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Abstract

The protective effect of heme oxygenase-1 (HO-1) expression in cardiovascular disease has been 

previously demonstrated using transgenic animal models in which HO-1 is constitutively 

overexpressed in the heart. However, the temporal requirements for protection by HO-1 induction 

relative to injury have not been investigated, but are essential to employ HO-1 as a therapeutic 

strategy in human cardiovascular disease states. Therefore, we generated mice with cardiac-

specific, tamoxifen (TAM)-inducible overexpression of a human HO-1 (hHO-1) transgene (MHC-

HO-1 mice) by breeding mice with cardiac-specific expression of a TAM-inducible Cre 

recombinase (MHC-Cre mice) with mice containing an hHO-1 transgene preceded by a floxed 

stop signal (CBA-flox mice). MHC-HO-1 overexpress the HO-1 gene and enzymatically protein 

following TAM administration (40 mg/kg body weight on two consecutive days). In MHC-Cre 

controls, TAM administration leads to severe, acute cardiac toxicity, cardiomyocyte necrosis, and 

80% mortality by day 3. This cardiac toxicity is accompanied by a significant increase in 

inflammatory cells in the heart that are predominantly neutrophils. In MHC-HO-1 mice, HO-1 

overexpression ameliorates the depression of cardiac function and high mortality rate observed in 

MHC-Cre mice following TAM administration and attenuates cardiomyocyte necrosis and 

neutrophil infiltration. These results highlight that HO-1 induction is sufficient to prevent the 
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depression of cardiac function observed in mice with TAM-inducible Cre recombinase expression 

by protecting the heart from necrosis and neutrophil infiltration. These findings are important 

because MHC-Cre mice are widely used in cardiovascular research despite the limitations 

imposed by Cre-induced cardiac toxicity and also because inflammation is an important 

pathological component of many human cardiovascular diseases.
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The heme oxygenase (HO) family of enzymes catalyze the initial and rate-limiting step of 

heme catabolism, resulting in the formation of equimolar amounts of carbon monoxide 

(CO), iron, and biliverdin, which is subsequently converted to bilirubin by biliverdin 

reductase (2, 3). Two HO isoforms have been described. HO-1 is inducible while HO-2 is 

expressed constitutively (4). HO-1 is of particular interest because it is a potential 

therapeutic target for a number of diseases. In conditions resulting in cellular stress or tissue 

injury, including cardiovascular diseases such as ischemia/reperfusion injury and cardiac 

allograft rejection, HO-1 expression is robustly induced as a protective response (5, 6). CO 

and bilirubin, the products of heme catabolism by HO-1, have antiapoptotic, anti-

inflammatory, and cytoprotective effects, partially due to the scavenging of reactive oxygen 

species and down-regulation of pro-inflammatory cytokines (7–9). Iron produced by heme 

degradation is diverted from the pro-oxidant Fenton reaction because it is sequestered by 

cellular ferritin, which is co-induced with HO-1 (10).

Cre/loxP technology was adapted from the bacteriophage P1 to manipulate the expression of 

specific genes. Expression of the Cre recombinase protein causes excision of DNA 

sequences that are flanked (floxed) by loxP sites (11). A tissue-specific promoter can drive 

Cre recombinase expression, such that the floxed sequence is only deleted in a specific 

cellular compartment. However, long-term expression of Cre recombinase in cells or in 

tissues can result in toxicity due to alteration of proliferation, apoptotic pathways, and 

energy/metabolism (12–14). For example, it has been demonstrated that constitutive 

expression of Cre recombinase driven by the cardiac-specific α-myosin heavy chain (MHC) 

promoter results in cardiac toxicity (15). Additionally, constitutive Cre expression precludes 

the knockdown of genes that are embryonic lethal and even in mice that live to adult age, 

makes it possible for compensatory changes to occur at the cellular level that confound the 

interpretation of gene deletion studies. To circumvent this problem and to achieve temporal 

control of Cre/loxP genetic recombination in the heart, Sohal and colleagues developed a 

mouse model in which Cre recombinase is flanked on either side by a mutated estrogen 

receptor (mer) ligand-binding domain and restricted to cardiac-specific expression using the 

α-MHC promoter (Myh6-MerCreMer, hereafter referred to as MHC-Cre) (1). The Cre 

recombinase-mer fusion protein is insensitive to endogenous estrogen, but binds specifically 

to tamoxifen (TAM), a selective estrogen receptor modulator. Following TAM 

administration, Cre recombinase is released from cytosolic sequestration by Hsp90 and 

translocates to the nucleus to mediate recombination at loxP sites (16–18). Numerous groups 

have used MHC-Cre mice to achieve cardiac-restricted TAM-inducible gene knockdown. 
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However, recently, it was reported that induction of MHC-Cre with TAM causes severe 

systolic dysfunction and compensatory cardiac hypertrophy by decreasing cardiac 

mitochondrial ATP production and altering the expression of genes involved in calcium 

handling (19, 20).

MHC-Cre mice can be used to achieve cell-specific overexpression of a gene by when they 

are bred with transgenic mouse containing a floxed stop signal followed by the gene of 

interest downstream of a highly active promoter. In the resulting double-transgenic mice, the 

gene of interest is only expressed after administration of TAM. Here, we generated such a 

mouse model to study the effect of cardiac-specific HO-1 overexpression in acute cardiac 

injury using the MHC-Cre mouse to achieve cardiac-specific, temporally-regulated 

induction and overexpression of a human HO-1 (hHO-1) transgene. We report that 

overexpression of cardiac-specific HO-1 inhibits acute systolic dysfunction and cardiac 

injury in MHC-Cre mice treated with TAM and reduces cardiac infiltration by neutrophils.

