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Abstract

Motivation: Accumulating evidence has highlighted the importance of microbial interaction networks. Methods
have been developed for estimating microbial interaction networks, of which the generalized Lotka–Volterra equa-
tion (gLVE)-based method can estimate a directed interaction network. The previous gLVE-based method for esti-
mating microbial interaction networks did not consider time-varying interactions.

Results: In this study, we developed unsupervised learning-based microbial interaction inference method using
Bayesian estimation (Umibato), a method for estimating time-varying microbial interactions. The Umibato algorithm
comprises Gaussian process regression (GPR) and a new Bayesian probabilistic model, the continuous-time regres-
sion hidden Markov model (CTRHMM). Growth rates are estimated by GPR, and interaction networks are estimated
by CTRHMM. CTRHMM can estimate time-varying interaction networks using interaction states, which are defined
as hidden variables. Umibato outperformed the existing methods on synthetic datasets. In addition, it yielded rea-
sonable estimations in experiments on a mouse gut microbiota dataset, thus providing novel insights into the rela-
tionship between consumed diets and the gut microbiota.

Availability and implementation: The Cþþ and python source codes of the Umibato software are available at
https://github.com/shion-h/Umibato.

Contact: shion_hosoda@asagi.waseda.jp or mhamada@waseda.jp

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Comprehensive investigations of microbial community structure
using metagenomic analysis have shown that the microbiota plays a
key role in humans (Turnbaugh et al., 2007; Wang and Jia, 2016)
and the natural environment (Fierer, 2017; Sunagawa et al., 2015,
2020). Microbial interactions, one of the elements of the community
structure, are considered as the main drivers of metabolic dynamics
(Embree et al., 2015) and have been suggested to influence the host’s
health (Fraune et al., 2015). Therefore, microbial interactions have
received attention as an important research subject (Li et al., 2016;
Phelan et al., 2012). Two main methods are employed for estimating
microbial interactions using metagenomic data: correlation-based
methods and generalized Lotka–Volterra equation (gLVE)-based
methods.

Correlation-based methods evaluate the co-variation of the
abundance of each microbe and estimate a positive or negative rela-
tionship between the two microbes. Numerous correlation-based

methods have been proposed (Ban et al., 2015; Biswas et al., 2016;
Fang et al., 2015; Faust et al., 2012; Friedman and Alm, 2012;
Kurtz et al., 2015). Recently, McGregor et al. (2020) developed the
MDiNE, a probabilistic model based on partial correlation coeffi-
cients. They applied MDiNE to a human gut microbiota dataset,
which included information of patients with Crohn’s disease, and
observed differences between cases and controls in interaction net-
works. An advantage of correlation-based methods is that they can
be used for cross-sectional data and have a wide application range.
However, the information obtained by this method is limited be-
cause it cannot be used to estimate the direction of microbial inter-
actions. The direction of interaction indicates the relationship
between microbes, such as symbiosis and competition, and allows a
detailed understanding of microbial dynamics (Attar, 2016; Hibbing
et al., 2010; Li et al., 2016; Seipke et al., 2012).

The gLVE-based method estimates directed microbial interaction
networks by evaluating the contribution of one to the growth of the
other. The gLVE-based method represents the microbial growth rate
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as a linear combination of the abundance of microbes in the commu-
nity. The growth rates have to be statistically estimated; this estima-
tion requires time-series microbiome data with quantitative
abundance obtained by experiments such as qPCR. Nevertheless, the
gLVE-based method has been widely employed to elucidate the dy-
namics using directional information (Buffie et al., 2015; Coyte et al.,
2015; Fisher and Mehta, 2014; Gao et al., 2018; Gibson and Gerber,
2018; Li et al., 2019; Stein et al., 2013). Bucci et al. (2016) developed
MDSINE, a method for estimating directed microbial interaction net-
works considering perturbations based on gLVE. They estimated the
bacteria that inhibit the growth of Clostridium difficile and suggested
new strategies for the rational design of probiotic cocktails.

A critical limitation of conventional gLVE-based methods is their
inability to account for temporal changes in the microbial inter-
action networks. Microbial interactions have been reported to differ
in environments that contain different nutrients (Embree et al.,
2015). In environments where nutrition is expected to change dra-
matically, such as in the human gut, where the nutrition is influ-
enced by diet (Kolodziejczyk et al., 2019), microbial interactions are
expected to be time-varying. However, conventional gLVE-based
methods cannot estimate such time-varying microbial interactions
because they implicitly assume that the microbial interaction net-
work is same at all times.

