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Abstract: Rett syndrome (RTT) is an early-onset neurodevelopmental disorder that primarily affects
females, resulting in severe cognitive and physical disabilities, and is one of the most prevalent causes
of intellectual disability in females. More than fifty years after the first publication on Rett syndrome,
and almost two decades since the first report linking RTT to the MECP2 gene, the research community’s
effort is focused on obtaining a better understanding of the genetics and the complex biology of
RTT and Rett-like phenotypes without MECP2 mutations. Herein, we review the current molecular
genetic studies, which investigate the genetic causes of RTT or Rett-like phenotypes which overlap
with other genetic disorders and document the swift evolution of the techniques and methodologies
employed. This review also underlines the clinical and genetic heterogeneity of the Rett syndrome
spectrum and provides an overview of the RTT-related genes described to date, many of which are
involved in epigenetic gene regulation, neurotransmitter action or RNA transcription/translation.
Finally, it discusses the importance of including both phenotypic and genetic diagnosis to provide
proper genetic counselling from a patient’s perspective and the appropriate treatment.
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1. Introduction

Rett syndrome (OMIM#312750) is an early-onset neurodevelopmental disorder, which was first
described by Doctor Andreas Rett in 1966 [1]. However, it was not until 1999 when Zoghbi’s laboratory
identified mutations in the X-linked methyl-CpG-binding protein 2 gene (MECP2; OMIM*300005) in
RTT patients. This gene encodes a chromatin-associated protein that contains a methyl-CpG binding
domain and can activate and repress transcription; it is essential for the maturation of neurons and
normal function of nerves cells [2]. The molecular pathogenesis of MECP2 mutations is complex,
involving multiple functions and tissues. MeCP2 has two differentially spliced isoforms of exons
1 and 2 (MeCP2-e1 and MeCP2-e2) which contribute to the diverse functions of MeCP2, but only
mutations in exon 1, not exon 2, are observed in RTT. However, the majority of RTT mutations
occur in MECP2 exons 3 and 4 [3]. MeCP2-e1 contains three exons and the start codon is located
in exon 1, while MeCP2-e2 contains exons 2, 3 and 4 and the start codon is located in exon 2 [4].
Moreover, MeCP2-e1 is mainly expressed in the central nervous system [3], suggesting that it is the
dominant isoform in the brain [5]. Studies using mice models have shown that Mecp2-e1 deficiency
alone contributes to neurologic symptoms, while Mecp2-e2 has no essential function in the nervous
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system [5]. More than 800 different mutations in MECP2 have been identified in more than 95%
of patients with classic RTT and 75% of patients with atypical RTT (RettBASE: MECP2 Variation
Database: http://mecp2.chw.edu.au/) [6,7]. There are also some atypical RTT variants, such as the
early onset seizure variant and the congenital variant, which have been associated with mutations in
cyclin-dependent kinase-like 5 (CDKL5; Xp22; OMIM*300203) and forkhead box protein G1 (FOXG1;
14q12; OMIM*164874), respectively [8,9]. However, the etiology of a subset of patients with a clinical
diagnosis of RTT still remains unknown.

Nowadays, with the increasing use of Next-Generation Sequencing (NGS) techniques, and the
improvement of the techniques themselves and bioinformatics analysis tools, more patients can obtain
a genetic diagnosis, which is important for proper genetic counselling, the patient’s future perspective,
and treatment options. Consequently, the number of known genes which are disease-causing for
RTT-like phenotypes increased remarkably in the last years. This development can actually be observed
in the hugely heterogeneous group of neurodevelopmental disorders [10]. This study underlines the
current molecular genetic studies performed in RTT patients, highlights the phenotype overlap with
other monogenic disorders, and reviews the new treatments that are being performed.

2. RTT and RTT-Like Syndrome

The diagnosis criteria used to establish the clinical diagnosis of RTT was described in 2002 and
revised in 2010 [11]. The patients diagnosed with classical RTT should present four main criteria:
Partial or complete loss of spoken language, partial or complete loss of purposeful hand movements,
gait abnormality, and stereotypic hand movements. In contrast to classical RTT, a diagnosis of atypical
RTT is described when the patient present two or more of the main criteria in addition to five or
more of the supportive criteria. Nearly all classical RTT patients are characterized by a period of
apparently normal development followed by a regression phase, but some atypical forms are congenital
and early seizure shows developmental impairment/delay from the first months of life. In addition,
there are some clinical features that can exclude a diagnosis of classical RTT, such as brain injury, a
neurometabolic disease, or neurological infection [12]. Nowadays, in RTT, as in other diseases, the
term “like” is used in patients that do not fulfill established clinical criteria, but present an overlapping
phenotype with the disease. Formal consensus criteria for a Rett-like syndrome (RTT-like) are not
published yet and a combination of distinct features of RTT can be described as RTT-like phenotype.