MATERIAL AND METHODS

Animals

Male and female mice between 10 – 25 weeks of age were used in all experiments. Three 

transgenic mouse lines were utilized; 1) CBA-flox mice, containing a hybrid chicken β-actin 

(CBA) promoter upstream of a floxed β-galactosidase gene (β-gal) and stop-codon cassette 

that is followed by the hHO-1 gene (hmox-1); 2) MHC-Cre mice (Jackson Labs, Bar 

Harborm Me, no. 005650) with cardiac-specific Cre-recombinase that is TAM-inducible (1); 

and 3) MHC-HO-1 mice, which were generated by mating CBA-flox mice to MHC-Cre 

mice to achieve cardiac-specific TAM-inducible hHO-1 overexpression. CBA-flox mice 

were generated using the pCMV flox vector (a generous gift from Drs. M.J. Moeller and L. 

Holzman, University of Michigan, Ann Arbor, MI). This vector contains the hybrid 

promoter with an enhancer element and a chimeric intron to enhance the in vivo activity of 

the promoter (21). The hHO-1 (hmox-1) gene cDNA was inserted downstream of the 

promoter and β-gal-stop-codon cassette. The CBA-flox construct was microinjected into F2 

hybrid eggs from C57BL/6 F1 mice at the UAB transgenic core facility and mice were 

screened for the construct with β-gal-specific primers. DNA isolated from tail was used to 

confirm the presence of the Cre and/or CBA-flox sequence in the transgenic mice used in 

this study. Primer sequences were as follows (5’ – 3’): CBA 5’-

CGTACCGGTCATCATCACCATCACCATTGACTCG-3’ and 5’-

TCTCTGCCTGGGTGTGCACCTCCTTGG-3’; Cre 5’-

GCCAGGCGTTTTCTGAGCATAC-3’ and 5’-CACCATTGCCCCTGTTTCACTATC-3’. 

MHC-HO-1 mice were inbred for at least 5 generations before they were used for 

experiments.

TAM (Sigma) was dissolved in peanut oil by brief sonication and administered by 

intraperitoneal injection. A dose of 40 mg/kg body weight on two consecutive days (total 

dose of 80 mg/kg body weight) was used in all experiments. Studies were initiated one day 

after the second TAM administration. Animal care and manipulations for experimentation 

were conducted in accordance with the Guide for the Care and Use of Laboratory Animals 

and with approval of the UAB Institutional Animal Care and Use Committee.
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Transthoracic Echocardiography

Echocardiography was performed as described previously (6). Briefly, mice were 

anesthetized with 1.5% isoflurane in 95% O2 and placed in the supine position. Body 

temperature was maintained at 36.5–37.5°C on a heated platform, and electrocardiograms 

and temperature were continuously monitored. Cardiac function was assessed (M-mode, and 

2D) with a VisualSonics VeVo 770 Imaging System (VisualSonics, Toronto, Canada) 

equipped with a high-frequency 30MHz probe. Data analysis was performed using 

VisualSonics software (VisualSonics, Toronto, Canada). All parameters were measured in 

the parasternal long-axis view over at least 5 consecutive cardiac cycles and averaged from 

at least 3 measurements. These parameters include left ventricular (LV) end-diastolic and 

end-systolic diameter (EDD and ESD), anterior and posterior wall thickness (A/PWT) in 

systole (s) and diastole (d), LV ejection fraction (EF), and heart rate. End-diastolic and end-

systolic volume was measured using the modified Simpson’s method. LV systolic function 

was indexed by LVEF (EF = [EDV-ESV]/EDVx100) and LV fractional shortening (FS = 

[EDD-ESD]/EDDx100).

HO-1 Gene Expression

Total RNA was isolated from ventricular myocardium using TRIzol reagent (Invitrogen) 

according to the manufacturer’s protocol. The RNase-Free DNase Set (Qiagen) was used to 

digest contaminating genomic DNA in the RNA sample and RNA cleanup was performed 

using the RNeasy kit according to the manufacturer’s protocol (Qiagen). One microgram of 

total RNA was converted to cDNA using the QuantiTect Reverse Transcription Kit (Qiagen) 

and quantitative real-time PCR was performed with SYBR Green Mastermix (Invitrogen) 

and 10 pmol primers for mHO-1, hHO-1, and mouse GAPDH. Primer sequences were as 

follows (5’ – 3’): mouse HO-1, 5’-GGTGATGGCTTCCTTGTACC-3’ and 5’-

AGTGAGGCCCATACCAGAAG-3’; human HO-1, 5’-

CATGACACCAAGGACCAGAG-3’ and 5’-AGTGTAAGGACCCATCGGAG-3’; mouse 

GAPDH, 5’-ATCATCCCTGCATCCACT-3’ and 5’-ATCCACGACGGACACATT-3’. 

Relative expression of mHO-1 and hHO-1 was normalized to mouse GAPDH as an internal 

control and quantified using the ΔΔCt method. Samples were performed in triplicate.

Western Immunoblotting

Protein extraction and immunoblotting were performed as previously described (22). 

Briefly, ventricular cardiac tissue was homogenized in RIPA buffer, electrophoresed in a 

10% SDS-polyacrylamide gel, and transferred onto a Hybond C Extra membrane 

(Amersham Biosciences). Membranes were incubated with anti-HO-1 (1:5000 dilution; 

Stressgen) followed by a horseradish peroxidase (HRP)-conjugated goat anti-rabbit IgG 

secondary antibody (1:10000; Jaskson ImmunoResearch Laboratories, West Grove, PA), 

and HRP activity was detected by chemiluminesence. Membranes were then stripped and 

reprobed with anti-mouse GAPDH antibody to confirm equal loading and transfer.