In this study, we developed unsupervised learning-based microbial
interaction inference method using Bayesian estimation (Umibato) for
estimating time-varying directed microbial interaction networks. We
proposed a novel Bayesian model called the continuous-time regression
hidden Markov model (CTRHMM), which was included in Umibato.
The Umibato algorithm comprises the following two steps:

1. Gaussian process regression (GPR) estimates the growth rates

from time-series quantitative microbial abundances (Section 2.3).

2. CTRHMM estimates the time-varying microbial interaction net-

works from estimated growth rates and time-series quantitative

microbial abundances (Section 2.4).

The growth rates estimated by GPR are passed to the
CTRHMM together with the estimation uncertainty. This procedure
allows for the estimation of directed microbial interactions, consid-
ering the uncertainty of growth rate estimation. In addition,
CTRHMM has the advantage of being reasonably applicable to
data with irregular sampling intervals because it assumes a continu-
ous-time Markov chain. We first confirmed the effectiveness of the
Umibato algorithm in synthetic datasets (Section 3.1). We then
applied the Umibato algorithm to the mouse gut microbiome dataset
and observed that Umibato estimated the specific interaction net-
work in a low-fiber diet (Section 3.2). These results suggest that
Umibato can capture changes in the microbial interaction network.

2 Materials and methods

2.1 Generalized Lotka–Volterra equation
The gLVE, a differential equation describing the symbiosis and com-
petition relationship of microbes, is formulated as follows:

dxiðtÞ
dt
¼
�
/i;0 þ

XM
j¼1

/i;jxjðtÞ
�

xiðtÞ;

where xiðtÞ is the quantitative abundance of the ith microbe at time
t, /i;jðj > 0Þ is the interaction parameter from the jth microbe to the

ith microbe, /i;0 is the growth parameter of the ith microbe and M is

the number of different microbes. We defined gLVE parameters as
interaction and growth parameters. For computational convenience,
gLVE is transformed into the following form:

yiðtÞ ¼ /i;0 þ
XM
j¼1

/i;jxjðtÞ; (1)

where

yiðtÞ ¼
dlnxiðtÞ

dt
¼ dxiðtÞ

dt

1

xiðtÞ
: (2)

We call yiðtÞ the growth rates in this article.

2.2 Overview of Umibato algorithm
The Umibato algorithm introduces time-varying gLVE parameters
/i;jðtÞ into (1): to represent several different conditions caused by en-

vironmental events (e.g. nutrient depletion and compound surges
due to host diet), we assume that microbial interactions change dis-
cretely. Therefore, we defined interaction states as categorical varia-
bles that determine the discrete state of interaction. We used
PK
k¼1

zkðtÞ/k;i;j as /i;jðtÞ, where zkðtÞ is a stochastic process that has a

value of 1 when the interaction state at time t is the kth state and 0
otherwise; /k;i;jðj ¼ 0Þ and /k;i;jðj > 0Þ are the growth and inter-

action parameters when the interaction state is the kth state, respect-
ively; and K is the number of interaction states. Then, the Umibato
probabilistic model is based on the following equation:

yiðtÞ ¼
X

k

zkðtÞ
�
/k;i;0 þ

XM
j¼1

/k;i;jxjðtÞ
�
: (3)

fzkðtÞgK
k¼1 are modeled using a continuous-time Markov chain. The

detailed generative processes are described in Section 2.4.1. To use
(3) as a statistical model, we replaced xiðtÞ; yiðtÞ and zkðtÞ with

quantitative abundance data fxn;igN
n¼1, growth rate data fyn;igN

n¼1

and latent state binary variables fzn;kgN
n¼1, respectively, where N is

the number of observations. We then obtained the following statis-
tical model:

yn;i ¼
X

k

zn;k/
T
k;ixn þ �n;i;

�n;i � Normalð0; r2
n;iÞ;

where xn ¼ ð1;xn;1; . . . ; xn;j; . . . ;xn;MÞT is the quantitative abun-

dance vector of microbes at the nth observation point; /k;i ¼
ð/k;i;0; . . . ;/k;i;j; . . . ;/k;i;MÞT is the gLVE parameter for the ith mi-

crobe in the kth state; �n;i is an error term of yn;i; r2
n;i is the variance

of �n;i; and Normalðl; r2Þ denotes the normal distribution with a

mean of l and a variance of r2.
Umibato estimates the time-varying gLVE parameters through

the following two steps. First, Umibato estimates yn;i and r2
n;i from

fxn;ign for the ith microbe using a GPR (cf. Section 2.3). Second,

Umibato estimates fzn;kgn;k
and f/k;i;jgk;i;j

from fxn;ign;i, fyn;ign;i,

and fr2
n;ign;i

using a CTRHMM (cf. Section 2.4). We describe the

detailed Umibato procedure in Algorithm 1 (the notations are
described in Supplementary Table S1).