The report of pathogenic or likely pathogenic variants in different genes in patients with
overlapping phenotypes creates a huge challenge in the clinical diagnosis. NGS, such as gene
panels or whole exome/genome sequencing, allows us to solve difficulties and improves results,
complementing the clinical diagnosis with a genetics diagnosis. However, making an accurate
phenotypic description of the patients is crucial to enable the selection of the most relevant genes to be
analyzed and for assessing the clinical significance of genomic variants identified in them.

3. New Technologies for a Rare Genetic Diagnosis

In recent years, NGS technology—a method of simultaneously sequencing millions of fragments
of DNA—has emerged as a powerful tool for the study of this type of genetic disease. Now, with the
possibility of multiplexing genes and patients, sequencing them at the same time, the cost-efficiency of
the technique is comparable to the Sanger sequencing analysis of a single gene [13]. Therefore, the
global implementation of these technologies in research laboratories has led to an important increase
in the identification of diseases or genes related to RTT/RTT-like phenotype that in some cases had
previously been associated with other well-described diseases [14–16]. While the added value of
NGS diagnostics in all of these patients is clear, an optimal implementation strategy for diagnostic
laboratories is yet to be established [17].

Basically, there are three NGS approaches for DNA sequencing which can be used to improve
the diagnostic rate in this hugely heterogeneous group of diseases: (1) Targeted enrichment of a set
of genes (gene panels); (2) whole-exome sequencing (WES); (3) whole-genome sequencing (WGS).

http://mecp2.chw.edu.au/
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Targeted panels focus on individual genes, specific regions of interest, or a subset of genes associated
with a wide variety of inherited disorders. This approach is usually the first line of testing, while
WES is reserved for cases in which targeted testing has been uninformative [18]. Moreover, panels
can be customized and optimized for different regions and sample types, allowing determination of
single nucleotide variants (SNVs) from NGS in a more cost-effective manner. The targeted panels are
constantly improving because with basic research and WES and WGS of patients without a genetic
diagnosis, new genes are discovered or their functions are more clearly understood and, subsequently,
are associated with human diseases. For this reason, targeted panels are the best approach in terms of
genetics diagnosis.

WES testing often involves testing the child and both parents (trio testing) to assist in the
interpretation of variants [19,20]. The current challenge of WES is to determine benign variants from
pathological variants, since the exome of a healthy person reveals about 30,000–100,000 variations if
compared with the standard reference genome. Using variation databases and software tools, such as
the ones that are described in Table 1, the potential disease-causing variation can be detected, although
the exact method is uncertain and functional studies continue to be necessary to fully demonstrate the
pathogenicity of the variations found [21]. However, mutations in intronic and promoter regions are
not covered and nor are greater structural variants like inversions and translocations.
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Table 1. List of databases and software tools used in variant analysis.

Data Bases Description Website

Human mutation database (HGMD) Database that represents an attempt to collate all known (published) gene lesions
responsible for human inherited disease. www.hgmd.cf.ac.uk/

Varsome The human genomic variant search engine. https://varsome.com/

GnomAD Data from exome and genome sequencing from a variety of large-scale sequencing
projects. https://gnomad.broadinstitute.org/

dbSNP Public-domain archive for a broad collection of simple genetic polymorphisms. www.ncbi.nlm.nih.gov/snp/

ClinVar Public archive of reports of the relationships among human variations and
phenotypes, with supporting evidence. www.ncbi.nlm.nih.gov/clinvar/

Specific disease databases Databases such as RettBASE that are freely-available resources for mutation and
polymorphism data pertaining to Rett syndrome and other related clinical disorders. mecp2.chw.edu.au

Software Tools Description Website

Mutation Taster An in silico prediction tool for the pathogenicity of a variant based on evolutionary
conservation, splice-site, mRNA, protein and regulatory features. www.mutationtaster.org/

SIFT An in silico prediction tool for nonsynonymous variants based on sequence
homology derived from closely related sequences collected through PSI-BLAST. https://sift.bii.a-star.edu.sg/