HO Enzyme Activity Measurement

Activity of the HO enzyme in cardiac tissue was measured as a function of bilirubin 

generation, as previously described (23). Briefly, tissue was homogenized in collection 
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buffer (200 mmol/l KH2PO4, 135 mmol/l KCl, 0.1 mmol/l EDTA, pH 7.4) by sonication and 

then centrifuged at 10 000 × g for 20 minutes. The supernatant was collected for 

ultracentrifugation (100 000 × g, 4 °C, 60 min.; Beckman L7-35 Ultracentrifuge, 70 Ti rotor, 

Indianapolis, IN). The pellet was resuspended in activity buffer (100 mmol/l KH2PO4, 2 

mmol/l MgCl2, pH 7.4), and then used to determine the HO activity after addition of rat 

liver cytosol (source of biliverdin reductase; 2 mg/assay), hemin (20 µmol/l), glucose-6-

phosphate (2 mmol/l), glucose-6-phosphate dehydrogenase (0.2 U), and nicotinamide 

adenine dinucleotide phosphate (0.8 mmol/l). The reaction was incubated for 60 minutes at 

37 °C in the dark and the bilirubin formed was extracted with chloroform, measured at 

wavelengths of 464 to 530 nm, and enzyme activity was expressed as picomoles of bilirubin 

formed per 60 minutes per milligram of protein.

Immunohistochemistry and Light Microscopy

A mid-sagittal section of the heart was fixed in 10% neutral buffered formalin for 16 hours, 

stored in 70% ethanol, and embedded in paraffin. 5 µm sections were deparaffinized in 

xylene solution and rehydrated. Antigen retrieval was performed in Trilogy solution (35 min 

at 95 °C). Endogenous peroxidase activity was blocked with 3% hydrogen peroxide. 

Sections were blocked in 5% normal goat serum and incubated for 24 hours with polyclonal 

rabbit anti-HO-1 antibody (1:1000, SPA-895, Stressgen) in PBST (PBS, 0.1% Tween 20). 

Slides were incubated in peroxidase-conjugated goat anti-rabbit antibody for 1 hour at room 

temperature. A VIP substrate kit (Vector Laboratories, Burlingame, CA) was used according 

to the manufacturer’s protocol to visualize HO-1 expression levels in the heart. Sections 

were dehydrated using xylenes and ethanol and then mounted.

For the study of TAM/Cre mediate cardiac injury, 5 µm sections were stained with 

hematoxylin and eosin (H&E). Cardiac pathology was assessed by a blinded reviewer from 

at least three mice from each group. Beta-galactosidase enzyme reactions using X-gal 

reagent were performed on frozen sections of myocardium to detect expression of the CBA-

flox construct. Tissue was embedded in Optimal Cutting Temperature Compound after 

fixation in 2% paraformaldehyde and overnight incubation in 20% sucrose solution. 5 µm 

sections were incubated with reaction solution (66 mM Na2HPO4, 33 mM NaH2PO4, 2 mM 

MgCl2, 5 mM K3FeCN6, 5 mM K4FeCN6, 1 mg/ml X-gal) at room temperature for 16–24 

hours then washed and mounted in glycerol. Images were captured using a Lecia DM IRB 

microscope (Leica Microsystems, Bannockburn, IL) and Image-Pro Plus software (Media 

Cybernetics, Bethesda, MD).

Isolation of Cardiac Leukocytes

Mice were anesthetized with isoflurane (1.5% in 95% O2) and the heart was perfused with 

10 ml of ice-cold saline through the inferior vena cava. The heart was explanted and washed 

with PBS. Atria and the great vessels were removed and the myocardium was minced into 

small pieces and digested using 1.67 Wünsch U/ml Liberase DL (Roche Diagnostics, 

Indianapolis, IN) in RPMI-1640 medium (HyClone, South Logan, UT) for 1 hour at 37°C. 

PEB buffer (PBS, 2mM EDTA, 0.5% BSA) was added to disrupt calcium-depended cell-cell 

complexes and to inactivate the Liberase enzyme. Dissaggregation was completed by 

drawing the digested suspension through a 21G needle. The homogenate was passed through 
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a 70-µm nylon filter (Fisher) to remove undigested and fibrogenous material and then 

centrifuged at 300 × g. The pellet was resuspended in buffered ammonium chloride to lyse 

red blood cells. After washing in PBS, cells were counted and used for experiments.

Flow Cytometry

Cells were incubated with anti-mouse CD16/32 for 10 minutes on ice to block nonspecific 

binding to FCγ3 receptors. Cells were initially stained with allophycocyanin-conjugated 

CD45.2 (clone 104), anti-mouse major histocompatibility complex class II (MHC II) biotin 

(clone M5/114.15.2), phycoerythrin-conjugated anti-mouse Gr-1 (Ly6G, clone RB6-8C5) 

and fluorescein isothicyanate-conjugated anti-mouse CD11b (clone M1/70) or CD11c (clone 

HL3) for 30 minutes on ice. Cells were washed and stained with peridinin chlorophyll 

protein complex (PerCP)-conjugated anti-mouse streptavidin for an additional 30 minutes on 

ice. Isotype-matched, fluorescently conjugated antibodies of irrelevant specificity were used 

as controls. Antibodies for flow cytometry were purchased from eBioscience. Data 

acquisition was performed on a FACSCalibur flow cytometer (BD Biosciences) and results 

were analyzed using FlowJo Software (Tree Star Inc, Ashland, OR).

