapies like immunotherapy (O’Donnell
et al., 2019) and macrophage-based virotherapy (Muthana et al.,
2013).

Over the past years, many efforts have also been made to
increase insight into tumor biology and cancer progress, which
provide a snapshot of more challenges faced by cancer treatment
and facilitate the development of more effective strategies in this
regard. Previously, cancer was thought to be associated by only
changes within cells. However, with the increase of studies on
tumors, it has gradually become clear that in addition to
intracellular changes, the extracellular alterations caused by
tumor micro environment (TME) play an important role in
the development of cancer. TME refers to a complex and
dynamic structure that encompasses various cell types [e.g.,
immune cells, fibroblasts, mesenchymal stroma/stem-like cells
(MSCs), and adipocytes] located in the extracellular matrix
substrate and assist in the progression of the tumor cells. As
result of clonal expansion of mutant cells and/or interaction with
TME, a phenomenon named tumor heterogeneity emerges,
which is not only the main obstacle to the successful
treatment of cancers but also can lead to tumor metastasis
(Hass et al., 2020). The term of tumor heterogeneity refers to
a mixed population of cells which exhibit different molecular
signatures in the levels of resistance to therapies, genetic stability,
cell surface markers, (epi)genetic alterations, and cell growth,
whether within the tumor (inter-tumor heterogeneity) or
between tumors (intra-tumor heterogeneity).

In the pursuit to define tumor heterogeneity, some models
include stochastic or clonal evolution (CE), the hierarchy or
cancer stem cells (CSCs), and plasticity models have been
expressed. In the model of CE, the diversification of cells is
occurred under the accumulation of genetic and epigenetic
changes over time within cells, which can eventually lead to
the development of tumorigenic properties in cells. On the other
hand, the CSCs model is based on the existence of a small subset
of stem cells that provide capabilities such as stemness, self-
renewal, and differentiation into cell types that cause tumor
heterogeneity. But the plasticity model is based on another
belief that can approximately connect the two previous
models. Indeed, plasticity is stated that the cancer cells can be
transmitted from the stem state to the non-stem cancer cell state
and vice versa through reprogramming process (Rich, 2016).
Recent studies imply that cell plasticity is a phenomenon that
naturally plays an important role in processes such as embryonic
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development and tissue regeneration. But in the case of cancer, it
can lead to the onset, development, and even metastasis of tumor
tissue. In a great detail, there are important traces of genetic or
epigenetic changes within cells and extracellular changes caused
by the cancer microenvironment, behind the cancer cells
plasticity. As a result, the populations of CSC–like state cells
with capabilities such as self-renewal, immune system evasion,
and resistance to chemotherapy can be formed, which can pose
many challenges to cancer treatment (Yuan et al., 2019; Hass
et al., 2020). With such knowledge, recent studies have focused on

discovering more effective ways to increase the rate of cancer
treatability while providing a good palliation for patients.

Over recent years, a variety of targeted and alternative
methods such as photothermal therapy (PTT), gene therapy,
nanoparticle-drug therapy (NDT) (Bidram et al., 2019),
extracellular vesicles (EVs), thermal ablation, and magnetic
hyperthermia were evaluated for cancer treatment (Pucci et al.,
2019). Another group of complementary and alternative medical
procedures such as antioxidant systems, exercising (Hojman
et al., 2018), acupuncture, yoga, hypnosis, biofeedback,

FIGURE 1 |Cancer treatment approaches (Tacón, 2003; Roffe et al., 2005; Jones and Demark-Wahnefried, 2006; Sagar et al., 2007; Lu et al., 2008; Giustini et al.,
2010; Masafi et al., 2011; Stanczyk, 2011; Fleisher et al., 2014; Drãgãnescu and Carmocan, 2017; Bilgin et al., 2018; Carlson et al., 2018; Hojman et al., 2018; Yadav
et al., 2018; Bidram et al., 2019; Psihogios et al., 2019; Pucci et al., 2019; Laoudikou and McCarthy, 2020; Najafpour and Shayanfard, 2020).
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aromatherapy, and massages have been studied, which can be of
great help in enduring and coping with the complications of
cancer, especially mental and psychological problems (Figure 1)
(Singh and Chaturvedi, 2015). However, as recent detailed studies
in the field of cancer biology have indicated that molecular
alterations at multiple levels including genome, epigenome,
transcriptome, proteome, and so on are considered key
contributing factors in cancer progression, focus on the field
of cancer multi-omics and technologies integrated with this field
can be significant step towards facilitating the discovery of novel
diagnostic and therapeutic approaches for cancer. Hence in this
regard, a better understanding of multi-omics field in cancer
needs to be developed that will discuss in more detail in the
following section (Charmsaz et al., 2019).

THE INTEGRATION OF OMICS SCIENCE
WITH CANCER RESEARCH

The word “omics” implies the study of the entire set of molecules
in a biological sample. The concept of “omics” consists of broad
research areas such as genomics (the study of all genome
content), transcriptomics (the study of all RNA transcripts
produced by the genome), proteomics (the study of whole
proteins products and their interactions), metabolomics (the
study of whole metabolites and metabolism processes in a
biological sample), and so forth (Arjmand et al., 2021; Esmati
et al., 2021; Hosseinkhani et al., 2021; Tayanloo-Beik et al., 2021).
Therefore, studying and evaluating biological samples at each
omics research areas (Debnath et al., 2010; Omenn et al., 2012) or
make a connection between the resultant data and examining
them in a multi-omics field can open new doors to investigate and
treat the various diseases (Hasin et al., 2017; Misra et al., 2019). In
recent years, the omics approaches have also yielded great
advances in cancer research. Today, the oncology studies
revolve around the idea that molecular changes at different
biological layers are inevitable in cancer. Accordingly, omics
approaches have been able to provide in-depth insights into
the processes involved in cancer, which could decipher
cancer’s molecular fingerprint (Menyhárt and Győrffy, 2021).