2.3 GPR for growth rate estimation from time-series

quantitative microbiome data
GPR is a probabilistic regression model based on a kernel function.
We used GPR to estimate the growth rates and their variances from
quantitative abundances. An essential property of GPR is its ability
to estimate the distribution of the true function. In Umibato, the
logarithmic abundance trajectories of microbes are estimated as true
functions, and yn;i and r2

n;i are given as follows:

yn;i ¼ E½fi
0�ðtnÞ;

r2
n;i ¼ V½fi

0�ðtnÞ;
(4)

where fi is the logarithmic abundance trajectory function of the ith
microbe; fi

0 is the growth rate function, that is, the time derivative of
the estimated fi (Eq. (2)); Eð�Þ and Vð�Þ are the expectation and vari-
ance with respect to the posterior distribution of fi, respectively; and
tn is the time of the nth observation point. E½fi

0� was obtained by
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differentiating the kernel function, and V½fi
0� was approximated by

sampling fi
0 from the posterior distribution.

Preliminary experiments have shown that the growth rate esti-
mation by GPR is more powerful than that by penalized spline inter-
polation, which has been used in previous studies (Supplementary
Fig. S1). In addition, GPR has another advantage in that hyperpara-
meters, such as a penalty coefficient in penalized spline interpol-
ation, are not required. Note that we used the term
‘hyperparameter’ here as a parameter that was not estimated in
iterations.

2.3.1 Parameter estimation

We estimated the kernel parameters using the maximum likelihood
estimation. We used a radial basis function kernel and Gaussian
noise and implemented GPR parameter estimation using the Python
library GPy (https://github.com/SheffieldML/GPy). To avoid the
logarithm of zero, we replaced zeros in the abundance matrix by a
pseudo abundance, where the pseudo abundance is set to be the larg-
est 10r that does not exceed the minimum non-zero value of the
abundance matrix (r is an arbitrary integer).

2.3.2 Outlier detection

In the growth rate estimation, we excluded the observation points
that were not in the middle 90% of the distribution estimated by the
GPR as outliers. We then conducted GPR again, and the results
were used as the final estimates.

2.3.3 Calculating the variance of the estimated growth rate

We sampled fi from the posterior distribution estimated by GPR 100
times and calculated the unbiased variance. Variances below 10�4

were corrected to 10�4 because very small variances would interfere
with the estimation of the CTRHMM.

2.4 CTRHMM for estimating time-varying gLVE

parameters
We proposed a novel Bayesian probabilistic model, CTRHMM.
CTRHMM was used to estimate the interaction states and the corre-
sponding networks using growth rates and their variances estimated

by GPR. CTRHMM is a model similar to the input–output hidden
Markov model (Bengio and Frasconi, 1994) but differs in that a con-
tinuous-time Markov chain assumes the states. The continuous-time
Markov chain enables the application of the model to data with ir-
regular sampling intervals. This ability is useful because periodic
sampling of the microbiome is difficult in some cases. For example,
the sampling interval for human gut microbiota studies depends on
the defecation interval. The continuous-time Markov chain, which
can consider sampling intervals, is therefore more suitable for mod-
eling interaction states than the discrete-time Markov chain. In
Section 2.4.2, we introduce a variational inference procedure for
CTRHMM. To the best of our knowledge, this is the first time vari-
ational inference has been applied to continuous-time hidden
Markov models.

2.4.1 Generative process of CTRHMM

The generative process of CTRHMM is given as follows:
for each state k ¼ 1 . . . K do

/k;i � Normalð0; k�1
i IMþ1Þ

PðtÞ ¼ expðQtÞ

for each subject s ¼ 1 . . . S do

z
ðsÞ
1 �Multinomialð1K=K;1Þ

for each observation point n ¼ 2 . . . Ns do

zðsÞn �
X

k

z
ðsÞ
n�1;kMultinomial

�
pkðd

ðsÞ
n�1Þ; 1

�

y
ðsÞ
n;i �

X
k

z
ðsÞ
n;kNormal

�
/k;i

TxðsÞn ; grðsÞn;i
2
�

Here, ki is the precision parameter for the prior distribution of
gLVE parameters to the ith microbe; IMþ1 is the ðMþ 1Þ-dimension-

al identity matrix; PðtÞ ¼
�

p1ðtÞ; . . . ; pkðtÞ; . . . ; pKðtÞ
�T

is the transi-

tion probability matrix for the elapsed time t; expð�Þ is the matrix
exponential function; Q is the transition rate matrix; S is the number