Statistical Analysis

Data are presented as mean ± standard error of the mean (s.e.m.). The Student t test was 

used for comparison between two groups. ANOVA and the Newman-Keuls post-test were 

used for analyses comparing more than two groups. Differences were considered statistically 

significant at P < 0.05.

RESULTS

Generation and characterization of mice with cardiac-specific TAM-inducible HO-1 
overexpression

Mice with cardiac-specific, TAM-inducible HO-1 expression (MHC-HO-1) were generated 

by breeding MHC-Cre mice with CBA-flox mice. X-gal staining was performed on 

histological sections to confirm expression of the β-galactosidase gene in the hearts of CBA-

flox mice using wild-type littermates as controls (Figure 1A). HO-1 induction in the heart of 

MHC-HO-1 mice was assessed after administration of two doses of TAM (40 mg/kg of 

body weight per dose) on consecutive days by intraperitoneal injection. Using human-HO-1-

specific primers, induction of hHO-1 mRNA occurred 1 day after TAM, and overexpression 

peaked at day 3 (Figure 1B). TAM-mediated Cre activation also caused co-induction of 

endogenous mouse HO-1 (mHO-1), which was detected using mouse-specific primers 

(Online Figure I). Western blot using antibody with cross-reactivity for both human and 

mouse HO-1 revealed similar induction kinetics of HO-1 overexpression (Figure 1C). These 

results indicate very low basal expression of HO-1 in the heart and tight regulation of hHO-1 

expression, as CBA-flox mice and untreated MHC-HO-1 mice do not express detectable 

levels of HO-1 protein. However, 5 days after TAM administration, cardiac expression of 

the HO-1 gene and protein decreases.

To confirm that the hHO-1 protein is enzymatically active, HO activity assays were 

performed using purified cardiac microsomal fractions from MHC-HO-1 mice and controls 
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(Figure 1D). Peak HO activity in the heart coincides with maximal induction of the HO-1 

gene and protein at day 3. Immunohistochemistry of HO-1 expression in the heart of MHC-

HO-1 mice after TAM administration showed robust HO-1 overexpression compared to 

TAM treated CBA-flox mice or vehicle treated controls (Figure 1E). Interestingly, the level 

of HO-1 overexpression in adjacent cardiomyocytes is heterogeneous (Figure 1E). No HO-1 

induction was detectable in sections of liver, spleen, kidney and skeletal muscle (data not 

shown). Therefore, stop codon excision within the CBA-flox construct and subsequent 

hHO-1 overexpression occurred only after TAM administration and only in the presence of 

the MHC-Cre fusion protein.

Cre activation but not TAM alone induces endogenous mHO-1 and transgenic hHO-1 in the 
heart of MHC-HO-1 mice

To confirm that HO-1 overexpression in MHC-HO-1 mice is specifically the result of 

induction of HO-1 due to Cre-mediated recombination, CBA-flox mice, which lack Cre 

recombinase, were treated with TAM or vehicle. mHO-1 gene expression in the heart was 

analyzed by real-time PCR to determine if TAM alone induces (endogenous) mHO-1 

expression (Figure 2A). There was no significant difference in mHO-1 induction after TAM 

compared to vehicle treated controls (p = 0.273). Therefore, TAM alone does not induce 

endogenous mHO-1.

Although TAM does not cause endogenous HO-1 expression, TAM-mediated Cre-activation 

may induce mHO-1. Therefore, MHC-HO-1 and MHC-Cre (lacks the hHO-1 transgene) 

mice were treated with TAM or vehicle and mHO-1 and hHO-1 expression was analyzed in 

the heart by real-time PCR (Figure 2B). Cre activation by TAM caused significant induction 

of mHO-1 in MHC-Cre and MHC-HO-1 mice (p=0.008 and p=0.001, respectively, relative 

to vehicle treated controls). However, induction of hHO-1 only occurs in MHC-HO-1 mice 

and this induction is over 2-fold greater than mHO-1. Thus, activation of Cre by TAM, but 

not TAM alone, causes transient induction of mHO-1 in mice containing the MHC-Cre 

construct, independent of the presence of a floxed sequence.

HO-1 transgenic mice have normal baseline cardiac phenotypes

Although HO-1 is an antioxidant and cytoprotective enzyme, overexpression of HO-1 in the 

heart of MHC-HO-1 mice could be toxic to cardiomyocytes, leading to their death, and thus, 

the observed decrease in hHO-1 expression at day 5 after TAM. Therefore, 

echocardiographic assessment of cardiac structure and mechanical function was performed 

in humanized HO-1 transgenic (HBAC) mice (Table 1). These mice constitutively 

overexpress hHO-1 in every organ system (20-fold in the heart), but are deficient for 

expression of mHO-1 (23). Compared to untreated CBA-flox controls, age-matched HBAC 

mice exhibit no signs of cardiac dysfunction or structural remodeling. Therefore, it is 

unlikely that increased cardiac hHO-1 in MHC-HO-1 mice leads to cardiomyocyte death.

To confirm that TAM itself does not cause systolic dysfunction or structural remodeling, 

cardiac parameters were assessed by echocardiography at day 1, 3, and 5 in CBA-flox mice 

after treatment with TAM and compared to untreated controls (Table 1 and data not shown). 

TAM does not cause depression of cardiac function or structural changes in the heart. In 
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addition, none of the parameters that were examined were significantly different in untreated 

MHC-Cre and MHC-HO-1 mice compared to controls. Therefore, neither TAM 

administration nor modulation of HO-1 expression alone affect cardiac function or cause 

cardiac remodeling.