Polyphen-2
Tool which predicts possible impact of an amino acid substitution on the structure
and function of a human protein using straightforward physical and comparative

considerations.
genetics.bwh.harvard.edu/pph2/

Provean An in silico tool that predicts how nonsynonymous or in-frame indel variant will
affect a protein’s biological function. provean.jcvi.org/

Humans Splicing Finder This tool is aimed to help studying the pre-mRNA splicing. http://www.umd.be/HSF/

www.hgmd.cf.ac.uk/
https://varsome.com/
https://gnomad.broadinstitute.org/
www.ncbi.nlm.nih.gov/snp/
www.ncbi.nlm.nih.gov/clinvar/
mecp2.chw.edu.au
www.mutationtaster.org/
https://sift.bii.a-star.edu.sg/
genetics.bwh.harvard.edu/pph2/
provean.jcvi.org/
http://www.umd.be/HSF/
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Nowadays, WGS is considered to be the most comprehensive genetic test available, but it is
not applied to patient diagnostics because of the complex and challenging data analysis, the high
cost compared to targeted panels and WES, and the unknown diagnosis potential of the test. With
the sequencing of the whole genome we can detect, besides from SNV in coding regions such as
WES, variations in non-coding regions, but in the majority of cases functional studies are required to
determine their pathogenicity. To date, there are no publications about WGS in a cohort of RTT nor
RTT-like, but studies in intellectual disability (ID) or other diseases are published [22,23]. However,
targeted panels have the best cost-efficiency value.

Moreover, NGS not only allows for the detection of SNV variants but with this technology we are
also able to detect copy number variations (CNVs); the size and complexity of the genomic regions of
interest will determine which NGS method is the best to use. WGS offers the potential to capture all
genetic variations, including CNVs and structural changes such as inversions and translocations. WES
can detect indels (CNVs ~1–100 bp), but approaches are steadily improving to provide data suitable for
larger CNVs because WES covers many different regions and it can be particularly tricky to optimize
for uniformity of coverage. Finally, targeted NGS panels offer high uniformity of coverage of targeted
regions, and the targeted nature results in lower costs with increasing depth, opening up the possibility
for reliable CNV calling.

Recent studies have shown that germline and somatic mosaicism is present in genes related with
severe encephalopathies such as Dravet syndrome [24,25], focal cortical dysplasia [26] and intellectual
disability [27]. Mosaicism is being postulated as the cause to explain differential phenotype expression
of the disease among patients (somatic mosaicism due to a postzygotic mutation) and to explain
recurrent mutations in the same family assumed de novo (due to low-grade parental mosaicism). To
study mosaicism, other techniques besides NGS must be considered, such as single-molecule molecular
inversion probes (smMIP), a technique with high sensitivity for detecting low-grade mosaic variants.
Using this technique, it has been shown that parental mosaicism occurs in a substantial proportion of
families with mutations in SCN1A (7%–13%), which has important implications for recurrence risks in
subsequent pregnancies. On the other hand, to study disease severity ranges between patients with
mutations in the same gene, a better prediction technique is needed because Dravet syndrome patients
with mosaicism have milder phenotypes than those with heterozygous mutations [28].

4. NGS Results: Many Genes, Many Disorders

Apart from RTT and RTT-like patients, which have mutations in the MEPC2, CDKL5 and FOXG1
genes, there are a percentage of patients without a genetic diagnosis. Now, with WES and panels
that incorporate more and more genes related to the central nervous system, the number of patients
with a pathogenic variant detected has increased in genes that were previously not related to RTT nor
RTT-like. All studies published about these genes are summarized in Table 2.

Using NGS, in only five years more than eighty genes were related to the RTT-like phenotype and
some of these genes were identified as causative for aRTT or RTT-like phenotype in these patients,
although some of them were associated with well-known syndromes such as Pitt–Hopkins syndrome
(TCF4, CNTNAP2 and NRXN1 genes), Phelan–McDermid syndrome (SHANK3 gene), Angelman
syndrome (UBE3A gene), Kleefstra syndrome (EHMT1) and Cornelia de Lange syndrome (SMC1A). In
addition, a substantial number of genes are epileptic encephalopathy genes (STXBP1, SCN1A, SCN2A,
SCN8A, GRIN2A, GRIN2B, HCN1, SLC6A1, KCNA2, EEF1A2, KCNB1 and SYNGAP1) and are related
with mental retardation and epilepsy (IQSEC2 and MEF2C).