of subjects; �ðsÞ denotes the sth subject; z
ðsÞ
n is a one-hot vector indi-

cating the interaction state of the nth observation point of the sth
subject; Multinomialðp;NÞ denotes the multinomial distribution
with the event probability vector p and number of trials N; 1K is a
K-dimensional vector in which all the elements are 1; Ns is the num-

ber of observation points of the sth subject; d
ðsÞ
n is the time interval

of the sth subject between the nth observation point and the
ðnþ 1Þth observation point; and g is the reciprocal of the inverse
temperature in the field of statistical physics, which adjusts for the
influence of likelihood and prior distribution. Figure 1 shows a
graphical representation of CTRHMM.

2.4.2 Variational inference for estimating CTRHMM parameters

We present a variational inference procedure for CTRHMM.
Variational inference is a parameter estimation method for Bayesian
probabilistic models that introduces an approximate posterior distri-
bution and maximizes the evidence lower bound (ELBO) (Attias,
2000). Maximizing ELBO is equivalent to minimizing the Kullback–
Leibler divergence between an approximate posterior distribution
and the true posterior distribution. We introduce the following ap-
proximate posterior distributions:

qðfðtÞ;ZÞqðUÞ � pðfðtÞ;Z;UjX;Y;R; g;Q; d; kÞ;

where X, Y, R and Z are the quantitative abundance matrix, growth
rate matrix, growth rate variance matrix and one-hot state matrix of
all subjects at all timepoints, respectively; fðtÞ is the stochastic pro-
cess of states between observation points; U is the gLVE parameter
tensor; d is the time interval vector between each observation point
of all subjects; k is the parameter vector for the prior distribution of
U; and Ns is the number of observation points of the sth subject. In

Fig. 1. Graphical representation of the proposed model (CTRHMM). Only the nth

observation point is displayed, and the subject indices are omitted. The shaded and

white circles represent the observed and unobserved variables, respectively
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addition, we assume that the following factorization is possible for
the approximate posterior distribution:

qðfðtÞ;ZÞqðUÞ ¼
�YS

s¼1

qðfðsÞðtÞ;ZðsÞÞ
��YK

k¼1

YM
i¼1

qð/k;iÞ
�
;

where /k;i is the gLVE parameter for the ith microbe in interaction

state k. The detailed notations are described in Supplementary Table
S1. Then, ELBO L is written as

L ¼ hlnpðY; fðtÞ;Z;UjX;R; g;Q; d; kÞ � lnqðfðtÞ;ZÞqðUÞifðtÞ;Z;U;

where h�ifðtÞ;Z;U denotes the expectation with respect to

qðfðtÞ;ZÞqðUÞ. We maximize L in the variational inference. Using

the variational method, qð/k;iÞ satisfying @L
@qðUÞ ¼ 0 is obtained as

follows:

qð/k;iÞ ¼MultiNormalð/k;ijR/k;i
t/k;i

;R/k;i
Þ; (5)

where MultiNormalðl;RÞ denotes the multivariate normal distribu-
tion with mean vector l and covariance matrix R, and

t/k;i
¼ XTLk;iy

ð�Þ
�;i ;

R/k;i
¼ ðkiIMþ1 þXTLk;iXÞ�1;

Lk;i ¼ diagðcð�Þ�;kÞdiagðgrð�Þ�;i Þ
�1:

Here, diagðaÞ is the diagonal matrix whose diagonal elements

are a, cð�Þ�;k is the expected vector of the kth column of Z with respect

to qðZÞ, rð�Þ�;i is the ith columns of R and y
ð�Þ
�;i is the ith columns of Y.

Similarly, qðZðsÞÞ is obtained as follows:

lnqðZðsÞÞ ¼
�XNs

n¼1

XM
i¼1

XK

k¼1

z
ðsÞ
n;keðs; n; i; kÞ

�
þ lnpðzðsÞ1 Þ

þ
�XNs�1

n¼1

lnpðzðsÞnþ1jzðsÞn ;Q;dðsÞn Þ
�
� ln~pðYðsÞÞ;

(6)

where h�i/k;i
denotes the expectation with respect to qð/k;iÞ,

ln~pðYðsÞÞ is the normalization constant for qðZðsÞÞ, and

eðs;n; i; kÞ ¼ hlnpðyðsÞn;i jz
ðsÞ
n;k ¼ 1;/k;i;x

ðsÞ
n ; rðsÞn;i ; gÞi/k;i

¼ �1

2
ln2pgrðsÞn;i

2

� 1

2grðsÞn;i
2
fyðsÞn;i

2 � 2y
ðsÞ
n;ix

ðsÞ
n

Th/k;ii/k;i

þxðsÞn
Th/k;i/k;i

Ti/k;i
xðsÞn g:

The second and third terms on the right-hand side of (6) are
given by

lnpðzðsÞ1 Þ þ
XNs

n¼1

lnpðzðsÞnþ1jzðsÞn ;Q; dðsÞn Þ

¼ �
XK

k¼1

z
ðsÞ
1;klnKþ

XNs�1

n¼1

XK

k¼1

XK

l¼1

z
ðsÞ
n;kz

ðsÞ
nþ1;llnpk;lðdðsÞn Þ;

where pk;lðtÞ is the transition probability from the kth state to the

lth state for the elapsed time t. Equation (18) can be computed
using the forward–backward algorithm (Baum et al., 1972).

We used the true conditional posterior distribution pðfðsÞn ðtÞ
jzðsÞn ;Q; d

ðsÞ
n Þ as qðfðsÞn ðtÞjz

ðsÞ
n Þ. pðfðsÞðtÞjZðsÞ;Q; dÞ can be expressed

as follows:

pðfðsÞðtÞjZðsÞ;Q; dÞ ¼
YNs�1

n¼1

YK
u¼1

YK
v¼1

f ðs;n; u; vÞz
ðsÞ
n;uz

ðsÞ
nþ1;v ;

where

f ðs; n;u; vÞ ¼ pðfðsÞn ðtÞjz
ðsÞ
n;u ¼ 1; z

ðsÞ
nþ1;v ¼ 1;Q; d

ðsÞ
n Þ

/
Y

k

fpu;kðtÞpk;vðdðsÞn � tÞgf
ðsÞ
n;k
ðtÞ
:

The implementation does not calculate the distribution but only
the following expectations:

hsðs;n;u;vÞk i
f
ðsÞ
n ðtÞ
¼ 1

pu;vðdðsÞn Þ

ðd
ðsÞ
n

0

pu;kðtÞpk;vðdðsÞn � tÞdt; (7)

h�ðs;n;u;vÞk;k0 i
f
ðsÞ
n ðtÞ
¼ qk;k0

pu;vðdðsÞn Þ

ðd
ðsÞ
n

0

pu;kðtÞpk0;vðdðsÞn � tÞdt; (8)

where sðs;n;u;vÞk and �
ðs;n;u;vÞ
k;k0 are the time interval of state k and the

number of transitions from state k to k0 between the nth and

ðnþ 1Þth observation points of the sth subject when z
ðsÞ
n;u ¼ 1 and

z
ðsÞ
nþ1;v ¼ 1 hold, respectively; h�i

f
ðsÞ
n ðtÞ

denotes the expectation with re-

spect to qðfðsÞn ðtÞjz
ðsÞ
n ; z

ðsÞ
nþ1Þ; and qk;k0 is the ðk; k0Þ element of the tran-

sition rate matrix Q. These expectations can be obtained by
calculating one matrix exponential according to a previous study on
a continuous-time hidden Markov model (Liu et al., 2015). Type II
maximum likelihood estimation of the other parameters were
obtained as follows:

qk;k0 ¼
h�k;k0 ifðtÞ;Z
hskifðtÞ;Z;

(9)

km ¼
ðDþ 1ÞK

PK
k¼1

h/k;i
T/k;ii/k;i

; (10)

g ¼ 1

NM

XS

s¼1

XNs

n¼1

XM
i¼1

XK

k¼1

cðsÞn;k

rðsÞn;i

hðyðsÞn;i � xðsÞn
T/k;iÞ2i/k;i

; (11)

where h�ifðtÞ;Z denotes the expectation with respect to qðfðtÞ;ZÞ; cðsÞn;k

is the expectation of z
ðsÞ
n;k with respect to qðzðsÞn;kÞ; and sk and �k;k0 are

the time interval of state k and the number of transitions from state
k to k0 at all periods, respectively. hskifðtÞ;Z and h�k;k0 ifðtÞ;Z can be cal-

culated from hsðs;n;u;vÞk i
f
ðsÞ
n ðtÞ

; h�ðs;n;u;vÞk;k0 i
f
ðsÞ
n ðtÞ

, and the expected number

of transitions between the observation points obtained by the for-
ward–backward algorithm. Finally, ELBO can be rewritten as

L ¼
�XS

s¼1

ln~pðYðsÞÞ
�

þ
XK

k¼1

XM
i¼1

hlnpð/k;ijkmÞi/k;i
þ 1

2
lndetð2peR/k;i

Þ

0
@

1
A;

(12)

when (6) holds, where detð�Þ denotes the matrix determinant calcu-
lation. A detailed derivation of the variational inference algorithm is
provided in Supplementary Section S1.

