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Fully automated decoding of human activities and intentions from direct neural

recordings is a tantalizing challenge in brain-computer interfacing. Implementing Brain

Computer Interfaces (BCIs) outside carefully controlled experiments in laboratory settings

requires adaptive and scalable strategies with minimal supervision. Here we describe

an unsupervised approach to decoding neural states from naturalistic human brain

recordings. We analyzed continuous, long-term electrocorticography (ECoG) data

recorded over many days from the brain of subjects in a hospital room, with simultaneous

audio and video recordings. We discovered coherent clusters in high-dimensional

ECoG recordings using hierarchical clustering and automatically annotated them using

speech and movement labels extracted from audio and video. To our knowledge, this

represents the first time techniques from computer vision and speech processing have

been used for natural ECoG decoding. Interpretable behaviors were decoded from

ECoG data, including moving, speaking and resting; the results were assessed by

comparison with manual annotation. Discovered clusters were projected back onto the

brain revealing features consistent with known functional areas, opening the door to

automated functional brain mapping in natural settings.

Keywords: unsupervised machine learning, neural decoding, long-term recording, electrocorticography (ECoG),

computer vision, speech processing, functional brain mapping, automation

1. INTRODUCTION

Much of our knowledge about neural computation in humans has been informed by data
collected through carefully controlled experiments in laboratory conditions. Likewise, the success
of Brain-Computer Interfaces (BCIs; Wolpaw and Wolpaw, 2012; Rao, 2013)—controlling robotic
prostheses and computer software via brain signals—has hinged on the availability of labeled data
collected in controlled conditions. Sources of behavioral and recording variations are actively
avoided or minimized. However, it remains unclear to what extent these results generalize to
naturalistic behavior. It is known that neuronal responses may differ between experimental
and freely behaving natural conditions (Vinje and Gallant, 2000; Felsen and Dan, 2005;
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Jackson et al., 2007). Therefore, developing robust decoding
algorithms that can cope with the challenges of naturalistic
behavior is critical to deploying BCIs in real-life applications.

One strategy for decoding naturalistic brain data is to
leverage external monitoring of behavior and the environment
for interpreting neural activity. Previous research that studied
naturalistic human brain recordings, including brain surface
electrocorticography (ECoG), have required ground truth
labels (Derix et al., 2012; Pistohl et al., 2012; Ruescher et al., 2013).
These labels were acquired by tedious and time-consuming
manual labeling of video and audio. In addition to being
laborious, manual labeling is prone to human errors from factors
such as loss of attention and fatigue (Hill et al., 2012). This
problem is exacerbated by very long recordings, when patients
are monitored continuously for several days or longer. Obtaining
extensive labeled data and training complex algorithms are
difficult or even intractable in rapidly changing, naturalistic
environments.

In this article, we describe our use of video and audio
recordings in conjunction with ECoG data to decode human
behavior in a completely unsupervised manner. Figure 1

illustrates components of the data used in our approach. The
data consists of six subjects monitored continuously over at
least 1 week after electrode array implantation surgery; each
subject had approximately 100 intracranial ECoG electrodes
with wide coverage of cortical areas. Importantly, subjects being
monitored had no instructions to perform specific tasks; they
were undergoing presurgical epilepsy monitoring and behaved
as they wished inside their hospital room. Instead of relying
on manual labels, we used computer vision, speech processing,
and machine learning techniques to automatically determine the
ground truth labels for the subjects’ activities. These labels were
used to annotate patterns of neural activity discovered using
unsupervised clustering on power spectral features of the ECoG
data. We demonstrate that this approach can identify salient
behavioral categories in the ECoG data, such as movement,
speech and rest. Decoding accuracy was verified by comparing
the automatically discovered labels against manual labels of
behavior in a small subset of the data. We also demonstrate
the effectiveness of ECoG clusters to decode behavior for

FIGURE 1 | An excerpt from the data set, which includes video, audio, and intracranial brain activity (ECoG) continuously recorded for at least 1 week

for six subjects. ECoG recordings from a small subset of the electrodes are shown, along with the simultaneously recorded audio signals in blue. A typical patient

has around 100 electrodes. Overlaid are illustrations of the video, which is centered on the patient; on the left is a daytime anonymized image frame of the patient

eating, and on right is a nighttime anonymized frame of the patient sleeping.

many days after the initial cluster annotation enabled by audio
and video. Further, projecting the annotated ECoG clusters to
electrodes on the brain revealed spatial and power spectral
patterns of cortical activation consistent with those characterized
during controlled experiments. These results suggest that our
unsupervised approach may offer a reliable and scalable way to
map functional brain areas in natural settings and enable the
deployment of ECoG BCI in real-life applications.