HO-1 overexpression prevents lethal Cre-induced cardiac toxicity

It has recently been reported that TAM-mediated activation of Cre in MHC-Cre mice causes 

cardiac dysfunction that can be lethal (20). Therefore, survival of CBA-flox, MHC-Cre, and 

MHC-HO-1 mice was monitored following TAM administration (Figure 3A). Strikingly, 

TAM-mediated Cre-induction resulted in 80% mortality by day 3 in MHC-Cre mice. 

However induction of the hHO-1 transgene in MHC-HO-1 mice provided a significant 

survival advantage, with a mortality rate of only 8% by day 3 and 16% by day 7. TAM alone 

caused no mortality when administered to control CBA-flox mice.

Next, echocardiography was performed to monitor cardiac function after TAM 

administration (Figure 3B and Table 2). In MHC-Cre negative controls (CBA-flox mice), 

TAM administration did not cause a significant change in any of the parameters assessed. 

However, 1 day after TAM administration left ventricular fractional shortening (FS) 

decreased significantly in MHC-Cre mice (23.75%) but not MHC-HO-1 mice (32.62%) 

compared to CBA-flox controls (37.87%). Mortality by day 3 precluded the further analysis 

of FS in MHC-Cre mice, while HO-1 overexpression in MHC-HO-1 mice prevented lethal 

cardiomyopathy and significant changes in FS up to day 5, relative to controls (Figure 3B). 

Echocardiographic analysis of the heart one day after TAM administration revealed that Cre 

causes LV chamber dilatation and thinning of the anterior and posterior (septal) walls. The 

extent of this remodeling is decreased by HO-1 overexpression in MHC-HO-1 mice (Table 

2). Thus, hHO-1 overexpression in MHC-HO-1 mice prevents the Cre-induced acute 

systolic dysfunction and cardiac remodeling.

HO-1 prevents severe cardiac inflammation and myocyte damage caused by MHC-Cre

To determine the cause of FS depression and mortality in MHC-Cre mice as well as the 

protective effect of HO-1, cardiac sections were harvested two days after treatment with 

TAM or vehicle and stained with H&E (Figure 4). In mice lacking TAM-inducible Cre 

(CBA-flox), administration of TAM did not perturb normal myocardial cytoarchitecture or 

induce myocardial inflammation, compared to vehicle treated controls (Figure 4A–C). 

However, TAM administration to MHC-Cre mice resulted in severe, diffuse, interstitial 

inflammation of the myocardium and signs of myocyte damage, including cardiomyocyte 

cytoplasmic vacuolization, hypereosinophilia, and loss of myocyte striations. In addition, 

examination of intramyocardial arteries and the endocardium revealed plump endothelial 

cells, a common characteristic during active inflammation, and clusters of intravascular 

inflammatory cells (Figure 4D–F).(24) Examination of the morphological characteristics of 

the cellular infiltrate revealed many cells with a multi-lobular nucleus, characteristic of 

polymorphonuclear leukocytes (neutrophils) (Figure 4F, inset). In MHC-HO-1 mice treated 

with TAM there was no evidence of myocardial damage (Figure 4G–I) and only rare foci of 

inflammation (Figure 4I, inset). Toluidine blue staining indicated the presence of mast cells 

only in MHC-Cre mice treated with TAM, but not vehicle treated controls or CBA and 
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MHC-HO-1 mice treated with TAM (data not shown). By H&E staining, necrosis and 

inflammation were not observed in kidney, skeletal muscle, and spleen (data not shown), 

indicating that the cause of mortality in MHC-Cre mice is due to cardiac-specific expression 

of the Cre-recombinase.

HO-1 protects the myocardium by preventing Cre-induced infiltration of neutrophils

To quantitate the extent of inflammation in the heart caused by induction of Cre, cells 

isolated from MHC-Cre and MHC-HO-1 myocardium were stained with CD45, a pan-

leukocyte marker and analyzed by flow cytometry (Figure 5A). There was no significant 

difference in the proportion of CD45+ cells in the heart of MHC-Cre versus MHC-HO-1 

hearts treated with vehicle. However, relative to vehicle, TAM-inducible Cre activation 

caused a 3-fold increase in CD45+ cells in the myocardium of MHC-Cre mice (4.82 ± 

0.46% versus 15.0 ± 1.76%, respectively; p ≤ 0.01, n = 3–5). HO-1 induction abrogated Cre-

induced cardiac inflammation, with no significant difference in the proportion of CD45+ 

cells in MHC-HO-1 mice treated with TAM or vehicle (3.71 ± 0.95% versus 3.54 ± 0.19%, 

respectively; p = 0.88, n = 3) (Figure 5B). These data indicate that TAM-inducible Cre 

activation causes significant inflammation in the heart, which is prevented by induction of 

cardiac-specific hHO-1. Further characterization of CD45+ cells indicated that the majority 

of the infiltrating cells in TAM-treated MHC-Cre mice were MHCII− Gr-1+ CD11b+ 

neutrophils (Figure 5C). This was a 18-fold increase compared to vehicle treated controls 

(45.1 ± 2.91% versus 2.56 ± 0.21%, respectively; p<0.001, n = 3–5) and approximately a 7-

fold increase compared to MHC-HO-1 mice treated with TAM (45.1 ± 2.91% versus 6.33 ± 

0.21%, respectively; p<0.001, n = 3–5) (Figure 5D and E). Thus, HO-1 expression prevents 

neutrophil infiltration in response to TAM-mediated Cre activation.