Note that, regarding the number of patients described in these publications, there are some
genes that are more represented (Figure 1). STXBP1, TCF4, SCN2A, WDR45, and MEF2C are the
most common genes with a pathogenic (or likely pathogenic) variant detected in patients with
RTT/RTT-like phenotype.
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Table 2. List of recent publications about genetic studies in Rett syndrome (RTT) and the genes reported.

Publications Genes

Gilissen et al. 2014 [23] SMC1A

Baasch et al. 2014 [29] CN2A

Saitsu et al. 2014 [30] TBL1XR1

Okamoto et al. 2015 [31] GABRD

Hara et al. 2015 [32] SHANK3

Olson et al. 2015 [33] STXBP1, SCN8A, IQSEC2

Hoffjan et al. 2016 [34] WDR45

Lee et al. 2016 [35] SATB2

Saez et al. 2016 [36] JMJD1C

Rocha et al. 2016 [37] MEF2C

Lucariello et al. 2016 [19]
ANKRD31, CHRNA5, HCN1, SCN1A, TCF4, GRIN2B, SLC6A1, MGRN1, BTBD9,

SEMA6B, AGAP6, MGRN1,VASH2, ZNF620, GRAMD1A, GABBR2, ATP8B1, HAP1,
PDLIM7, SRRM3, CACNA1I

Lopes et al. 2016 [38] TCF4, EEF1A2, STXBP1, ZNF238, SLC35A2, ZFX, SHROOM4, EIF2B2, RHOBTB2,
SMARCA1, GABBR2, EIF4G1, HTT

Vidal et al. 2017 [15] GRIN2B, GABBR2, MEF2C, STXBP1, KCNQ2, SLC2A1, TCF4, SCN2A, SYNGAP1,
CACNA1I, CHRNA5, HCN1

Sajan et al. 2017 [39]

PWP2, SCG2, IZUMO4, XAB2, ZSCAN12, IQSEC2, FAM151A, SYNE2, SMC1A,
ARHGEF10L, HDAC1, TAF1B, KCNJ10, CHD4, LRRC40, LAMB2, GRIN2B, IMPDH2,

SAFB2, ACTL6B, STXBP1, TRRAP, WDR45, SLC39A13, FAT3, IQGAP3, NCOR2,
GABRB2, TCF4, GRIN2A

Allou et al. 2017 [40] IQSEC2, KCNA2

Yoo et al. 2017 [41] GABBR2

Vuillaume et al. 2018 [42] GABBR2

Huisman et al. 2017 [43] SMC1A

Wang et al. 2018 [14] MEF2C

Percy et al. 2018 [44] CTNNB1, WDR45

Srivastava et al. 2018 [18] KCNB1, IQSEC2, MEIS2, TCF4, WDR45

Iwama et al. 2019 [45]

ATP6V0A1, USP8, MAST3, NCOR2, WDR45, STXBP1, SHANK3, UBE3A, GABRA1,
SCN2A, SCN8A, GRIN2B, IQSEC2, CAMK2B, CUX2, CACNA1D, CACNA1G, ITPR1,

KIF1A, SYNGAP1, NALCN, NR2F1, IRF2BPL, MAST1, COL4A1, HDAC8, TCF4,
PDHA1, PPT1, DNMT3A, MEF2C

Schönewolf-Greulich et al.
2019 [16] STXBP1, SCN2A, KCNB1, TCF4, SHANK3, SMC1A

Vidal et al. 2019 [46] STXBP1, TCF4, SCN2A, KCNQ2, MEF2C, SYNGAP1
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The STXBP1 gene (syntaxin-binding protein 1; OMIM#602926) encodes a transmembrane
attachment protein receptor that plays an important role in the release of neurotransmitters via
regulation of syntaxin, a transmembrane attachment protein receptor [47]. Pathogenic variants in
this gene, reducing its expression, depress the functions of GABAergic and glutamatergic synapses,
particularly in GABAergic interneurons [48], a process that has been shown to be altered in RTT
patients [49]. Mutations in STXBP1 have been associated with epileptic encephalopathy, early infantile
4 (EEIE4) and a series of neurodevelopmental disorders, including RTT-like syndrome.