2. BACKGROUND AND RELATED WORK

Intracranial electrocorticography (ECoG) as a technique for
observing human neural activity is particularly attractive.
Its spatial and temporal resolution offers measurements
of temporal dynamics inaccessible by functional magnetic
resonance imaging (fMRI) and spatial resolution unavailable
to extracranial electroencephalography (EEG). Cortical surface
ECoG is accomplished less invasively than with penetrating
electrodes (Williams et al., 2007; Moran, 2010) and has
much greater signal-to-noise ratio than entirely non-invasive
techniques such as EEG (Lal et al., 2004; Ball et al., 2009).

Efforts to decode neural activity are typically accomplished
by training algorithms on tightly controlled experimental data
with repeated trials. Much progress has been made to decode
arm trajectories (Wang et al., 2012; Nakanishi et al., 2013; Wang
et al., 2013a) and finger movements (Miller et al., 2009; Wang
et al., 2010), to control robotic arms (Yanagisawa et al., 2011;
Fifer et al., 2014; McMullen et al., 2014), and to construct ECoG
BCIs (Leuthardt et al., 2006; Schalk et al., 2008; Miller et al.,
2010; Vansteensel et al., 2010; Leuthardt et al., 2011; Wang
et al., 2013b). Speech detection and decoding from ECoG has
been studied at the level of voice activity (Kanas et al., 2014b),
phoneme (Blakely et al., 2008; Leuthardt et al., 2011; Kanas et al.,
2014a; Mugler et al., 2014), vowels and consonants (Pei et al.,
2011), whole words (Towle et al., 2008; Kellis et al., 2010), and
sentences (Zhang et al., 2012). Accurate speech reconstruction
has also been shown to be possible (Herff et al., 2015).

The concept of decoding naturalistic brain recordings is
related to passive BCIs, a term used to describe BCI systems
that decode arbitrary brain activity that are not necessarily under
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volitional control (Zander and Kothe, 2011). Our system, which
falls within the class of passive BCIs, may also be considered a
type of hybrid BCI combining electrophysiological recordings
with other signals (Muller-Putz et al., 2015). However, past
approaches in this domain have not focused on combining
alternative monitoring modalities such as video and audio in
order to decode natural ECoG signals.

The lack of ground-truth data makes decoding naturalistic
neural recordings difficult. Supplementing neural recordings
with additional modes of observation, such as video and
audio, can make the decoding more feasible. Previous studies
exploring this idea have decoded natural speech (Derix
et al., 2012; Bauer et al., 2013; Dastjerdi et al., 2013;
Derix et al., 2014; Arya et al., 2015) and natural motions
of grasping (Pistohl et al., 2012; Ruescher et al., 2013);
however, these studies relied on laborious manual annotations.
Entirely unsupervised approaches to decoding have
previously targeted sleep stages (Längkvist et al., 2012) and
seizures (Pluta et al., 2014) rather than long-term natural ECoG
recordings.

Our approach to circumvent the need for manually annotated
behavioral labels exploits automated techniques developed in
computer vision and speech processing. Both of these fields
have seen tremendous growth in recent years with increasing
processor power and advances in methodology (Huang
et al., 2014; Jordan and Mitchell, 2015). Computer vision
techniques have been developed for a variety of tasks including
automated movement estimation (Poppe, 2007; Wang et al.,
2015), pose recognition (Toshev and Szegedy, 2014), object
recognition (Erhan et al., 2014; Girshick et al., 2014), and
activity classification (Ryoo and Matthies, 2013; Karpathy
et al., 2014). In some cases, computer vision techniques
have matched or surpassed single-human performance in
recognizing arbitrary objects (He et al., 2015). Voice activity
detection has been well studied in speech processing (Ramirez
et al., 2004). In this work, we leverage and combine
techniques from these rapidly advancing fields to automate
and enhance the decoding of naturalistic human neural
recordings.

3. RESULTS

Our general approach to unsupervised decoding of large, long-
term human neural recordings is to combine hierarchical
clustering of high-dimensional ECoG data with annotations
informed by automated video and audio analysis, as illustrated
in Figure 2 (further details in the Methods section). Briefly,
hierarchical k-means clustering was performed on power spectral
features of the ECoG recordings. These clusters are coherent
patterns discovered in the neural recordings; video and audio
monitoring data was used to interpret these patterns and match
them to behaviorally salient categories such as movement, speech
and rest. Here we describe results of our analysis on six subjects
where we used automated audio and video analysis to annotate
clusters of neural activity. The accuracy of the unsupervised
decodingmethod was quantified by comparison tomanual labels,
and the annotated clusters were mapped back to the brain to
enable neurologically relevant interpretations.