Relative to MHC-Cre mice treated with vehicle, TAM administration caused a significant 

decrease in the proportion (20.0 ± 3.3% versus 58.0 ± 7.7%; p≤0.05) but not absolute 

number (4125.2 ± 1003 versus 3313.3 ± 770.4, P = 0.54) of macrophages in the heart. There 

was no significant difference in the absolute number of cardiac macrophages or dendritic 

cells between MHC-Cre and MHC-HO-1 mice treated with vehicle (3313.3 ± 770.4 versus 

2041.3 ± 98.3, p = 0.18) or TAM (4125.2 ± 1003 versus 1345.3 ± 240.6, p = 0.08) (Figure 

5F and G and data not shown). Together, these results indicate that neutrophils, not 

monocytes/macrophages or dendritic cells, play a significant role in acute Cre-mediated 

cardiac toxicity.

DISCUSSION

We have demonstrated that cardiac-specific overexpression of HO-1 is protective to the 

acute cardiac toxicity caused by TAM-inducible Cre recombinase. In accordance with 

previous studies, we show that TAM administration in MHC-Cre mice causes systolic 

dysfunction and dilated cardiomyopathy with greater than 80% mortality by day three (19, 

20). TAM-mediated Cre activation resulted in severe cardiac inflammation with prominent 

neutrophil infiltration and myocyte necrosis. In MHC-HO-1 mice, which overexpress 

cardiac-specific HO-1 after TAM administration, depression of cardiac function and 

subsequent mortality were attenuated, and cardiac inflammation and necrosis were 
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prevented. In CBA-flox mice, TAM alone did not induce endogenous mHO-1 expression. 

However, TAM-mediated activation of cardiac-specific Cre recombinase caused induction 

of endogenous mHO-1, independent of the presence of a floxed sequence. We have found 

that overexpression of HO-1 prevents systolic dysfunction and cardiac injury in MHC-Cre 

mice by protecting the myocardium from Cre-induced toxicity. Our findings have several 

important implications because MHC-Cre mice are commonly utilized in cardiovascular 

research and because HO-1 is a potential therapeutic target in cardiovascular diseases that 

involve an inflammatory component, such as myocardial infarction.

In the first report of MHC-Cre-mediated cardiac toxicity, Koitabashi and colleagues 

demonstrated that Cre activation by TAM causes decreased expression of the genes 

responsible for mitochondrial energetics and biogenesis (i.e. PPARγ, PGC-1α, and the 

TFAM genes) (20). Hall and colleagues then demonstrated decreased expression of PGC-lα 

and PDK-4 after TAM administration in MHC-Cre mice, which results in decreased 

production of mitochondrial ATP (19). Interestingly, in both of these studies, the nadir of 

systolic dysfunction occurred concomitantly with disturbances in the expression of these 

genes. Thus, although no definitive mechanism of Cre-induced cardiac toxicity is known, it 

appears likely that Cre activation causes a shift in the metabolic activity of the 

cardiomyocyte from oxidative phosphorylation toward anaerobic respiration (i.e. the 

glycolytic pathway), which has been shown to also occur in other forms of heart failure (25–

27). Mitochondria comprise up to 35% of the cardiomyocyte cell volume because of the 

relatively high metabolic activity of the myocardium. Therefore, the heart is particularly 

susceptible to the insult caused by Cre activation. However, HO-1 and its byproduct, CO 

have been previously shown to prevent mitochondrial dysfunction and DNA depletion and 

to upregulate mitochondrial biogenesis and ATP production in the heart (28–30). Thus, it is 

likely that HO-1 overexpression in MHC-HO-1 mice protects the heart from Cre toxicity 

directly, by preventing mitochondrial dysfunction.

In accordance with our findings, it has been previously reported that cardiac inflammation 

occurs following TAM administration in MHC-Cre mice. The authors in these reports did 

not specifically characterize the cellular infiltrate, but speculated that it was due to an 

increase in cells from the mononuclear phagocyte lineage (20). Since HO-1 has been shown 

to protect the heart from injury due to its anti-inflammatory properties, it is likely that HO-1 

provides a protective effect in Cre-induced cardiotoxicity by preventing inflammation (31, 

32). Here, we have demonstrated that TAM-mediated Cre activation causes severe cardiac 

inflammation that directly precedes mortality and that the infiltrating cells are predominantly 

neutrophils. We have also shown that HO-1 overexpression prevents cardiac neutrophilia, 

suggesting that the anti-inflammatory property of the enzyme is at least partially responsible 

for its protective effect. The cardiac mononuclear phagocyte population is relatively 

unchanged by TAM-mediated Cre activation, as there are no significant differences in the 

number of macrophages or dendritic cells in the heart of MHC-Cre mice following treatment 

with TAM or vehicle.

In our model, hHO-1 expression significantly decreases five days after TAM administration. 

Unlike the chemical inducers that are frequently used in animal models to achieve transient 

upregulation of endogenous HO-1 expression or activity, Cre/loxP genetic recombination is 

Hull et al. Page 10

Lab Invest. Author manuscript; available in PMC 2014 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



a stable event, and the hHO-1 transgene is downstream of the highly active hybrid chicken-

β-actin promoter. Therefore, once maximal hHO-1 induction is achieved, consistent levels of 

overexpression are expected over time. Although determining the cause of decreased hHO-1 

expression is beyond the scope and intent of this report, several interesting possibilities 

exist. First, the cardiomyocytes that undergo Cre/loxP recombination and subsequently 

overexpress hHO-1 may undergo programmed cell death and/or necrosis or be temporarily 

inactivated metabolically due to toxicity mediated by Cre. The former explanation is 

unlikely since we have shown that hHO-1 overexpression prevents cardiomyocyte necrosis 

two days after TAM administration. However, it is possible that sustained nuclear 

translocation of preformed MHC-Cre protein bound to TAM temporarily blocks hHO-1 

expression by decreasing the generation of ATP needed for transcription of the transgene. 