The TCF4 gene (transcription factor 4; OMIM*602272) is a broadly expressed basic helix–loop–helix
(bHLH) protein that functions as a homodimer or as a heterodimer with other bHLH proteins.
These dimers bind DNA at Ephrussi (E) box sequences motif (‘CANNTG’). Alternative splicing
creates numerous N-terminally distinct TCF4 isoforms that differ in their subcellular localization and
transactivational capacity [50]. Mutations in TCF4 have been associated with Pitt–Hopkins syndrome
(PTHS), which is characterized by severe ID, delayed motor development, seizures, wide mouth
and distinctive facial features, hypotonia, microcephaly, limited walking abilities, and intermittent
hyperventilation followed by apnea [31]. The microcephaly, intermittent hyperventilation, and
stereotype hand movements may steer clinicians towards a diagnosis of RTT-like rather than PTHS.
The distinct facial features presented in patients with a clear PTHS phenotype, such as thin eyebrows,
sunken eyes, a pronounced double curve of the upper lip, and a wide mouth with full lips, is more
consistent with PTHS and helps to distinguish PTHS from RTT, but some patients do not always
present distinctly these facial dismorphisms, or they are often not well-defined during the first year of
life [51].

SCN2A (neuronal voltage-gated sodium channel NaV1.2; OMIM*182390) encodes one member
of the sodium channel alpha subunit gene family, responsible for generation and propagation of
action potentials, chiefly in nerve and muscle. Pathogenic variants in the SCN2A gene that produce
loss-of-function of the protein lead to ASD/ID and increased channel activity that lead to epileptic
encephalopathy early infantile 11 (EEIE11) and benign familial neonatal-infantile seizures (BFIS) [52].

WD40 repeat proteins are an important key component that regulates the assembly of multiprotein
complexes by presenting a beta-propeller platform for simultaneous and reversible protein–protein
interactions [53]. Variants in WDR45 (WD repeat-containing protein 45; OMIM*300526) are associated
with developmental delay in early childhood and progressive neurodegeneration in adolescence or
adulthood related to iron accumulation in the globus pallidus and substantia nigra [30,54]. Affected patients
may have features overlapping those of RTT, including developmental regression, hand-wringing, and
seizures. Some may even have a diagnosis of typical or atypical RTT [55].

MEF2C (OMIM*600662) belongs to the myocyte enhancer factor-2 (MEF2) family of transcription
factors. MEF2C plays an important role in myogenesis, development of the anterior heart field, neural
crest and craniofacial development, and neurogenesis, among others [56]. It is well-described the
MEF2C haploinsufficiency syndrome that has been recognized as a neurodevelopmental disorder.
Until now, fourteen patients with point mutation pathogenic, or likely pathogenic, variants in MEF2C
have been identified in RTT-like patients, including three nonsense, three missense and three frameshift
variants [37,57].

In Table 3, the most common genes for RTT-like phenotypes are summarized, and all of them present
an autosomal dominant inheritance pattern, either autosomal or linked to the X chromosome and are
caused by de novo heterozygous mutations in the germline. Note that all the diseases are severe IDs and
most of them meet the four main criteria for RTT; all of them present a loss or speech severe deficit, gait
abnormalities and lost or absent purposeful hand movements linked to stereotypical hand movements,
such as hand wringing. Only developmental regression, one of the four main criteria, is absent in PTHS.
Moreover, other common symptoms in RTT are present in these diseases too, such as epilepsy, breathing
disturbances and microcephaly, although not all the RTT patients present them. In contrast, other symptoms
that are not present in RTT are present in atypical forms related to CDKL5 and FOXG1, such as dysmorphic
facial features in PTHS or CNS abnormalities in neurodegeneration with brain iron accumulation.
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Table 3. List of causative genes in RTT-like diagnoses or differential diagnoses and the phenotypical overlap with Rett syndrome (modified from Schönewolf-Greulich
et al., 2019 [16]).