3.1. Actograms: Automated Motion and
Speech Detection
The automated motion and speech detection methods quantified
movement and speech levels from the video and audio
recordings, respectively. Figure 3 shows daily “actograms” for
all six subjects. Movement levels were quantified by analyzing
magnitude of changes at feature points in successive frames of
the video. Speech levels were quantified by computing the power
in the audio signal in the human speech range.

As expected, Figure 3 shows that subjects were most active
during waking hours, generally between 8:00 a.m. and 11:00 p.m.
Also, movement and speech levels are often highly correlated,
as the subjects were often moving and speaking at the same
time during waking hours. During night time hours, although
subjects were generally less active, many instances of movement
and speech can still be seen in Figure 3 as the subjects either
shifted in their sleep or were visited by hospital staff during the
night.

Our automated motion and speech detection algorithms were
able to perform with reasonable accuracy when compared to

FIGURE 2 | An overview of our methods to discover neural decoders by automated clustering and cluster annotations. Briefly, the ECoG recordings was

broken into short, non-overlapping windows of 2-s. Power spectral features were extracted for each electrode, all electrodes’ features were stacked, and the feature

space was reduced to the first 50 principal component dimensions. Hierarchical k-means clustering was performed on these 50-dimensional data, and annotation

was done by correlations in timing with automated detection of motion and speech levels (see Figure 8). The resultant annotated clusters were validated against

manual annotations; cluster centroids mapped to the brain visualize the automatically detected neural patterns.
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FIGURE 3 | Daily actograms for all subjects. Each row shows one day of activity profiles summarized by automated speech and motion recognition algorithms.

Days 3–6 post surgical implantation were analyzed. For purposes of this visualization, the activity levels were binned to 1-min resolution. Movement and speech levels

were highly correlated on most days, and these were concentrated to the active hours between 8:00 a.m. and 11:00 p.m.

manual annotation of movement and speech. Over all subject
days, movement detection was 74% accurate (range of 68–90%),
while speech detection was 75% accurate (range of 67–83%).

3.2. Unsupervised Decoding of ECoG
Activity
Unsupervised decoding of neural recordings was performed
by hierarchical clustering of power spectral features of the
multi-electrode ECoG recordings. Because the subjects’ behavior
on each day varied widely, both across days for the same
subject and across subjects (see actograms in Figure 3), we
were agnostic to which specific frequency ranges contained
meaningful information and considered all power in frequency
bins between 1 and 53 Hz (see Supplemental Information for
results considering higher frequency bands). Further, data from
each subject day was analyzed separately. Clusters identified
by hierarchical k-means clustering were annotated using
information from the external monitoring by video and audio.
The hierarchical k-means clustering implementation is detailed
in the Section 5. Following a tree structure, successive levels of
clustering contained larger numbers of clusters (Figure 8).

Figure 4 shows results of the annotated clusters for one subject
day (Subject 6 on day 6 post implantation) at clustering levels
1–4 as a function of time of day. At level 1, it is clear that rest is
separable from non-rest, and the switch in the dominant cluster
occurred around 10:00 p.m.We presume the timing of the switch
to correspond to when the subject falls asleep, as is corroborated
by the video monitoring. when the subject is presumed to have
fallen asleep as evident in the video monitoring. Video S1 shows
an example of the infrared video acquired during night time. The
subject is in a consolidated period of rest between 10:00 p.m.

and 9:00 a.m. the following day. Interestingly, for a duration of
approximately 1 h starting at around 11:00 a.m., the rest cluster
dominated the labels (see also red triangle at level 3). This period
corresponds to the subject taking a nap (Video S2).

Starting at level 2, the non-rest behavior separates into
movement and speech clusters. These two clusters are generally
highly correlated, as moving and talking often co-occur,
especially as the movement quantification can detect mouth
or face movement. We point out several interesting instances
labeled at level 3. First, the inverted triangle points to a period
around 11:00 a.m. annotated as rest, when the subject rested
during a nap (Video S2). Second, the rectangle marks a period
around 1:00 p.m., annotated as predominantly movement but
not speech, when the subject shifted around in their bed but
did not engage in conversation (Video S3). Third, the circle
marks a period around 5:00 p.m. when the subject engaged
in conversation (Video S4); this period was labeled as both
movement and speech. As described in the validation analysis in
the following section, the accuracy of the automated annotations
does not change substantially between levels 3–4 across all subject
days (Figure 5 and Figure S3).