Genomics is at the most primitive level of the omics branches.
Conventionally, the genomics field can provide broad insights
into the genome structure, function, and the interrelations
between the genes and their products in an organism as well
as mapping and editing of the genome. But this importance is
heightened when genes and related changes are used to trace the
pathology of diseases. Therefore, the use of technologies such as
gel electrophoresis, blotting, polymerase chain reaction (PCR),
DNA microarray, DNA sequencing, and chromatin
immunoprecipitation (ChIP) assay can be effective steps in
decoding various aspects of diseases (Falahzadeh et al., 2019).
If the meaning of genomics is extended to the field of oncology, a
new approach called cancer genomics will find meaning. In a
particular define, cancer genomics refers the study of genetic
abnormalities related to cancer process which interestingly have
an effective contribution in personalized cancer medicine (PCM).
Because changes and mutations at the genome level are one of the

inseparable facts of cancer, the identification of cancer-specific
molecular signatures and mechanisms underlying cancer at the
genomic level not only advance the development of the genomics
science and related technologies, but also can facilitate the process
of cancer management from early detection to treatment (Tran
et al., 2012). In this regard, to promote researches, DNA
sequencing technologies [from the first generation to the next
generation sequencing (NGS)] have opened new doors to the
secrets behind the genetic codes of an organism (Mardis, 2019).
Traces of sequencing technologies can be found in establishing
extensive projects such as the human genome project (HGP)
(Hood and Galas, 2003), HapMap (Gibbs et al., 2003), and
genome-wide association analysis (GWAS) (Tam et al., 2019)
which can be declared as major breakthroughs in human genome
studies (Gibbs et al., 2003; Hood and Galas, 2003; Tam et al.,
2019). Additionally, in case of cancer, worthwhile projects such as
Cancer Genome Project (CGP), The Cancer Genome Atlas
(TCGA), and International Cancer Genome Consortium
(ICGC) have been developed by applying DNA sequences
which focus on the cancer assessment in individuals (Wheeler
and Wang, 2013).

Since the advent of genomics, much progress has been made
especially in cancer research. One of the advances in this field was
the identification of oncogenes [such as RAS family proto-
oncogenes (Sugita et al., 2018) epidermal growth factor
receptor (EGFR) (Thomas and Weihua, 2019) and
Phosphatidylinositol-3-kinase (PI3K)/AKT/mammalian target
of rapamycin (mTOR) signaling (Yang et al., 2019)]. More
precisely, accurate identification of the role of such oncogenes
in the carcinogenic process led to considered these biological
components as appropriate drug targets in the treatment of
cancers (Sugita et al., 2018; Thomas and Weihua, 2019; Yang
et al., 2019). On closer inspection, some studies draw attention to
fusion genes (a hybrid gene that is made up of two genes that were
previously independent of each other and is now translated and
transcripted as a unit) (Parker and Zhang, 2013) and tumor
suppressor genes (TSGs) (Wang et al., 2018), including, 1)
Caretaker genes refer to the genes which have a fundamental
role in preserving genome stability in response to DNA damages
(e.g., BRCA genes, PARP1, NER system, ATM), 2) Gatekeeper
genes which are responsible for inhibiting proliferation,
differentiation and promoting cell death (e.g., APC, RB1, and
TP53) (Fanale et al., 2017), and 3) Landscaper genes which are
responsible for making products that prepare the fertile
environment for cell growth (Macleod, 2000) (e.g., FGF-2,
PDGF, uPA) in cancer onset and progression (Andreozzi,
2014). However, in case of disruption in mentioned genes, the
cell deviates from regulating state and progresses to a cancerous
condition. One of the principles considered in some of the TSG’s
dysfunctionality is the “Two-hit” hypothesis. According to this
hypothesis, unlike oncogenes, TSGs tend to be recessive. In other
words, if one of the alleles of TSGs is inactivated, the normal one
can compensate for the dysfunctionality of the mutated allele by
producing sufficient products. It is, therefore, necessary to
deactivate the function of some TSGs on both alleles to
contribute to cancer. However, genetic alterations are not the
only cause of the inactivation of TSGs. Indeed, some cellular
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mechanisms such as ubiquitin-proteasomal degradation,
mislocalization of proteins, and aberrant transcription factor
regulation can be non-genetic factors affecting the TSGs
function, which play an important role in the process of
tumorigenesis. Additionally, paying attention to epigenetic
factors in parallel with genetic and non-genetic factors is of
great importance to lead the “Two-hit” hypothesis moving
towards the “Multiple-hit” hypothesis in order to provide
broad aspects of tumorigenesis at the molecular level (Wang
et al., 2018).

In addition to genetic alterations, the epigenetic regulation is
of great importance in cancer researches. Before proceeding to
evaluate the effects of epigenetics in cancer studies, it should be
provided a general description of epigenetics. In broad biological
terms, epigenetics can be defined as heritable mechanisms for
regulating genome function which are not attributed to
underlying alterations of DNA sequence. In general, the
epigenetic phenomena can be developed through mechanisms
such as DNA methylation, histone modifications, nucleosome
remodeling (Ilango et al., 2020), RNA methylation, and non-
coding RNAs, which plays essential roles in modifying the
genome function by affecting the structure of chromatin (Lu
et al., 2020). To achieve the comprehensive perception of the
epigenetic mechanisms landscape, need to zoom in on the
genome scale and make our perspective more accurate and
detailed. In this context, studies implies that three groups of
genes, including epigenetic modulator (e.g., IDH1/2, KRAS,
APC), epigenetic modifier (e.g., SMARCA4, PBRM1, TET2),
and epigenetic mediator (e.g., OCT4, NANOG, LIN28) are
classified as genes related to epigenetic mechanisms that can
lead to neoplastic phenotypes in case of disruption (Feinberg
et al., 2016). In addition, another point to note is that studies
report the effects of epigenetic mechanisms on tumor
microenvironment (TME) which is directly involved in the
escape of cancer cells from being tracked and destroyed by the
immune system (Lu et al., 2020). The interaction of cell
environment with epigenetic mechanisms also covers the other
aspects. For example, hypoxia is a common phenomenon that
occurs in tumor condition due to the high consumption of
oxygen by cancer cells with intention to high growth and
proliferation. Under hypoxia condition, the oxygen levels are
lower than normal. Therefore, the epigenetic mechanisms that
require oxygen as an important substance to perform the reaction
are disrupted (Camuzi et al., 2019).