RTT Genes
MECP2 CDKL5 FOXG1 STXBP1 TCF4 SCN2A WDR45 MEF2C

Disorder Rett
syndrome EEP 2

RTT,
congenital

variant
EEP 4

Pitt-
Hopkins

syndrome
EEP 11

Neurodegeneration
with brain iron
accumulation 5

MEF2C
haploinsufficiency

syndrome
OMIM# 312750 300672 613454 612164 610954 613721 300894 613443

Inheritance XLD XLD AD AD AD AD XLD AD

Present in
RTT

Required Developmental
regression + + + + - + + -

Four main
criteria

Purposeful hand
movements
lost/absent

+ + + + + + + +

Speech severe
deficit/loss + + + + + + + +

Gait abnormality + + + + + + + +
Stereotypic hand

movements + + + + + + + +

Other
common

symptoms

Breathing
abnormality + + - - + - - -

ID + + + + + + + +
Epilepsy + + + + + + + +

Microcephaly + + + + + + + -

Not present
in RTT

Exclusion
criteria CNS abnormality - - + - + - + +

Other
symptoms

Dysmorphic facial
features - + - - + - + +

Abbreviations: EEP, epileptic encephalopathy; XLD, X-linked dominant; AD, autosomal dominant. Plus (+) is noted if the symptom has been described in one or more patients with a
pathogenic variant in the gene. The symptoms emphasized are the main clinical features according to the 2010 classification of clinical Rett and other specific features of RTT. The gray
colour indicates clinical symptoms in common with RTT.
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Focusing on the pathophysiology of RTT at the brain level, female mice heterozygous for the
null MECP2 present microcephaly without gross neuropathological changes. Specifically, mouse and
human neurons without MeCP2 have smaller somas and decreased dendritic complexity [58,59]. A
decrease in synaptic plasticity and abnormalities in neurotransmitter concentrations is also observed
in many neuronal types [60–62]. Looking at the established knockout mice models of those of the
most common genes detected in RTT patients, morphological and/or physiological features resemble
RTT mouse models. For instance, young adult Mef2c and Scn2a cKO mice present a normal gross
brain morphology and cortical layer organization, as murine RTT models. In contrast, Mef2c cKO mice
cause an increase in dendritic spine density on dentate granule neurons of the hippocampal dentate
gyrus [63] and Scn2a cOK in pre-oligodendrocyte alters their morphology, impairs myelination and
reduces axon-oligodendrocyte interactions [64,65]. Moreover, depletion of specific presynaptic proteins
involved in exocytosis, such as STXBP1, causes abnormalities in neurotransmitter concentrations
and produces neuronal cell death [66]. TCF4 haploinsufficiency mice exhibit a delay in neuronal
migration, and a significant increase in the number of upper-layer cortical neurons, as well as abnormal
dendrite and synapse formation [67]. WDR45 cOK mice show a loss of neurons in prefrontal cortex
and basal ganglion in aged mice and increased apoptosis in prefrontal cortex, recapitulating a hallmark
of neurodegeneration [68].

At the moment, more than 80 genes have been associated with RTT/RTT-like, but their link with
RTT should be critically evaluated. In order to relate a gene with RTT several points have to be taken
into consideration: (1) Proper clinical characterizations of the patients; (2) deep comprehension of the
functions of the candidate gene; (3) validated evidence that mutation found it is pathogenic. The more
patients with a similar phenotype have pathogenic mutations in the same gene, the more consistent
evidence we will have of that gene being part of the list of genes related to RTT.

5. Functions and Pathways around RTT

The list of genes related to RTT/RTT-like phenotypes is complex and diverse. However, using
REACTOME (an open-source, open access, manually curated and peer-reviewed pathway database;
https://reactome.org) and STRING (a database of known and predicted protein–protein interactions;
https://string-db.org/), we can identify some groups of genes with functions involved in common
mechanisms. Several pathways can be studied in RTT/RTT-like patients, such as chromatin modulation,
synaptic function and ubiquitin conjugation (Figure 2).

This list currently includes 15 genes (ACTL6B, ANKRD31, CHD4, HDAC1, JMJD1C, MEF2C,
NCOR2, SATB2, SMARCA1, TBL1XR1, TRRAP, ZFX. ZNF238, ZNF620 and ZSCAN12) involved in
chromatin modulation pathways, such as chromatin-modifying enzymes and histone deacetylases
(HDACs) and 21 genes (ATP6V0A1, CACNA1I, CHRNA5, GABBR2, GABRB2, GABRD, GRIN2A,
GRIN2B, HCN1, IQSEC2, KCNA2, KCNJ10, KCNQ2, SCG2, SCN1A, SCN2A, SCN8A, SHANK3, SLC6A1,
STXBP1 and SYNGAP1) involved in synaptic function, necessary for GABAergic, glutamatergic
and dopaminergic synapses, synaptic vesicles trafficking, ion homeostasis in neurons and circadian
entrainment. The link of all these genes to the same pathways could explain why these patients’
phenotypes overlap, causing impaired synaptic function, sleep disturbances and major dysregulation
of gene expression. Notably, there are also a few genes (MGRN1, RHOBTB2 and USP8) involved
in ubiquitination processes, which UBE3A (the gene responsible for Angelman syndrome) is also
linked to. The considerable overlapping of RTT and Angelman features could be explained due to
this relationship.