3.3. Validation of Automated Neural
Decoding by Comparison with Manual
Annotations
The automated neural decoding was assessed by comparison with
behaviors labeled manually. Manual labels of the video and audio
were supplied by two human annotators, who labeled a variety of
salient behaviors for at least 40 total minutes (or approximately
3%) of video and audio recordings for each subject day. The labels
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FIGURE 4 | Annotated clustering results of one subject day (Subject 6 on day 6 post implant) from hierarchical level 1 to level 4. The vertical axis

represents the fraction of time the neural recording is categorized to each annotated cluster. The triangle marks when the subject takes a nap (Video S2), the square

marks when the subject is seen to move without speech (Video S3), and the circle marks when the subject spoke more than moved (Video S4). For visualization, the

24-h day was binned to every 160 s.

FIGURE 5 | Percentile of the F1 score of our algorithm at level 3 compared to F1 scores from randomly shuffled manual labels. Each colored dot

corresponds to one day for a subject in each behavioral category.

were acquired for 2-min segments of data distributed randomly
throughout the 24-h day.

The entirely automated neural decoding performed very
well in the validation for all subjects on the categories of
movement, speech and rest. Table 1 summarizes the accuracy
of the annotated clusters averaged over the 4 days analyzed

for each subject, comparing the automated labels to manual
labels during the labeled portions of each day. In addition to
computing the accuracy, we also computed the F1 scores of the
automated decoding usingmanual labels as ground truth for each
day; the F1 score is a weighted average of precision and recall
(Table S1).
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TABLE 1 | Performance metrics as assessed by comparison of level 3

automated cluster annotation to manual annotations averaged over all 4

days for each subject.

Acc F1 Spc Sen/Rec Prc

MOVEMENT

Subject 1 62.12 0.50 76.51 46.75 58.57

Subject 2 49.37 0.53 80.13 40.68 84.07

Subject 3 58.37 0.47 57.06 54.05 42.33

Subject 4 58.78 0.61 50.53 66.67 56.55

Subject 5 60.88 0.46 68.78 47.69 47.16

Subject 6 59.57 0.61 70.20 59.71 75.07

SPEECH

Subject 1 52.35 0.31 56.89 35.68 28.36

Subject 2 62.13 0.67 71.27 55.58 85.16

Subject 3 68.88 0.66 73.38 65.49 68.98

Subject 4 60.83 0.50 62.43 56.88 45.49

Subject 5 48.46 0.62 59.99 43.92 63.09

Subject 6 72.73 0.67 84.51 64.70 75.50

REST

Subject 1 63.95 0.62 60.97 64.75 63.19

Subject 2 63.76 0.50 64.70 25.49 45.68

Subject 3 74.42 0.69 81.80 65.26 75.40

Subject 4 55.55 0.44 81.11 35.01 70.39

Subject 5 63.09 0.71 44.27 70.67 72.10

Subject 6 79.09 0.79 85.72 74.46 84.40

Acc, Accuracy; F1, F1 Score; Spc, Specificity; Sen/Rec, Sensitivity/Recall; Prc, Precision.

To assess the significance of the automated labels’ accuracy,
we compared the F1 scores on each day to F1 scores of
randomly shuffled labels. The shuffled labels preserved the
relative occurrence of labels and gave an unbiased estimate of
chance performance. Figure 5 shows the percentile of the true
F1 scores within the randomly shuffled F1 scores at hierarchical
clustering level 3. For each category of movement, speech and
rest, the median percentile of the true F1 scores are at or near the
99th percentile; in other words, our automatically labeled clusters
performed significantly better than chance on most subject days.
F1 score percentiles for clustering levels 2 and 4 are shown in
Figures S2, S3.We also repeated the analysis considering spectral
frequencies up to 105Hz, which does not substantially change the
performance of the automated decoder (Table S2 and Figure S4).

3.4. ECoG Clusters Predict Behavior
Categories without Video
Our automated neural decoding system is able to predict
behavior categories for many days after the initial clustering and
correlation with video. To assess the stability of ECoG cluster
annotations over time, we clustered the ECoG recordings on one
day of data (day 3 post surgery, or the first day of analysis) and
annotated them automatically with the simultaneously acquired
videos and audio. Next, we tested these annotated ECoG clusters
on 3 subsequent days without access to the video and audio
data. Figure 6 shows that the performance remains relatively
stable throughout the test days; the median F1 percentiles are

significantly above chance for every category on every day. In fact,
the performance on test days is comparable with the performance
on the first day.