Transcriptomics is the next level of omics approaches, which
connects the genomics and proteomics levels. In a simple
definition, it refers to the study of all transcripts inside cells,
which can be analyzed by different methods such as DNA
microarray, SAGE, long SAGE, SuperSAGE, HT-SuperSAGE,
RNA-Seq, quantitative reverse transcription PCR (RT-qPCR),
digital PCR (dPCR), single-cell RNA-Seq, whole exome RNA-
Seq, and in situ RNA-Seq (Sager et al., 2015). In the field of
cancer, the study of transcriptomes can play an essential role in
having a comprehensive insight into the mechanisms underlying
cancer and discovering valuable biomarkers from various aspects
such as alternative splicing, alternative polyadenylation, fusion
transcripts, noncoding RNAs, transcript annotation, and novel

transcripts (Tsimberidou et al., 2020). In addition to the above,
studies suggest that transcriptome studies can provide researchers
with valuable information about tumor response to treatment and
cancer recurrence or metastasis (Sager et al., 2015).

At the broader level of the omics branches, the proteomics
field can be defined, which studies all the contents of the
expressed proteins in the cells. Since proteomes are the result
of gene expression and are also involved in biological structures
and processes, applying proteomics to study cancers can open
new doors into discovering novel prognostic, diagnostic, and
therapeutic approaches as well as classification of tumors (Kwon
et al., 2021). In this regard, methods such as mass spectrometry
(MS), enzyme-linked immunosorbent assay, immunoblotting
(western blot), and protein microarray can help gain broad
insights into cell proteomes and identify processes involved in
cancer (Panis et al., 2019). One of the great achievements in the
field of cancer proteomics is the decoding of proteomics
signatures of 16 types of human cancers, including liver,
colon, kidney, esophagus, head and neck, brain, breast, lung,
stomach, pancreas, uterus, bladder, prostate, and ovary could
pave the way for the use of accurate treatment approaches in
different types of cancer by determining the specific type of
proteins involved in different cancers (Zhou et al., 2020).

Metabolomics is another branch of omics which generally
studies all the metabolites in the body such as hormones,
nutrients, drugs, signaling mediators, and the metabolic
products in body fluids (Schmidt et al., 2021) and can be
measured by different techniques such as nuclear magnetic
resonance spectroscopy (NMR), gas chromatography–mass
spectrometry (GC-MS), liquid chromatography–mass
spectrometry (LC–MS), capillary electrophoresis–mass
spectrometry (CE-MS), high performance liquid
chromatograph (HPLC), and ultra-performance liquid
chromatography tandem mass spectrometry (UPLC-MS/MS)
(Goodarzi et al., 2019). What makes the importance of
metabolic studies in the field of cancer more prominent, is the
widespread effects of mechanisms underlying cancer as well as
cancer treatments on the metabolites of the patient (Schmidt
et al., 2021). One of these effects is metabolic reprogramming,
which play a major role in the development of cancer and in turn
can be a suitable goal in the treatment of cancer (Kaushik and
DeBerardinis, 2018; Khatami et al., 2019). This phenomenon
occurs when cells are exposed to hypoxia and nutrient deficiency
due to high proliferation. Hence, the tumor cell adapts to new
conditions by shifting the metabolic process from aerobic to
anaerobic. Tumor cell reprogramming not only plays a key role in
cancer malignancy and metastasis, but also makes the tumor
resistant to treatability. Therefore, gaining a comprehensive
understanding of the metabolic processes involved in
tumorigenesis can be a step towards cancer treatment
(Yoshida, 2015).

In addition to the above, in recent years, another area of omics
called radiomics has been studied in cancer studies. In general,
radiomics is the study of data from imaging processes that can
provide appropriate and efficient prognostic and diagnostic
information about cancer. Therefore, the information of this
branch of omics science can pave the way for accurate
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identification of the type of cancer and subsequently, the use of
appropriate treatment for different cancers (Shur et al., 2021)
which can be extracted via different techniques such as magnetic
resonance imaging (MRI), computed tomography (CT), and
positron-emission-tomography (PET) (van Timmeren et al.,
2020). However, the branches of omics studied in the field of
cancer are not limited to the mentioned cases and can also cover
wide areas of the realm of omics, such as lipidomics (Yan et al.,
2018), glycomics (Drake, 2015), pathomics (Gupta et al., 2019),
phosphoproteomics (Harsha and Pandey, 2010), immunomics
(Basharat et al., 2018), interactomics (Vallet et al., 2021) etc.

One of the most important reasons for omics studies to thrive
in recent years, is to save time and money, which has also come
with a large amount of data. In addition, molecular alterations
within the body are interrelated and multidimensional. Thus,
what can bring cancer researchers’ perspectives closer to reality is
the integration of data from single omics approaches and
expending it into a vast realm called multi-omics. What makes
the multi-omics data from cancer cells debate so valuable is that
the multi-omics data analysis can provide the possibility of 1)
clustering multiple biological contexts, 2) unraveling the
complexities of genotype-phenotype-environmental
interactions, 3) identification of cancer-associated phenotypes
for timely prognosis and prediction, 4) investigating the effects
and aspects of the applying therapeutic approaches, and 5)
facilitating the bench to bedside studies by creating models
that mimic the complexities of biological condition (Menyhárt
and Győrffy, 2021).