2.4.3 State deletion

In the process of estimating the CTRHMM parameters, only a small
number of observations are assigned to one state. A state that is
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allocated only the number of observation points less than or equal
to Mþ1 is overfitting because it can reconstruct the observation
points without any errors. We introduced heuristics to remove such
states and the corresponding parameters during estimation. In detail,
we deleted a state that satisfies the following conditions:

�XS

s¼1

XNs

n¼1

cðsÞn;k

�
< Mþ 1: (13)

The heuristics were performed so that at most one cluster was
deleted per iteration. In the next iteration, where this operation is
performed, convergence is not determined because ELBO may
decrease.

2.4.4 Convergence determination

The learning process is terminated when the change in the ELBO be-
tween the previous and current steps is <10�4, or when the total
number of iterations exceeds 100.

2.4.5 Standardization of quantitative abundance matrix

The quantitative abundance matrix X was standardized such that
the mean is 0 and the variance is 1 for each microbe to equalize the
effect of the prior distribution of U. Standardization of X can also
remove the 16S rRNA gene copy number bias when comparing the
interaction parameters to a microbe. In other words, standardization
discards information regarding the scale of microbial abundances
and enables the estimation of contributions to growth rates that can
be compared (cf. Fig. 5). In a synthetic data experiment (Section
3.1), we corrected the gLVE parameters estimated using standar-
dized X to compare them with the true parameters. The detailed
procedure is described in Supplementary Section S2.

2.5 Synthetic data experiment
We generated gLVE parameters using a generative process and pre-
pared three different synthetic datasets according to gLVE. The gen-
erative process is the same for the three datasets and was set up
based on the MDSINE assumptions regarding signs (MDSINE
assumes /i;j < 0ði ¼ jÞ and /i;0 > 0). Each dataset has a different
combination of the number of states K (1 or 2) and the number of
microbes M (5 or 10). The details of the settings of states and
parameters are described in Supplementary Section S3. We con-
ducted 100 CTRHMM trials for each initial number of states
Kinit ¼ 1; . . . ; 5. We adopted a trial with the highest ELBO maxi-
mized in the learning process. The performances of MDSINE and
Umibato were evaluated using the two measurements: the Pearson’s
correlation coefficients and the mean absolute error (MAE).

Pearson’s correlation coefficients and MAE were calculated between
the true and estimated parameters at each observation point. To
evaluate Umibato, we compared the true parameter with the param-
eter corresponding to the state of the maximum likelihood path for
each observation point.

2.6 Real data experiment
We used the time-series quantitative mouse gut bacterial dataset of
Bucci et al. (2016), which was obtained from the feces of seven mice
that had orally ingested 13 strains of Clostridium. These 13 bacterial
strains were determined based on the work of Atarashi et al. (2013),
which suggested that the strains induced Treg cells. Supplementary
Table S2 shows the lineage of each strain. The data were measured
using strain-specific qPCR primers. All mice were fed a high-fiber
diet, five of the seven mice were temporarily switched to a low-fiber
diet, and two of the seven mice were not switched and acted as con-
trols. The first five mice had 56 observation points each, and the lat-
ter two mice had 25 observation points each. We downloaded this
dataset from the MDSINE software repository (https://bitbucket.
org/MDSINE/mdsine/downloads). We conducted 10 000
CTRHMM trials for each Kinit ¼ 1; . . . ; 15. We adopted a trial with
the highest ELBO maximized in the learning process.

3 Results

3.1 Accuracy evaluation on synthetic dataset
We tested the performance of Umibato compared with that of
MDSINE on synthetic datasets generated using known parameters
according to gLVE (cf. Section 2.5). Four algorithms, BAL, BVS,
MLRR and MLCRR, were implemented in MDSINE (Bucci et al.,
2016), and the performance of Umibato was compared with those
of all others. The performance of Umibato was visualized over two
settings: (i) the case in which the number of true states was given as
Kinit (called ‘true model case’) and (ii) the case in which several Kinit

were used similar to the real data experiment (called ‘practical
case’).