The performance in test day 1 is lower than on test days 2 and
3. This difference may be due to chance or to some systematic
differences between day 4 post surgery and the rest of the clinical
evaluation period.

3.5. Neural Correlates of Behavior As
Discovered by Unsupervised Clustering
Another way to assess the neural decoder discovered through
clustering and automated annotation is to examine the neural
patterns identified in this unsupervised approach. We mapped
these patterns by projecting the centroids of annotated clusters
back to feature space. Next, the feature space in electrode
coordinates on the brain were averaged within frequency
bands, including those typically of interest to studies of human
ECoG.

Figure 7 shows an example of one subject day’s annotated
cluster centroids shown as deviations from the daily average in
a low frequency band (LFB, 1–8 Hz) and a high frequency band
(HFB, 12–45Hz). The LFB was chosen to include activity in
the delta and theta range, while the HFB includes beta and low
gamma activity. The accuracy of automated decoding on this
subject day (Subject 1, day 6 post implant) was 0.56, 0.69, and 0.63
for movement, speech and rest, respectively. In the LFB, there
was generalized decrease in power across all recording electrodes
during movement and speech, accompanied by a corresponding
relative increase in power during rest. In contrast, in the HFB
during movement and speech, we observe more spatially specific
increase in power that is localized to motor areas (orange circle in
Figure 7). There is some overlap in electrodes showing increased
HFB power during movement and speech, which may be due
to activation of motor areas to produce speech. In addition,
during speech but not during movement, there is a localized
increase in HFB power at associated auditory region (green circle
in Figure 7).

These features are largely consistent with known functions
of human cortical areas and ECoG phenomena, as well as the
existing ECoG literature on motor activation (Miller et al., 2007,
2009) and speech mapping (Towle et al., 2008; Chang et al.,
2010; DeWitt and Rauschecker, 2013; Potes et al., 2014). We
must note that these patterns of frequency band-specific changes
in power for different behavioral categories were discovered in
an entirely unsupervised approach, using continuously acquired
naturalistic data, and without the luxury of subtraction of
baseline activation immediately before or after movement. It is
important to keep in mind that previous studies typically define
rest as the time just before an action, whereas we compare
to daily averages as well as to sleep. During non-rapid eye
movement sleep, the theta and delta bands tend to have high
power (Cajochen et al., 1999), a factor that distinguishes our
results from those obtained from more controlled experiments.
We observed qualitatively similar patterns across the four (4)
subjects where anatomic reconstruction of the electrode arrays
were available (Figures S6–S8).
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FIGURE 6 | A decoder trained on the first day of analysis with video continues to performs well above chance up to 3 days after training. Specifically, on

the test days, no video or audio information is used in decoding behavior categories. Percentile of F1 scores are shown, as in Figure 5. Each colored dot corresponds

to one subject in each behavioral category on the respective day. All subjects are included in this figure.

FIGURE 7 | Features discovered by automated brain decoding at two different frequency bands are consistent with known functions of cortical areas.

Shown for one subject day (Subject 1 on day 6 post implant), the centroids of the movement, speech and rest clusters were back projected to brain-electrode space,

and then separately averaged over a low frequency band (LFB, 1–8 Hz) and a high frequency band (HFB, 12–45 Hz). The orange and green circles mark the

approximate extent of locations typically considered to be sensorimotor and auditory regions, respectively. The colormap indicates the Z-Score of the power levels as

compared to the daily average.

4. DISCUSSION

Our results represent, to our knowledge, the first demonstration
of automated clustering and labeling of human behavior from
brain recordings in a naturalistic setting; we achieved annotation
without manual labels by leveraging techniques from computer
vision and speech processing. Our unsupervised approach
discovers clusters for behaviors such as moving, speaking and
resting from ECoG data. The discovered cluster labels were
verified by comparison to manual labels for a subset of the
data. We showed the ECoG clusters were able to predict
behavior categories for many days after initial annotation, even
without further correlation with video and audio. To provide an
interpretation of these clusters, projecting the cluster centers back
onto the brain provides an approach to automated functional
brain mapping in natural settings.

Our goal was to develop an approach to decode human brain
recordings by embracing the richness and variability of complex

naturalistic behavior, while avoiding tedious manual annotation
of data and fine tuning of parameters. Our current approach has
a number of limitations which can be addressed by improving
both the available information streams and the algorithmic
processing. One limitation of our movement detection algorithm
is lack of specificity to the subject when other people enter
the frame of the camera. This is particularly challenging when
another person overlaps with the subject, for example, when a
nurse examines the patient. We are exploring the potential of
better subject segmentation using a depth camera. The depth
stream information will also allow us to perform much more
detailed pose recognition, including obtaining specificmovement
information from isolated body parts.