MeCP2 performs many tasks during the neurodevelopment, such as regulating the gene expression
of other genes, modulating epigenetic imprinting and neurotransmitter actions. Hence it is challenging
to create a well-defined pathways involving MeCP2 and predict the downstream effects that disruption
of the MeCP2 function can generate. Ehrhart et al. 2016 [69] created a comprehensive visualization
of the biologic pathways showing how MECP2 upstream and downstream regulation developed.

https://reactome.org
https://string-db.org/
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Moreover, it had been and published on WikiPathways which will serve as template for future omics
data driven research (http://www.wikipathways.org/instance/WP3584) [69].
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Figure 2. RTT-related protein known functional interaction networks. (A) Chromatin modulation:
Red for chromatin modifying enzymes, blue for proteins involved in MECP2-mediated transcriptional
regulation and green for histone deacetylases (HDACs). (B) Ubiquitination processes: Red for
proteins linked to ubiquitin-mediated proteolysis, green for proteins involved in ubiquitin-like modifier
conjugation pathway and blue for ubiquitination and proteasome degradation proteins. (C) Synapsis:
Red for proteins involved in GABAergic synapses, dark blue for proteins involved in glutamatergic
synapses, light green for proteins involved in dopaminergic synapses, yellow for proteins involved in
the synaptic vesicle cycle, pink for proteins in the calcium signalling pathway, dark green for potassium
channels, light blue for proteins in the Ras signalling pathway, orange for proteins related to circadian
entrainment and purple for neurotransmitter receptors and postsynaptic transmission proteins.

Discovering the pathways related to MEPC2, we could better link genes that are mutated in patients
without MECP2 defects. Nowadays, the combination of the omics data analysis and prior knowledge
databases are a powerful approach to identify connections between mutation and phenotype. Ehrhart
et al. 2019 [70] identified a subset of genes, which are significantly different in several transcriptomics
datasets and were not described yet in the context of RTT. They described that these genes are involved
in molecular pathways and several processes known to be affected in RTT patients [70]. For example,
altered calcium homeostasis seems to be responsible for an abnormal neuronal development and
generates epilepsy; and tubulin, ERM and MEF2C are some of the altered proteins related to cytoskeletal
abnormalities that are present not only in RTT, but also in Angelman syndrome [69]. In the same
way, cholesterol biosynthesis is altered in RTT and in Smith–Lemli–Opitz syndrome, in which it has
been pointed out to be the cause of the autism and malformations [71]. The NF-kB pathway, which is
involved in nervous system development, synaptic transmission and cognition, is altered in RTT and
RTT-like patients and seems to be the cause of mental retardation [72]. Another pathway observed in
patients with RTT, autism, and Parkinson’s disease (PD) is the neurotransmitter imbalance of GABA,
Glutamine and Dopamine. This imbalance seems to be responsible for the autism features RTT patients
present and the motor difficulties that patients with PD and RTT have [73].

An important feature of MeCP2 reduction in RTT mouse models and individuals with RTT
is a propensity for seizure, a prominent signature in many brain diseases, including RTT [74,75].
The deletion of MeCP2 from all forebrain GABAergic interneurons recapitulates major phenotype of
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RTT [75], demonstrating that altered inhibitory function is critical for normal function of GABA-releasing
neurons and an important aspect of RTT pathophysiology. It has been demonstrated recently that
human neurons derived from patients with RTT and RTT mouse models show a significant reduced
the SLC12A5 gene expression, resulting in a delayed GABA functional switch [76]. This gene encodes
a neuron-specific K+/Cl− cotransporter 2, the major extruder of intracellular chloride in mature
neurons. Moreover, it has been established that MeCP2 regulates KCC2 expression through inhibiting
RE1-silencing transcriptional factor [77], and it is suggested that KCC2 should play a role in the
pathophysiology of RTT

Recently, Cosentino et al. (2019) have described several alterations in RTT patients and animal
models during the pre-symptomatic stage [78]. During this stage some compensatory mechanisms
keep the phenotypic outcome to a minimum until MECP2 deficiency cannot be supplied and the known
phenotype of RTT becomes apparent [79]. Thus, since the alterations found in RTT spectrum disorders
are due to both direct and indirect effects of MECP2 and related genes’ deficiencies/malfunctions, the
best approach for characterization and consequent treatment would be the comprehensive study of
all the altered pathways that have been discovered in these patients. If we were able to find a way
to compensate those altered pathways, a treatment could be implemented in very early stages of
development, even before the onset of the most remarkable features of the syndrome [78,79].