Figure 2 shows the means of the correlation coefficients between
true parameters and parameters estimated by each method for each
synthetic dataset. First, Dataset 1 is a single-state dataset; that is, it
obeys the equations assumed in previous studies. The mean correl-
ation coefficients of Umibato in the true model case and practical

Fig. 2. Pearson’s correlation coefficients between the true parameters and parame-

ters estimated by each method for each synthetic dataset. The x- and y-axes indicate

the mean of the Pearson’s correlation coefficients of gLVE parameters of all observa-

tion points for the datasets. The six bars indicate Umibato in the true model case,

Umibato in the practical case, BAL, BVS, MLRR and MLCRR in order from left to

right. The ‘true modelcase’ and ‘practical case’ are described in Section 3.1

Algorithm 1. The Umibato algorithm

procedure Umibato algorithm (quantitative abundance matrix

X, time interval vector d)

Growth rate estimation (Section 2.3)

for each subject s ¼ 1 . . . S do

for each microbe i ¼ 1 . . . M do

Estimate f
ðsÞ
i by GPR

Calculate YðsÞ and RðsÞ by Eq. (4)

Interaction estimation (Section 2.4)

Initialize qðUÞ; g;Q
for each iteration r ¼ 1 . . . 100 do

Update qðZÞ by Eq. (6)

Calculate hsiifðsÞn ðtÞ;Z
; h�i;jifðsÞn ðtÞ;Z

by Eq. (7) and (8)

Calculate the ELBO by Eq. (12)

if The ELBO converged then

Terminate iteration

Update qðUÞ by Eq. (5)

Update Q;k; g by Eq. (9), (10), and (11)

if there is a state satisfying Eq. (13) then

Delete the state and the corresponding parameters

i20 S.Hosoda et al.

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab287#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab287#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab287#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab287#supplementary-data
https://bitbucket.org/MDSINE/mdsine/downloads
https://bitbucket.org/MDSINE/mdsine/downloads


case and those of BAL, BVS, MLRR and MLCRR in Dataset 1 were
1.0, 0.90, 0.32, 0.45, 1.0 and 1.0, respectively. Umibato exhibited
high performance in both cases. The estimation performance of
Umibato in the practical case was lower than that in the true model
case because the state estimation of some of the observation points
failed (Supplementary Fig. S2). MLRR and MLCRR showed high
performance in Dataset 1 because Dataset 1 was a single state.
Second, Dataset 2 was generated by two states. The mean correl-
ation coefficients of Umibato in the true model and practical cases
and those of BAL, BVS, MLRR and MLCRR in Dataset 2 were
0.99, 0.90, 0.16, 0.33, 0.53 and 0.56, respectively. The performance
of Umibato on Dataset 1 was similar to that on Dataset 1; however,
MLRR and MLCRR were much less accurate for Dataset 1 than for
Dataset 2. Previous gLVE-based methods were suggested not to ac-
curately estimate microbial interaction networks for multi-state data
such as Dataset 2. For state estimation, Umibato in the true model
case failed for only four observation points, whereas Umibato in the
practical case failed for 88 observation points (Supplementary Fig.
S3a and c). Third, In Dataset 3, the number of different microbes
was doubled compared to those in Datasets 1 and 2. The mean cor-
relation coefficients of Umibato in the true model and practical cases
and those of BAL, BVS, MLRR and MLCRR in Dataset 3 were
0.80, 0.89, 0.17, 0.14, 0.19 and 0.25, respectively. The estimation
performance of Umibato in the true model case was lower for
Dataset 3 than that for Dataset 2, and in the practical case, Umibato
performed better than in the true model case. For state estimation,
Umibato in the true model case did not fail for any of the observa-
tion points, whereas Umibato in the practical case failed for 22 ob-
servation points (Supplementary Fig. S3b and d). In summary,
MDSINE showed high performance on Dataset 1 but low

performance on Datasets 2 and 3 because MDSINE assumed a single
interaction in the microbiota, whereas Umibato showed high per-
formance on all datasets. The tendencies discussed in this subsection
can be observed in the MAE evaluation (Supplementary Fig. S4).

3.2 Results on real mouse gut microbiome dataset
We applied Umibato to the mouse gut bacterial dataset and found
that the maximized ELBO for a trial with Kinit ¼ 6 was the highest
across all trials (Supplementary Fig. S5). The final number of states
was 5, and we will discuss the results of this trial in further analysis.
As the estimated interaction parameters, we used the expectation of
U with respect to qðUÞ. The computational time was described in
Supplementary Section S4.

3.2.1 Estimated interaction state trajectories

To see how the bacterial interaction states changed, we examined
the maximum likelihood paths on the mouse gut microbiota dataset.
Figure 3 shows the estimated state paths and dietary information of
the mice. We found that the State 5 was frequently estimated on
low-fiber diet days and not in the control mice. These results suggest
that the switch from the high-fiber to low-fiber diets altered bacter-
ial interactions in the mouse gut. States 1 and 2 were frequently esti-
mated just after the first day of the experiment and may be unstable
interactions caused by orally ingested bacteria. The transitions be-
tween States 3 and 4 were frequently observed. This result suggested
that the states were not constant even with the same diet (i.e. the
high-fiber diet). To verify the robustness of these observations, we
also visualized the results for Kinit ¼ 3. We chose Kinit ¼ 3 because
States 3, 4 and 5 were mainly estimated. The same tendency
was observed for the results estimated with Kinit ¼ 3 (Supplementary
Fig. S6).