A second limitation is our inability to identify the speaker in
speech detection. Speech levels include the subject speaking, the
subject listening to another person speaking in the room, and the
subject listening to the TV or another electronic audio source.We
expect that by placing an additional microphone in the room and
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using algorithms to distinguish speaker voices, it may be possible
to more accurately localize the speaker and speech sources.

The temporal aspect of high-dimensional, long-term ECoG
data may be better exploited to improve the clusters discovered
by unsupervised pattern recognition techniques. For instance,
dimensionality reduction by dynamic mode decomposition
(DMD; Brunton et al., 2015) may be able to identify spatio-
temporal patterns when repeated trials are not available. Phase
synchrony and phase coupling may also serve as important
neural correlates of behavior (Mercier et al., 2015).

Overall, these results demonstrate that our method has the
practicality and accuracy to passively monitor the brain and
decode its state during a variety of activities. In our results, we
see some variation in performance and cluster maps across days
for the same subject. This variancemay be due to changes in brain
activity as the patient recovers from surgery, or it may represent
natural variation from day to day. Despite these variations, we
show that a decoder clustered on one day can continue to be
used for decoding in subsequent days in the absence of video and
audio.

Functional brain mapping acquired by analyzing neural
recordings outside instructed tasks has direct relevance to how
an individual brain functions in natural conditions. For instance,
neural correlates of a subject repeating a series of specific
actions may differ from the full range of neural signatures
associated with movements in general. Previous attempts to do
more “ethological” mapping based on non-cued activities have
identified motor (Breshears et al., 2012; Vansteensel et al., 2013)
and speech (Derix et al., 2012, 2014) related areas. The automated
approach to ethological functional brain mapping explores the
analysis of task-free, naturalistic neural data augmented by
information from external monitoring, which ultimately enables
us to perform the analysis at much larger scale with long-term
data. Although the initial unsupervised brain mapping results we
have presented are encouraging, a more in-depth investigation is
required to study the applicability and accuracy of our clustering
methodology compared to other methods. We are currently
exploring ways to improve its accuracy and ability to resolvemore
detailed behavioral categories. We are also actively investigating
other techniques for functional brain mapping using long-term
naturalistic ECoG data, including more direct comparisons with
clinical brain mapping based on stimulation.

We envision our automated passive monitoring and decoding
approach with video and audio as a possible strategy to adjust
for natural variation and drift in brain activity without the
necessity to retrain decoders explicitly. Such an approach may
enable deployment of long-term BCI systems, including clinical
and consumer applications. More generally, we believe the
exploration of large, unstructured, naturalistic neural recordings
will improve our understanding of the human brain in action.

5. METHODS

5.1. Subjects and Recording
All six subjects had a macro-grid and one or more strips of
electrocorticography (ECoG) electrodes implanted subdurally for
presurgical clinical epilepsy monitoring at Harborview Medical

Center. The study was approved by University of Washington’s
Institutional Review Board’s human subject division; all subjects
gave their informed consent and all methods were carried out in
accordance with the approved guidelines.

Electrode grids were constructed of 3-mm-diameter platinum
pads spaced at 1 cm center-to-center and embedded in silastic
(AdTech). Electrode placement and duration of each patient’s
recording were determined solely based on clinical needs. The
number of electrodes ranged from 70 to 104, arranged as grids of
8 × 8, 8 × 4, 8 × 2 or strips of 1 × 4, 1 × 6, 1 × 8. Figures S5–
S9 show the electrode placements of each subject. ECoG was
acquired at a sampling rate of 999Hz. All patients had between
6 and 14 days of continuous monitoring with video, audio, and
ECoG recordings. During days 1 and 2, patients were generally
recovering from surgery and spent most of their time sleeping;
in this study, days 3 to 6 post implant were analyzed from each
subject.

5.2. Video and Audio Recordings
Video and audio were recorded simultaneously with the ECoG
signals and continuously throughout the subjects’ clinical
monitoring. The video was recorded at 30 frames per second at a
resolution of 640 × 480 pixels. Generally, video was centered on
the subject with family members or staff occasionally entering the
scene. The camera was also sometimes adjusted throughout the
day by hospital staff; for instance, the camera may be centered
away during bed pan changes and returned to the patient
afterwards. Videos S1–S4 show examples of the video at a few
different times of one day. The audio signal was recorded at
48KHz in stereo. The subject’s conversations with people in the
hospital room, including people not visible by video monitoring,
can be clearly heard, as well as sound from the television or a
music player. Some subjects listened to audio using headphones,
which were not available to our audio monitoring system. For
patient privacy, because voices can be identifiable, we do not
make examples of the audio data available in the Supplemental
Materials.