Hougen and colleagues recently demonstrated that TAM administration to MHC-Cre mice 

causes significant dysregulation of normal gene expression in the cardiomyocyte using 

microarray analysis (33). Consequently, it is also plausible that Cre-mediated alteration of 

gene expression causes decreased transcription of hHO-1. The MHC-Cre construct is 

expressed constitutively behind the highly active α-MHC promoter, but Cre/loxP 

recombination is prevented because the construct is sequestered in the cytsol by Hsp90 (16). 

Therefore, upon TAM administration, preformed Cre-recombinase is immediately available. 

We have shown that TAM-mediated activation of Cre, and not TAM alone, induces the 

expression of endogenous HO-1, suggesting that it also causes a stress response in the 

cardiomyocyte. Therefore, it is possible that the massive increase in free Cre protein in the 

cell after TAM administration causes saturation of the ubiquitin-proteasome system, 

endoplasmic reticulum stress, and/or alteration of normal nuclear import and export by 

saturating nuclear pore complexes, all of which could alter normal cellular homeostasis and 

thus result in decreased expression of the hHO-1 transgene after the initial induction.

Regardless of the cause of decreased hHO-1 expression at day five, overexpression of the 

hHO-1 transgene at day 3 is sufficient to prevent MHC-Cre-mediated depression of cardiac 

function and resultant mortality by preventing cardiomyocyte necrosis and infiltration by 

neutrophils. Histological analysis demonstrated diffuse loss of the contractile apparatus and 

cardiomyocyte necrosis in MHC-Cre mice treated with TAM. These findings were absent in 

MHC-HO-1 mice, except for rare areas of focal inflammation. It is likely that foci of 

inflammation in MHC-HO-1 mice correspond to areas of the myocardium with low 

expression of the CBA-flox construct (Figure 1A), or low TAM delivery (and thus, Cre 

activation) to individual myocytes due to differences in the local microvasculature. 

Regardless of the cause of focal inflammation, our data indicate that there is no statistically 

significant difference in inflammatory cell number or cardiac function in MHC-HO-1 mice 

treated with TAM compared to controls. Collectively, these data suggest that HO-1 

overexpression protects the myocardium from Cre-induced toxicity.

Severe interstitial inflammation is likely a consequence of cardiomyocyte necrosis caused by 

cellular energy failure secondary to Cre activation. Intracellular components that are 

exposed to the extracellular environment due to necrotic cell death can be recognized by 

pattern recognition receptors on neutrophils as damage-associated molecular patterns 

(DAMPs) (34–36). It has been shown previously that DAMP recognition by neutrophil 

pattern recognition receptors initiates a cascade of neutrophil activation, cytokine secretion, 
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and recruitment of inflammatory cells including more neutrophils to the site of injury (37–

39). Activated neutrophils secrete factors such as myeloperoxidase during their respiratory 

burst, which kill pathogens during infection, but also damage surrounding host tissue (40, 

41). Therefore, it is likely that the cytoprotective properties of HO-1 prevent mitochondrial 

ATP depletion and subsequent cellular necrosis, which decreases the cardiac inflammatory 

response. Moreover, the anti-inflammatory properties of HO-1 directly provide an additional 

level of protection to the heart after TAM-mediated Cre activation.

In our model, early hHO-1 overexpression (days 1 – 3) was sufficient to prevent Cre-

induced cardiac toxicity. Investigators employing MHC-Cre mice in cardiovascular research 

could utilize this finding, because transient HO-1 induction can easily be achieved using 

inducers such as hemin or cobalt protoporphyrin-IX (42, 43). These inducers could be 

employed to prevent the acute Cre-mediated toxicity that occurs in MHC-Cre mice, which 

precludes investigation of the events that occur immediately as a result of the intended 

genetic manipulation. Since compensatory changes may occur as a result of gene deletion 

during the period of cardiac recovery from TAM-mediated Cre activation but before the 

initiation of studies, this is an important consideration. Furthermore, since we have shown 

that HO-1 induction prevents the dilated cardiomyopathy, depression of cardiac function, 

and cardiomyocyte necrosis that occurs in MHC-Cre mice, transient HO-1 induction could 

also prevent the confounding effect of compensatory cardiac hypertrophy demonstrated by 

Hall and colleagues by limiting the initial cardiac damage caused by MHC-Cre (19).

It has been shown that HO-1 overexpression is protective in models of chronic heart failure 

induced by coronary ligation. In these models, cardiac-specific HO-1 overexpression 

improves survival and mechanical function by decreasing cardiomyocyte apoptosis and 

inflammation (6, 44). However, the effect of early transient induction of HO-1 at the time of 

injury has not been studied. This is especially relevant because others have shown that the 

early cellular infiltrate after infarction is predominantly composed of neutrophils and we 

have shown that HO-1 protects the heart from acute damage in MHC-Cre mice by 

preventing neutrophil inflammation (45, 46). Therefore, our findings have important 

implications regarding the use of MHC-Cre mice in future studies as well as in the 

development of novel therapeutic strategies for human cardiovascular disease.
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List of Abbreviations

CBA-flox mice with a floxed β-gal-stop-codon cassette upstream of a human HO-1 

transgene driven by the chicken-β-actin (CBA) promoter

CO carbon monoxide

FS left ventricular fractional shortening

hHO-1 human HO-1 (transgene-derived)

Mer mutated estrogen receptor ligand binding domain

MHC α-myosin heavy chain promoter

MHC-Cre Myh6-MerCreMer transgenic mice (1)

MHC-HO-1 mice with cardiac-specific, TAM-inducible HO-1 expression

mHO-1 mouse HO-1 (endogenous)