ML, A NOVEL COMPUTATIONAL
TECHNOLOGY IN BIOLOGICAL AND
MEDICAL RESEARCHES
Over the past years, the advent of novel technologies in the field of
medical researches has revolutionized the study of various aspects
of diseases and led to the emergence of a field called medical
technology. In a simple expression, medical technology refers to
the arrival of advanced tools and innovations into the health
system to redrawing the healthcare landscape, push the
boundaries of how target health issues, and solve the problems
to promote health status of individuals or even the society.
Therefore, medical technologies are without doubt one of the
key markets of the near future (Ortiz and Hsiang, 2018). In the
study of medical technologies, researches come across a vast
realm called AI (Cosgriff et al., 2020). In general terms, AI is a
technology derived from computer science and mathematics,
which aims to simulate of natural intelligence carried out by
machines with intention to learn and mimic human-like tasks
(Cipolla-Ficarra et al., 2021). Over the past years, the entry of AI
into the fast-growing field of medicine has been a key step
towards health promotion and disease management through
both virtual and physical aspects. In discussing the physical
aspect of AI, the role of robotics in helping surgeons and
people with disabilities can be mentioned. But in the other
aspect, scientists are dealing with virtual assistants that have
rushed to the aid of the health care system. In this context,

ML, as a branch of AI, has gained increasing interest as one of the
novel computational technologies in scientific researches over
recent years (Hamet and Tremblay, 2017).

In general term, ML, refers to a subset of AI which aims to
analyze input data, obtain patterns between data, and make
predictions for output data based on systematic algorithms
through the integration of statistics, mathematics, and
computer science (Sidey-Gibbons and Sidey-Gibbons, 2019).
Studies imply that the term “Machine learning” was first
coined by Arthur Samuel in 1959 to study the game of
checkers. According to the reports, Samuel believed that if
computers were programmed, they could play checkers. In this
context, he represented two methods including, “Rote learning”
and “Generalization learning” to advance the mentioned goal.
Thus, these two methods formed the basis of one of the first
working programs in AI realm (Samuel, 1959). Since then, many
studies have been conducted in ML field which have been
accompanied by the development of different approaches and
techniques (Minsky and Perceptrons, 1969; Werbos, 19741974;
Quinlan, 1986; Cortes and Vapnik, 1995; Breiman, 2001). To
promote research in this field toward, this review firstly highlights
the main approaches to get acquainted with how the technology
of ML exactly works.

Basically, the major ML approaches can be discussed under
four headings including, Supervised learning, Unsupervised
learning, Semi-supervised learning, and Reinforcement
learning which are as detailed below (Sedghi et al., 2020).

Supervised Learning
Supervised learning is the most popular pattern for performing
ML operations and is widely used where there is an accurate
mapping between input-output data. In other words, supervised
learning initially begins with importing datasets include training
attributes and target attributes. The supervised learning
algorithm obtains the relationship between the training
examples and their specific target variables. When these steps
have been completed, the system uses that learned patterns to
categorize completely new inputs (Cunningham et al., 2008).
Classification and Regression are two types of supervised learning
tasks which are selected according to datasets. In a simple
expression, the goal of classification task is to predict discrete
values. However, if the data set is continuous values, the
regression task is used for supervised learning. In a
comprehensive review of this type of learning, in addition to
tasks, supervised learning techniques such as support vector
machine (SVMs), neural network, naive Bayes, logistic
regression, memory-based learning, decision trees, random
forests, bagged trees, boosted trees, and boosted stumps should
also be considered (Nasteski, 2017).

Unsupervised Learning
In unsupervised learning, the data is not predetermined and the
system deals with unlabeled data. In other words, the input
variable is given without any corresponding output variable.
Hence, a model is prepared through self-training process of
algorithms in which unknown patterns and information are
discovered without receiving information from the
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environment or teacher guidance. Clustering, association, and
dimensionality reduction are among the techniques used in this
approach (Ghahramani, 2003; Hastie et al., 2009). In clustering
technique, the main idea is zoomed in finding the pattern with
intention to divide the data into several groups with common
attributes (Deepak, 2016). This is while, the association technique
deals with discovering relationship among variables which can
have a great contribution to discover knowledge from a data set
(Cios et al., 2007). Moreover, real-world data may have multi-
layered variables and a large number of attributes, so-called high-
dimensional data, an example of which can be found in the data
obtained from fMRI scans. This issue can make ML processing
face many problems. Therefore, it is tried to reduce data
dimensionality to facilitate the processing data by applying
dimensionality reduction patterns (Van Der Maaten et al., 2009).

Semi-Supervised Learning
In a simple expression, semi-supervised learning is a combination
of unsupervised and supervised learning. In other words, this
approach uses a small set of labeled data along with a large
amount of unlabeled data to improveML task performance which
is a more relevant scenario for costly and rare labeled data.
Additionally, in ML approaches, the use of semi-supervised
learning has received considerable attention. What
distinguishes this type of data processing is that in both
human learning and semi-supervised learning, most of the

input data is unlabeled and the success of the input data
processing depends on some assumptions. Hence, this type of
learning is closely related to human learning (Zhu and Goldberg,
2009).

Reinforcement Learning
In this type of learning approach, there is an interaction between
the two elements of the environment and the learning factor.
Indeed, reinforcement learning loop has a sequence of modes,
actions, and rewards. In this regard, the goal of the agent is to
maximize the expected (cumulative) storage reward (meaning
expected is mathematical hope) (Figure 2) (Sutton and Barto,
1999; Woergoetter and Porr, 2008).

ML IN MULTI-OMICS DATA ANALYSES OF
CANCER

In recent years, the advent and development of computing
technologies has targeted the heart of disease biology in
precision medicine. Therefore, it has been promising the
emergence of a new generation of diagnostic and therapeutic
approaches. Meanwhile, the integration of omics branches with
computing technologies holds further promise to unravel the
mechanisms underlying the biological condition of interest and
enhance scientific understanding of the detailed roles of

FIGURE 2 | ML approaches. The main approaches of machine learning include: 1) Supervised learning, 2) Unsupervised learning, 3) Semi-supervised Learning,
and 4) Reinforcement learning. In supervised learning, the input and output are specified and the data is labeled. In unsupervised learning, specific data does not already
exist and is not intended to be an input-output connection, but only to categorize them. Semi-supervised learning uses both labeled and unlabeled data simultaneously
to improve learning accuracy. Reinforcement learning loop has a sequence of modes, actions, and rewards (Sedghi et al., 2020).
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complicated cellular interactions in human diseases. In this field,
precision medicine includes two important discussions of the
source for data production and the use of data obtained for
modeling (Tebani et al., 2016). In cancer researches, precision
medicine can deal with resources such as huge data from cancer
studies in various branches of omics to use them for diagnostic
and therapeutic purposes. In this case, the introduction of
computing technology, such as ML, as a branch of AI can take
on the task of modeling this huge data, which can open new doors
to the comprehensive perception of the cancer landscape (Nicora
et al., 2020). Therefore, in the pages that follow, this paper will
review the research conducted on the application of ML
approaches and techniques in the field of cancer multi-omics
analysis.