5.3. Manual Annotation of Video and Audio
To generate a set of ground-truth labels so that we may assess
the performance of our automated algorithms, we performed
manual annotation of behavior aided by ANVIL (Kipp, 2012) on
a small subset of the external monitoring data. Two students were
responsible for the annotations, and at least 40 min (or 2.78%) of
each subject day’s recording was manually labeled for a variety
of salient behaviors, including the broad categories of movement,
speech and rest. Manual labeling was done for 2-min segments of
video and audio, distributed randomly throughout each 24-h day.
For patient privacy, some small parts of the video (e.g., during
bed pan changes) were excluded from manual labeling. These
periods were very brief and should not introduce a generalized
bias in manual labels. On average, manual labeling of 1 min of
monitoring data was accomplished in approximately 5min. At
least 10 min of each subject day were labeled by both students;
agreement between the two labelers was 92.0%, and Cohen’s
Kappa value for inter-rater agreement is 0.82.
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5.4. Automated Movement and Speech
Detection
For automated video analysis, we first detected salient features
for each frame using Speeded Up Robust Features (SURF), which
detects and encodes interesting feature points throughout the
frame. The amount of motion in each frame was determined
by matching the magnitude of change in these feature points
across successive frames. Since the subject was the only person
in the frame a majority of the time, we are able to determine the
subject’s approximate movement levels. This approach detected
gross motor movements of the arms, torso and head, as well as
some finer movements of the face and mouth during speaking.
To detect speech, we measured the power averaged across
human speech frequency levels (100–3500Hz) from fast Fourier
transformed audio data.

We assessed the performance of the automated algorithms
by comparison to manual annotations. The manual annotations
for each behavior were binary (i.e., either the behavior was
present or not in a time window) whereas the automated
speech and movement levels were analog values. Therefore,
the agreement was computed after applying a threshold to
the automated movement and speech levels. To clarify, the
threshold is what average pixel movement and speech frequency
power we considered to be actual speech and movement by
the algorithm. We used a small section of videos from a few
subject and found movement thresholds that correlated with
gross hand-level movement and sound thresholds that included
comprehensible speech. These are determined by human visual
inspection, on videos, which was consistent across all subjects.
This was empirically determined to be an average movement of
1.1 pixels and a mean power of 3× 1011.

5.5. ECoG Preprocessing and Feature
Extraction
All ECoG recording was bandpassed filtered between 0.1
and 160 Hz to reduced noise. The filtered signal was then
converted into a set of power spectral features using short-
time Fourier transform using non-overlapping 2-s windows.
Each 24-h recording was thus separated into 43,200 samples in
time.

Because subjects engaged in a variety of activities throughout
the day, there is no particular frequency band that would be
solely useful for clustering. We considered power at a range of
frequencies between 1–52 Hz for each electrode, binning every
1.5 Hz of power for a total of 35 features per electrode per 2-s
window. At 82 to 106 electrodes per subject, this process resulted
in 2870 to 3710 features for each 2-s window of recording. To
normalize the data, we transformed the binned powers levels at
each frequency bin for each channel by computing the Z-Score.
The dimensionality of the feature space was then reduced with
principal component analysis (PCA), and the cumulative fraction
of variance explained as a function of the number of PCA
modes for each subject day is shown in Figure S1. These spectra
were highly variable, both within and between subjects. For
purposes of unsupervised clustering, we truncated all feature
space to the first 50 PC’s. The first 50 PC’s generally accounted

for at least 40% of the variance in daily power spectral features
space.

5.6. Hierarchical Clustering of ECoG
Features
Weused the 50-dimensional principal component power spectral
features of the ECoG data as features for our hierarchical k-means
clustering, a variant of Lamrous et al.’s divisive hierarchical
clustering method Lamrous and Taileb (2006). The hierarchical
k-means procedure and the annotation of clusters by correlation
with movement and speech levels is shown schematically in
Figure 8. For each subject on each day, we first perform k-means
with k = 20 clusters using euclidean distance measures. Next,
we segregate the data points into the single cluster with the
most number of data points and all the rest of the clusters. This
procedure produces the first level of the hierarchical clustering,
which now has two clusters. Next, for level L of the clustering,
this procedure is repeated for each cluster from level L− 1 using
k = 20/L (k floored to the largest previous integer). Again, the
single cluster with the most number of data points is separated
from the rest of the clusters, so that at level L, we end up with
2L clusters. This process of recursive k-means clustering and
aggregation is stopped when there are fewer than 100 data points
in each cluster, or when L = 10. In this manuscript, we focused
on analyzing annotated clusters in levels 1–4.