TAM tamoxifen
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Figure 1. Generation and characterization of MHC-HO-1 mice
(A) Schematic of the transgenic constructs in MHC-Cre (top) and Chicken-βactin (CBA)-

flox (bottom) mice that were used to generate MHC-HO-1 mice. β-gal staining on frozen 

sections of left ventricular myocardium from wild-type littermates (left panel) and CBA-flox 

mice (right panel) to verify cardiac expression of the β-gal transgene. (B) Real-time PCR 

analysis of cardiac hHO-1 induction in MHC-HO-1 mice and CBA-flox controls following 

TAM administration. Results were normalized to GAPDH and expressed as average fold 

change (± s.e.m.) compared to untreated (Day 0) MHC-HO-1 controls. (C) HO-1 protein 
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expression by Western blot analysis. GAPDH was used as a loading control. (D) HO 

enzyme activity in the microsomal fraction from cardiac tissue of MHC-HO-1 mice at the 

indicated times following TAM administration. Results are expressed as fold increase (± 

s.e.m.) compared to control CBA-flox mice three days after TAM administration. (E) 

Representative immunohistochemical staining for HO-1 expression on cardiac sections from 

CBA-flox and MHC-HO-1 mice administered vehicle or TAM. Scale bar, 100 µm. n = 3 – 6 

animals per time point. *P < 0.05 versus control.
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Figure 2. TAM-mediated activation of MHC-Cre induces HO-1
Real-time PCR analysis of (A) mHO-1 expression in the heart of CBA-flox mice two days 

after administration of vehicle (n=3) or TAM (n=4); and (B) mHO-1 and hHO-1 expression 

in the heart of MHC-Cre and MHC-HO-1 mice treated with vehicle (n=3–4) or TAM (n=3–

6). Analysis was performed in triplicate and results are normalized to GAPDH and 

expressed as an average ± s.e.m. *P < 0.05, #P < 0.01 versus vehicle.
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Figure 3. HO-1 expression prevents Cre-induced mortality and systolic dysfunction
Mice of the indicated strain were injected with TAM and mortality and cardiac function 

(indexed by FS) were monitored at the indicated times. (A) Kaplan-Meier plot showing 

survival after TAM administration (n = 6–12 per group). (B) Mice of the indicated group 

were monitored by echocardiography for changes in FS (FS=(EDD-ESD)/EDD × 100) by 

comparing their FS before TAM treatment (Day 0) to the indicated times after TAM 

treatment. All of the mice in MHC-Cre group died before echocardiographic assessment on 

day 3. n = 5–7 per group, *P<0.05 relative to control.
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Figure 4. HO-1 overexpression protects the heart from Cre-mediated damage
Representative micrographs of mid-sagittal cardiac sections stained with H&E from mice of 

the indicated group 2 days following TAM administration. (A) Vehicle or (B and C) TAM 

alone does not perturb normal cardiac cytoarchitecture in CBA-flox mice. In MHC-Cre 

mice, (D) cardiac cytoarchitecture is normal after vehicle treatment, while Cre induction by 

TAM (E and F) causes transmural myocardial inflammation, hypereosinophilia, and 

cytoplasmic vacuolization of the myocardium. In MHC-HO-1 mice, neither vehicle (G) nor 

TAM (H and I) cause significant disturbances of normal cardiac cytoarchitecture, and only 

rare foci of inflammation are present (I; inset). Slides were assessed by a pathologist blinded 

to the different groups. Scale bar, 100 µm. n = 3 – 6 per group.
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Figure 5. HO-1 overexpression prevents neutrophil infiltration after cardiac damage
Two days after treatment with TAM or vehicle, perfused hearts were explanted and 

homogenized for FACS analysis. 6×105 events were collected per analysis. (A) 

Representative flow cytometry histograms of inflammatory cells in the heart identified as 

CD45+ and (B) quantified in MHC-Cre and MHC-HO-1 mice treated with TAM or vehicle. 

*P≤0.01 versus TAM-treated MHC-HO-1 and vehicle-treated control. (C) To characterize 

the cardiac infiltrate after TAM-mediated Cre induction, events in the forward and side 

scatter gate were analyzed for expression of CD45 and MHCII. Neutrophils were defined as 
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CD45+MHCIICD11b+Gr-1+. Neutrophils and macrophages (CD45+MHCII+CD11b+) in the 

heart were also quantitated and results are presented (D and E) as a percent of the total 

number of CD45+ cells in the heart or in (F and G) as an absolute number per one-third of a 

total cardiac homogenate. n = 3 – 5 animals per group in two separate experiments. Results 

are expressed as average ± s.e.m. *P≤0.001 versus TAM-treated MHC-HO-1 and vehicle 

treated control.
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Table 2

Physical Characteristics of Cardiac Structure after TAM Administration

Control
(n = 7)

MHC-Cre
(n = 5)

MHC-HO-1
(n = 6)

EDD 3.51±0.08 3.84±0.15 3.70±0.14

ESD 2.18±0.07 2.85±0.28* 2.50±0.15

AWTd 0.74±0.01 0.67±0.03 0.71±0.02

PWTd 0.74±0.03 0.71±0.05 0.71±0.01

AWTs 0.88±0.03 0.79±0.05 0.83±0.01

PWTs 1.11±0.05 0.97±0.08 1.05±0.07

MHC-Cre and MHC-HO-1 mice were treated with TAM and parameters of cardiac structure were assessed after 24 hours relative to controls 
(CBA-flox mice treated with TAM). EDD/ESD, end-diastolic and end-systolic diameter (mm); left ventricle AWT/PWT, anterior and posterior 
wall thickness (mm) in systole (s) or diastole (d). Average ± s.e.m.

*
P<0.05 relative to control.
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