In 2015, Emaminejad et al. conducted investigations in the
field of predicting recurrence of stage 1 non-small-cell lung
cancer (NSCLC) after surgery by integrating ML methods with
two genomics and radiomics branches. For this purpose, they use
computed tomography (CT) imaging 79 cancer patients as the
radiomics data source. On the other hand, two biomarkers
including the excision repair cross-complementing 1 (ERCC1)
genes and a regulatory subunit of ribonucleotide reductase
(RRM1) were also used as the basis of genomics data in this
study. Then, they applied computer-aided detection (CAD) and
radiologists’ assessments to classify lung tumors. To promote the
study, they trained naïve BN classifier using eight radiomics
features and a multilayer perceptron classifier using two
genomic biomarkers. As a result of this study, the area under
a curve (AUC) values were reported 0.78 ± 0.06 in the case of
raidomics features application and 0.68 ± 0.07 in case of
geneomics biomarkers application. This is while the merger of
these two omics branches was able to increase the AUC values to
0.84 ± 0.05. Therefore, it can be concluded that although the ratio
obtained radiomics classification was more than genomics case,
the integration of these two branches can be a promising
approach to predict NSCLC in patients (Emaminejad et al., 2015).

A year later, Yu et al. focused their studies on the analysis of
genomics, transcriptomics, and proteomics profiles of patients in
integration with ML methods to investigate the molecular and
morphological alterations involved in lung adenocarcinoma
cancer. In this study, they initially processed the digital whole-
slide histopathology images of the 538 patients and obtained the
statistical data needed from the images in parallel with the reports
obtained from patients to determine the stage of cancer. In the
next step, they analyzed the data by extracting the genomics,
transcriptomics, and proteomics profiles from the TCGA and
Cancer Genome Atlas Research databases in integration with the
Breiman’s random forest method of ML. Finding correlations
between the degree of cancer pathology and genomics or
proteomics profiles using ML methods was one of the goals of
the researchers to investigate the effective mechanisms in
tumorigenesis process. They also considered the correlation of
quantitative histopathological features with TP53 mutation and
histology of sub-classifications of lung cancer. Then, they
developed regularized Cox proportional hazards models using
multi-omics and histopathology data as well as patient age to
predict patient survival rates. Therefore, it can be concluded that

the study of Yu et al. is one of the examples of efficient studies
which show the effect of integrating the data obtained from
several sources to predict the cancer (Yu et al., 2017).

In another study, the use of entitled fast-multiple kernel
learning framework (fMKL-DR) as one of the ML methods,
was presented by Giang et al. to address the challenges of big
data obtained from multi-omics studies in Alzheimer’s disease
(AD) and cancer patient stratification. In this regard, sets of data
(genomics and radiomics data for AD patients and genomics and
proteomics data for cancer patients) were initially needed. For
this purpose, in the case of AD, genomic data as well as MRI
images as radiomics data were extracted from the Alzheimer’s
Disease Neuroimaging Initiative (ADNI). Whereas, the genomics
and proteomics data needed to study cancer patients such as gene
expression, DNA methylation, and miRNA expression were
obtained from the TCGA database for six types of cancer,
including 1) Squamous cell lung carcinoma, 2) Breast invasive
carcinoma, 3) Glioblastoma multiforme, 4) Ovarian serous
cystadenocarcinoma, 5) Liver cancer, and 6) Kidney renal
clear cell carcinoma. After analyzing the data, preprocessing
and optimizing processes have been performed to reduce the
problems such as the existence of noisiness, data redundancy, and
missing data. Then, kernel matrices were created, which were
integrated using multi-kernel learning framework to create a
comprehensive and general matrix. These were the processes
that ultimately led to the creation of a predictive binary
classification model with support-vector machines (SVM). In
the case of cancer patients, it can be concluded that the use of
different types of data could greatly increase the accuracy of the
classificationmodel compared to the use of one type of data. More
precisely, the integration of the data caused the accuracy of the
model to reach a range of about 72–94%. In addition, the results
of the study indicated that high accuracy has been linked to breast
(94.29%) and kidney cancers (87.50%), respectively (Giang et al.,
2020).

Another study conducted in 2020, examined the use of ML
methods in the analysis of Acute lymphoblastic leukemia (ALL)
data. In this study, Li et al. extracted data related to gene
expression and DNA methylation from Gene Expression
Omnibus (GEO) database. After analyzing the obtained data
by Boruta and Monte Carlo feature selection methods, they
studied the differences of the two types of cancer, named
BCP-ALL and T-ALL, which was accompanied by important
results. For example, as a result of these studies, 7 expression
signature genes and 175 methylation signature genes were
obtained, in which two genes, including CD3D and VPREB3
were common. In addition, it has been implied that CD3D gene
has a major regulatory contribution in the cell and molecular
process of this type of cancer (Li et al., 2020).

In 2020, the integration of deep learning-based autoencoding
method with various omics fields, including genomic,
transcriptomics, and epigenomics (mRNA, miRNA, DNA
methylation, and copy number variations) involved in lung
adenocarcinoma was first carried out by Lee et al. In this
study, the aim was to achieve a risk classification model for
patients with lung cancer in order to accelerate the prognosis of
the disease in the early stages. It is also worth mentioning that in

Frontiers in Genetics | www.frontiersin.org January 2022 | Volume 13 | Article 82445110

Arjmand et al. Machine Learning in Onco-Multi-Omics

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


this study, the data obtained from the integration of omics
approaches were considered as training variables and the data
of each layer of omics field were solely analyzed to confirm the
created model. Accordingly, regarding training variables, TCGA
was used as a multi-omics database. However, both TCGA and
Gene Expression Omnibus (GEO) databases were used to collect
variables for validation process. After analyzing the input data to
Autoencoder, survival features and survival subgroups were
evaluated by Univariate Cox regression, Lasso regression, and
K-means clustering methods and algorithms. Next, the strength
of a statistical model was validated using random forest algorithm
along with the independent data obtained from each single omics
branches. As in previous studies, this study indicated that the
accuracy of the model resulting from the integration of omics
data is better than the accuracy of the data from analyzing each
branch of omics by deep learning-based autoencoding method.
The study also reported that adding patients’ clinical and personal
information to available data could increase accuracy and greatly
improve model performance (Lee et al., 2020).