6. Future Perspectives and Treatment Options

In recent years, impressive advances have been achieved not only in the genetics diagnosis of
neurodevelopmental disorders, but also in elucidating the physiological pathway and molecular
mechanisms involved in the clinical manifestations of the diseases. An increasing amount of evidence
is emerging that understanding these mechanisms is relevant for the selection of the most appropriate
treatment in the affected individual.

More than 50 years have passed since the description and clinical characterization of RTT and the
current standard of care for patients remains limited to supportive and symptomatic therapies that can
palliate the symptomatology of the patients, but not cure the disease per se. Drug treatment consists
mainly of off-label prescriptions due to the lack of approved medications for the disorder. Until now,
all RTT trials have been based on the essential role of MECP2 in the development and maintenance of
neurons in the central nervous system, and its specific role in the distinct cellular subtypes focused on
the following specific neurotransmitters: dextromethorphan (an NMDA receptor antagonist, mainly
used for cognition and seizures [80]); desipramine (a noradrenaline reuptake inhibitor, for breathing
abnormalities [81]); and IGF-1 [82]. To date, emulating the MeCP2 function, using a pharmacology
strategy, as a treatment for RTT is not the best and most successful strategy.

However, it is not only patients with RTT or RTT-like that are caused by defects in the MECP2
gene. An improved understanding of the different genes mutated in the RTT-like phenotype generates
important therapeutic clues and opportunities to develop novel and better treatments. A treatment
which targets neuronal maturational defects seen in MECP2 mutations may not be effective for an
ion channelopathy due to KCNB1 alterations. In this way, therapies must focus on personalized
treatments for each individual, depending on which gene and which type of mutation carries. For
example, for the SCN2A gene that encodes the voltage-gated sodium channel Nav1.2, gain-of-function
versus loss-of-function variants in SCN2A determine whether sodium channel blockers improve or
worsen seizure control [52]. Another example is that L-serine supplementation might ameliorate
GRIN2B-related severe encephalopathy [83]. Additionally, for STXBP1, which plays an important
role in presynaptic vesicle docking and fusion [84], current treatments are largely limited to seizure
control and future therapies will also need to target the developmental aspects of the disease [83].
It has been hypothesized that enhancing KCC2 expression could increase the efficacy of GABAergic
inhibition and also improve the dendritic spine and excitatory synapse development, both of which
are abnormal in RTT [85,86] and may be caused by an aberrant interaction between KCC2 and the
dendritic cytoskeleton [87,88]. Recently, two works have considered the pathogenic role of diminished
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KCC2 expression in the Mecp2 null model: The first found that the use of bumetanide can attenuate
the unbalance glutamatergic/GABAergic ratio if treated in the early stages of the disorder [89]; and
Tang et al. (2019) have shown that the injection of KEEC KW-2449 or piperine (small-compounds) in
Mecp2 mutant mice ameliorated disease-associated respiratory and locomotion phenotypes [90].

7. Conclusions

All of the individuals summarized in this review met the diagnostic criteria for RTT or RTT-like;
however, lacking a defect in MECP2 underscores the importance of carrying out additional genetic
testing, whether it is by specific gene panels, WES or WGS, to identify the specific etiology and to
direct appropriate diagnostic and therapeutic strategies. Many disorders can be caused by multiple
genes, such as West syndrome or Charcot-Marie-Tooth, and these are considered as the same disorder
as long as they share a common phenotype. Therefore, we consider that all classical, atypical and all
RTT-like phenotypes could be grouped into an RTT spectrum disorder with many causative genes.

From a research point of view, the new genes recently associated with RTT-like phenotypes without
a clear description of their biological functions network involved need further study. Furthermore,
variants with an unknown clinical significance in genes without clear defined functions have been
found through screening RTT spectrum cohorts without genetic diagnosis. These new candidate genes
need functional studies to establish their potential role in the disease pathogenesis. From a clinical
perspective, a better definition of the pathways that connect of all these genes involved in all RTT
and RTT-like phenotypes would enable a better understanding of the genetic landscape of the RTT
spectrum. The elucidation of the functional pathways involved in all these patients could support the
development of future targeted therapies.
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