5.7. Automated Annotation of Clusters
Using Video and Audio Recordings
Results from the clustering analysis were automatically annotated
using movement and speech levels. Each type of unsupervised
analysis produced time series at different temporal resolutions, so
they were all first consolidated into a mean analog value for non-
overlapping 16-s windows. For ECoG, we counted how many 2-s
windows within each 16-s were assigned to a particular cluster at
the target hierarchy level. That is, a score was given for each 16-s
window, which was the count of how many 2-s windows within
were assigned to the given cluster. For movement and speech
detection, we considered what fraction of the 2-s windows within
the larger 16-s window exceeded a threshold value, empirically
determined by visual inspection to be an average movement
of 1.1 pixels and a mean sound power of 3 × 1011 (arbitrary
units).

After consolidation into windows of 16 s, we computed the
Pearson r correlation between each of the ECoG clusters with
the movement and speech levels. The “movement” and “speech”
labels were assigned to clusters for which the correlation was
the highest for each behavior. If movement and speech both
correlated best with the same cluster, the label was assigned
to the second best cluster for the activity type that had a
lower correlation. The “rest” label was assigned to the cluster
with the largest negative correlation with both movement and
speech.

We performed this annotation assignment for clustering levels
1–4 (see Figure 8). At level 1, for which there were only 2
total clusters, labels were simplified to be “rest” and “non-rest”
(for movement and speech combined). Level 3, where there
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FIGURE 8 | A schematic of the hierarchical clustering and annotation method. Features extracted from ECoG recordings of each subject day were recursively

clustered and agglomerated at increasing levels. Annotation consisted of finding the cluster within each level whose time course had the highest correlation with

automatically extracted movement and speech levels. For illustration purposes, here we show the annotation of clusters at Level 2, which has 4 total clusters.

are 8 total clusters, appeared to be the most parsimonious
level of granularity for the number of categories available
automatically.

5.8. Validation with Ground Truth Labels
Ground truth labels for random portions of each day were
obtained from two students who hand annotated a small
random fraction of each subject day (about 40 min, or 3%
of each day) for visible and audible behaviors. The hand
annotations were distributed randomly throughout each day
of each patient. The automated results were compared to
manual labels using 16 s windows within the manually
annotated times. Each 16 s window is determined to contain
an activity if the activity is annotated within any point in the
window. Since different clusters have different baseline levels,
we determined that the cluster detects the activity if its level
is at or above the 25th percentile over the day. Using the
manual labels as ground truth, accuracy and F1 scores were
computed. The F1 score is the harmonic mean of precision and
recall.

To determine the statistical significance of the F1 scores
compared to chance, we generated shuffled labels by changing
the timing of the ground truth labels of each activity,
without changing their overall relative frequency. This shuffling
was repeated over 1000 random iterations to determine the

distribution of F1 scores assuming chance, and the true F1
score was compared against these shuffled F1 scores. We
report the percentile of the true F1 scores for all subject
days.

5.9. Mapping Annotated Clusters Back to
the Brain
For each annotated cluster, we projected the centroid values of
the cluster back to brain coordinates. The centroids values are 50-
dimensional vectors in PCA space, reduced from power spectral
features of all recording electrodes. The inverse PCA transform
using the original PCA basis projects the centroid back to brain
coordinates, where the relative power in each frequency bin is
available at each electrode. Note that because of the Z-Score
normalization step before computing the original PCA basis, this
back-projection reproduces Z-Score values, not voltages. These
Z-Scores can be separately averaged according to frequency bins
of interesting bands, including a low frequency band (LFB, 1–8
Hz) and a high-frequency band (HBG, 12–45 Hz) as show in
Figure 7. Figures S5–S8 also show results of brain maps at 72–
100Hz. Anatomic reconstruction of electrode coordinates on
structural imaging of subjects’ brains was available for only four
of the six subjects, so we were unable to perform this mapping for
Subject 2 and Subject 6.
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5.10. Reproducibility and Availability of
Code
The code developed in Python for processing and all analyses
presented in this paper are openly available at https://github.com/
nancywang1991/pyESig2.git.
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