In 2021, Zhang et al. also included their study in introducing
the deep learning methods into the field of multi-omics data
analysis of cancer. This study aims to evaluate the multi-omics
data of muscle-invasive bladder cancer (MIBC) based on deep
learning-based autoencoding method with intention to improve
prognostic approaches for this type of cancer. For this end, the
data related to gene expression, gene copy number variations,
miRNA expression, and DNA methylation was extracted from
TCGA-MIBC dataset and used them as input data to
autoencoders. As in the previous study, the data were
categorized as training and validating data. In addition,
algorithms such as random forest, Naïve Bayes, k-Nearest
Neighbor, and Adaboost were employed in data processing
stage. As a result of these analyzes, the data were divided into
two subtypes high-risk and low-risk patients, which yielded
significant results from the comparison of these two. For
instance, genomic and immunomics differences were observed
in these two groups. Also, the activity of signaling pathways and
biochemical processes related to the disease was observed more in
the high-risk group than in the other group. And finally, the
remarkable point about this study was the recognition of KRT7 as
a biomarker of MIBC (Zhang et al., 2021). However, the
application of deep learning methods is not limited to this
type of cancer. In this regard, some papers such as the study
by Hira et al. recently demonstrated that the use of deep learning-
based autoencoding method can be considered a practical
approach in the multi-omics data analysis of ovarian cancer
(Hira et al., 2021).

In addition, some studies demonstrated that ML approaches
have held further promise to enhance our understanding of the
prognosis of chemotherapy success for cancer patients. For
instance, in 2018, Borisov et al. evaluated the efficiencies of
anticancer drugs on cancer patients by transferring the data
from drug-treated cell line gene expression datasets to the
small cases of patients in combination with ML approaches. In
this regard, the categories of cell lines based on their IC50 values
were applied in parallel with the gene expression profiles as cell
line data. Regarding patients, gene expression profiles and

treatment outcomes were also used as the other source of
experiments data. To promote the research, the leave-one-out
procedure and AUC metric with a predefined threshold were
applied to investigate the features obtained from gene expression
datasets. In addition, threeMLmethods including, support vector
machines, binary trees, and random forests were employed to
analyze the data with more validity, in parallel with two previous
methods. Therefore, it can be concluded that the use of data
obtained from gene expression profiles of cell lines and their drug
treatments outcomes in the integration of ML approaches, can be
a promising tool to develop effective personalized medicine
approaches for cancer patients (Borisov et al., 2018).

However, the prognosis of chemotherapy success for
individual cancer patients by ML approaches is still far from
the ultimate solution, due to essential deficiency of preceding
cases (i.e., patients with known response to certain a type/regimen
of treatment and corresponding multi-omics profiles), which can
lead to extrapolation during ML application. Hence several
studies have been recently focused on addressing the possible
extrapolation problems in the application of ML methods in the
prognosis of cancer chemotherapy responses. For instance, in
2018, Borisov et al. highlighted the need to remove irrelevant
features from datasets to decrease the extrapolation. By drawing
on the concept of avoiding extrapolation, Borisov represented the
application of flexible data trimming (FDT) procedures such as
floating window projective separator (FloWPS) to improve the
performance of global MLmethods in increasing the quantity and
quality of prognostic biomarkers, which have a major
contribution to monitoring the chemotherapy treatment
responses (Borisov and Buzdin, 2019).

Similarly, in 2020, Tkachev et al. provided an in-depth analysis
of the work of FloWPS to enhance the efficiency of ML methods
in personalized cancer medicine based on omics data analysis.
This method, which is based on preventing the occurrence of
extrapolation in the feature space and increasing the feature
importance correlation, was examined on seven methods of
ML, including 1) Linear SVM, 2) Random forest, 3) Binomial
naïve Bayes, 4) Adaptive boosting, 5) Multi-layer perceptron, 6)
Tikhonov (ridge) regression, and 7) k nearest neighbors. The
application of FloWPS not only increased the quality and
efficiency of the first five mentioned approaches of ML but
also caused an increase in the AUC rate related to the
treatment response of 1,778 cancer patients. It should also be
noted that among the mentioned methods, the integration of
FloWPS to binomial naïve Bayes method has performed
remarkably well in data trimming (Tkachev et al., 2020).

Additionally, in 2021, Borisov et al. also demonstrated that
multiple myeloma (MM) patients act differently in response to
bortezomib (the inhibitor of the proteasome enzyme complex
within the cell) as one of the fundamental chemotherapy
approaches. Therefore, the authors tried to find prognostic
biomarkers to take a step toward targeted treatment of MM
patients by creating RNA sequencing profiles of three groups of
patients treated by bortezomib, doxorubicin, dexamethasone
(PAD), and bortezomib, cyclophosphamide, dexamethasone
(VCD), or treated by the combination of both PAD and VCD,
respectively. In this study, the patients’ profiles had been divided
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TABLE 1 | Challenges of multi-omics data analysis by ML and their solutions.

Challenges Consequences
of the challenge

Solution References

Complex data sets with a large
amount of additional meaningless
information in it

Existing patterns can difficultly be analyzed or
described in the vast amount of omics data layers.
In addition, classification accuracy will be
decrease and the prediction of meaningful data
will be difficult

1) Ensemble techniques Picard et al. (2021), Gupta
and Gupta, (2019), Caiafa
et al. (2021)

2) Distance based algorithms
3) Single learning based techniques
4) Deep learning method based on an auto-
encoder architecture
5) EMD method
6) dubbed ELCs

High number of omics data
variables compared to the study
sample

Data dimensionality increases (curse of
dimensionality)

Dimensionality reduction methods include: Picard et al. (2021), Mirza
et al. (2019)1) Linear FE methods such as PCA, MCIA, joint

NMF, and MOFA
2) Nonlinear FE methods such as t-SNE,
autoencoders, and representation learning
3) Filter methods of FS technique such as
mRMR, FCS, Information Gain, and ReliefF
4) Wrapper methods of FS techniques such as
RFE-SVM, Boruta, and jackstraw
5) Embedded methods of FS technique such as
LASSO, Elastic Net, and stability selection

Data heterogeneity (Data with
different types or different
distributions)

The balance of ML is upset and data integrity is
prevented

If there is naive feature concatenation-based data
integration:

Picard et al. (2021), Mirza
et al. (2019)

1) Tree-based methods such as decision trees
and random forest
2) penalized linear models such as Elastic net,
LASSO, and TANDEM
If there is simple feature concatenation-based
integration
1) MKL methods such as simple MKL and
Bayesian multitask MKL
2) Graphs and networks methods such as SNF,
NetICS, PARADIGM, and HetroMed
3) Latent sub-space methods such as iCluster+,
Scluster, and MV-RBM
4) Deep learning methods such as multimodal DBN,
multimodal DNN, improvedCPR, andAuDNNsynergy

Class imbalance It can lead to increase in the degree of overlapping
among the classes and limit the size of training
data. In addition, class distributions become
highly imbalanced. If the balance within a class is
lost then a small disjuncts is appeared

1) Data sampling methods such as: under sampling
the majority class algorithms, oversampling the
minority class algorithms, and combination of both
under sampling themajority class and oversampling
the minority class algorithms

Picard et al. (2021), Mirza
et al. (2019), Ali et al. (2013)

2) Cost-sensitive learningmethods such asMnet,
UNIPred, SVM_weight, and Spotlite
3) Ensemble methods such as Balanced Cascade,
EasyEnsemble, ensemble with WMV, and WELM
4) Evaluation measures methods such as Diablo,
SNN, WMV, and FPRF

Missing data It can lead to increase in parameters bias and
complexity of the analysis and reduction in
representative sample and statistical power

If there are sufficient amounts of sample: Picard et al. (2021), Mirza
et al. (2019), Kang, (2013)1) Listwise deletion

In the other cases:
1) Matrix factorization methods such as ALRA,
SVD-impute, and SparRec
2) Autoencoders methods such as MIDA, multilayer
autoencoder, and AutoImpute
3) Integrative imputation methods such as MOFA,
LF-IMVC, and ensemble regression imputation
4) Maximum likelihood approaches such as EM
algorithm and Direct Maximization
5) Single imputation methods such as replacement
with mean or mode values, hot-deck imputation,
regression imputation, and k-nearest neighbor
6) MI methods for liner analysis such as MI-MFA,
MCMC, and MICE
7) MI methods for non-liner analysis such as
MICE with RF, MIDA, and GMM-ELM

(Continued on following page)

Frontiers in Genetics | www.frontiersin.org January 2022 | Volume 13 | Article 82445112

Arjmand et al. Machine Learning in Onco-Multi-Omics

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


into two groups of good and poor responders by applying ML
algorithms. In this context, five ML methods, including support
vector machines (SVM), Tikhonov (ridge) regression (RR),
binomial naïve Bayes (BNB), random forest (RF), and multi-
layer perceptron (MLP) were developed of which BNB method
had the best performance for determining the PAD + VCD
cohort and MLP method was an optimal solution for the
VCD cohort. Additionally, it should be noted that in both
successful results, FloWPS dynamic data trimming method
was used as a practical approach to transforming data from a
high-dimensional space into a low-dimensional space.
Furthermore, the RNAseq and microarray datasets results
implied that in both groups of good and poor responders, five
genes, including FGFR3, MAF, IGHA2, IGHV1-69, and GRB14
were overexpressed (Borisov et al., 2021).

If the perspective of cancer management extends from a single
disease to the management of different types of cancer, it becomes
clear that some therapeutic approaches, such as radiotherapy, still
face significant challenges. Therefore, recently, Lewis et al.
demonstrated that the use of ML methods and algorithms in
integration with multi-omics data analysis of cancer can be a
beneficial approach to identify some biomarkers in evaluating
radio sensitivity of tumors. Since data related to tumor
metabolomics are not widely available, methods such as flux
balance analysis (FBA) can have a great contribution to address
this problem. Therefore, in this study, the personal FBA model is
applied, which was developed by the integration of genomic,
transcriptomic, kinetic, and thermodynamic data from the
aggregation of 716 radiation-sensitive data and 199 radiation-
resistant patient tumors. This model was then analyzed in
combination with ML classifiers. As a result of this study, the

high accuracy (AUC about 0.906 ± 0.004) was reported in the
model used to integrate data from different omics fields. In
addition, this method played an important role in identifying
subgroups of patients as well as metabolic biomarkers in
resistance to ionizing radiation (Lewis and Kemp, 2021).

In the end it should be stated that the application of ML
methods and algorithms goes far beyond what is stated in this
article and can cover a wide range of cancers such as liver
(Chaudhary et al., 2018), prostate (Wang et al., 2021a),
colorectal (Kammonah, 2021), and premenopausal breast
cancer (Fröhlich et al., 2018).

CHALLENGES

When the data analysis goes beyond a branch of omics science
and is examined in several layers of multi-omics field, the process
of data analysis faces many challenges due to the creation of a vast
and extensive source of data with intricate communications.
Therefore, being aware of these challenges as well as being
familiar with some possible solutions to solve them can pave
the way for the desired goals (Table 1) (Picard et al., 2021).

CONCLUSION AND FUTURE
PERSPECTIVE

Cancer, as a world wild serious disease, can affect various
biological layers of the human body. Due to the complex
mechanisms involved in cancer, the use of the realm called
omics and its various branches has recently attracted the

TABLE 1 | (Continued) Challenges of multi-omics data analysis by ML and their solutions.

Challenges Consequences
of the challenge

Solution References

Data scalability Practical data processing workflow for multi-
OMICS projects based on ML approaches
becomes difficult and problematic on a single
computer

1) Efficient algorithms for big data such as non-
iterative neural networks, scalable MKLmethods,
and convex optimization for big data

Mirza et al. (2019)

2) Online training algorithms such as OS-ELM,
IDSVM, and online deep learning
3) Distributed data processing methods such as
Spark’s MLlib, Apache Mahout, and Google’s
Tensor Flow
4) Cloud computing-based solutions such as
Galaxy Cloud, MetaboAnalyst, XCMS online,
Omics pipe, and ML-as-a-service

ALRA, Adaptively-thresholded low-rank approximation; AuDNNsynergy, DeepNeural Network Synergymodel with Autoencoders; Diablo, data integration analysis for biomarker discovery
using latent components; ELCs, embedding label correlations; ELM, extreme learning machine; EM, expectation-minimization; EMD, empirical mode decomposition; FCS, correlation-
based FS; FE, Feature extraction; FPRF, fuzzy pattern random forest; FS, Feature selection; GMM,Gaussianmixturemodel; IDSVM, incremental and decremental support vector machine;
improved CPR, improved Clustering and PageRank; Joint NMF, Joint non-negative matrix factorization; KRR, kernel ridge regression; LASSO, least absolute shrinkage and selection
operator; LF-IMVC, Late Fusion Incomplete Multi-View Clustering; MCIA, Multiple co-inertia analysis; MCMC, Markov-chain Monte Carlo; MI, Multiple imputation; MICE, multivariate
imputation by chained equation; MIDA, denoising autoencoder-basedMI; MI-MFA, MI for multiple factor analysis; MKL, Multiple kernel learning; ML,Machine learning; MOFA, Multi-omics
factor analysis; mRMR, maximal-relevance and minimal-redundancy; multimodal DBN, multimodal deep belief networks; multimodal DNN, multimodal deep neural networks; MV-RBM,
mixed variable restricted Boltzmann machine; NetICS, Network-based Integration of Multi-omics Data; OS-ELM, online sequential extreme learning machine; PARADIGM, PAthway
Recognition Algorithm using Data Integration on Genomic Models; PCA, Principal component analysis method; RF, random forest; RFE-SVM, recursive feature elimination-support vector
machine; SNF, similarity network fusion; SNN, super-layered neural network architecture; SparRec, Sparse Recovery; SVD, singular value decomposition; SVM, support vector machine;
t-SNE, t-distributed stochastic neighbor embedding; UNIPred, unbalance-aware network integration and prediction of protein functions; WELM, weighted extreme learning machine;
WMV, weighted majority voting.
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attention of many researchers. Since the interaction between the
biological processes involved in cancer is complex and occurs in
multiple layers, the study of the mechanisms involved in different
types of cancer requires molecular studies in several layers of
omics called multi-omics field. Due to the high volume of data in
the realm of multi-omics, the application of computing
technologies such as ML has been highlighted. Today, ML
algorithms and method was heralded as a major breakthrough
and a pioneer approach in the analysis of cancer multi-omics data
with intention to the prognosis, diagnosis, classification, and
identification of biomarkers. Therefore, it can be promising to
discover more effective and accurate diagnostic and therapeutic
approaches to manage and control cancer growth in future
generations (Biswas and Chakrabarti, 2020).

In recent years, a variety of studies aimed to classify patients
and identify cancer biomarkers using ML methods in integration
with multi-omics data analysis (Nicora et al., 2020; Wang et al.,
2021a; Gallardo-Gómez et al., 2022). However, Wang et al. went
one step further and suggestedMOGONET as a supervisedmulti-
omics integration framework to facilitate data analysis and data
classification. In a comparative study, MOGONET was more
effective and efficient than the integrated multi-omics methods in
performance classification tasks. In addition, MOGONET can
efficiently perform cross-omics correlations and omics-specific
learning via employing view correlation discovery network
(VCDN) and graph convolutional networks (GCN),
respectively. Therefore, they can perform their classification
task well. Additionally, MAGONET can be used for a variety
of omics data types. Moreover, in most cases, MOGONET does
not react much to the change of the k parameter, which can show
the superiority of this framework well. Therefore, this framework
can be a very effective approach to diagnose different biomarkers
and pave the way for the discovery of treatment approaches in
different types of cancers (Wang et al., 2021b).

Another breakthrough in the integration of computing
analysis with the omics field is the introduction of an
algorithm called QueryFuse. The development of this
algorithm followed that RNA-seq approach, which can be used
as one of the favorite platforms for examining the fusion of genes,
is costly and time-consuming. The development of the QueryFuse
algorithm is a great breakthrough to solve the existing problems

and facilitate the identification of gene-specific fusion from pre-
aligned RNA-seq data. In addition to identifying all isoforms of
hypothesized fusions and most of the experimentally validated
fusions in data sets, the QueryFuse algorithm was able to detect
the highest recall rate (90%) and precision rates (99%) in the data
sets compared to TopHatFusion and defuse algorithms. Hence,
this algorithm shows high superiority over the other two
algorithms in both real and simulated data sets (Tan, 2020).

Another important issue in diagnosing diseases such as cancer
is identifying the copy number variants (CNVs), Studies have
shown that CNVs play a key role in cancer metastasis, which can
be obtained through exomes of circulating tumor cells and cell-
free DNA (cfDNA). However, data obtained from genomic
studies are abundant and current methods are not completely
reliable. Hence, the use of bioinformatics approaches and
algorithms such as Wisecondor WisecondorX, ExomeCNV,
SAvvyCNV, MFCNV, VarScan 2, ADTEx, and CNV_IFTV
can facilitate the study of the obtained data (Pös et al., 2021).

In addition, recently, traces of the entry of ML into the field of
multi-omics data analysis from neuro-oncology research have
been seen. So that the application of this advanced technology in
various fields of cancer is getting more colorful and effective
(Takahashi et al., 2021).
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