3.2.2 Estimated transition rate matrix of interaction state

To investigate the relationship between the states, we next examined
the transition rate matrix Q. Figure 4a shows the value of each elem-
ent of Pð1Þ, that is, the transition probability matrix of the state after
1 day. All diagonal components are above 0.5, indicating that each
state is likely to last for more than 1 day. State 1 has a high probabil-
ity of transition to State 3. States 1 and 3 may be the intermediate
states between the states after oral ingestion of bacteria and the sta-
ble states. Figure 4b shows the value of each element of Pð7Þ, that is,
the transition probability matrix of the state after 1 week. The diag-
onal components of States 3, 4 and 5 were �0.5, whereas the diag-
onal components of States 1 and 2 were 0.052 and 0.12,
respectively. These results show that States 1 and 2 are short-term
states that are likely not to last for a week. States 3 and 4 have a

Fig. 3. Interaction state path estimated by Umibato on the mouse gut bacterial dataset. Each axis indicates each mouse gut microbiome. The x- and y-axes indicate the days

since the start of the experiment and the interaction states and low-fiber diet days, respectively. Each square marker indicates the state estimated at the time point. For example,

there is a marker (10, State3) in the figure of Subject 1, and it indicates that the interaction state of Day 10 of subject1 is State 3. Subjects 4 and 7 were controls; that is, they

were fed a high-fiber diet at all time points

Fig. 4. Transition probability matrix Pð�Þ of interaction states estimated by Umibato

on the mouse gut bacterial dataset. The x- and y-axes represent the destination and

source state IDs, respectively. Darker colors indicate higher probabilities. (a) Pð1Þ,
that is, the transition probability matrix after 1 day. (b) Pð7Þ, that is, the transition

probability matrix after 1 week
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high probability of transition to the other state, which suggests that
these states represent interaction networks stabilized by mutual
transitions. Note that the probability of each diagonal component
includes the probability of transitioning back in time.

3.2.3 Directed interaction networks for each interaction state

To understand the differences in the relationships between the bac-
teria, we verified the interaction parameters of each state. Figure 5
shows the directed networks based on the estimated interaction
parameters divided by the standard deviation of Y for the parame-
ters those above the threshold (0.25). We can see several parasitism
relationships in State 5. Here, the word ‘parasitism’ refers to a rela-
tionship between A and B such that A contributes to the increase in
B and B contributes to the decrease in A. In particular, strains 6, 15
and 28 showed three-way parasitism. The interactions of State 4 are
active, whereas those of State 3 are relatively inactive. Together
with the discussion in Sections 3.2.1 and 3.2.2, our results suggest
that the interaction network frequently switches between dense and
sparse states. These 13 strains were suggested to synergistically amp-
lify the induction of Treg cells in a microbial community-dependent
manner (Atarashi et al., 2013). Therefore, the processes required for
Treg induction may correspond to some or all states. A positive edge
from strains 13 to 15 is common to States 3, 4 and 5. This positive
edge was also observed in the network estimation of a single-state
experiment (Supplementary Fig. S7).

3.2.4 Simulated bacterial abundance trajectories using estimated

parameters

The gLVE enables the simulation of bacterial trajectories. Similarly,
the continuous-time Markov chain can simulate state trajectories be-
cause of its ability to generate states. To assess the effect of a long-
term low-fiber diet on the gut microbiota, we simulated the bacterial
abundance trajectory using the estimated parameters. After 20 days
in State 5, which is considered the bacterial interaction state on the
low-fiber diet, we randomly shifted the state according to estimated
Q. The procedure for generating bacterial trajectories is the same as
that for generating synthetic datasets (Section 2.5) described in
Supplementary Section S3, where Gammað1;2Þ was used to generate
the initial value of abundance. Figure 6 shows the simulated inter-
action state and the bacterial abundance trajectories. Strains 13, 26,
27 and 28 increased in State 5 and decreased in States 3 and 4, while
strain 21 decreased and increased. Strains 7 and 14 showed an
increasing trend in all periods. Slight variation was observed in the
abundance of strain 16. Strain 16 may be less affected by the abun-
dance of other bacteria. The abundance of strains 6 and 9 almost
disappeared during State 5 and could not be restored even after a
long period in States 3 and 4. This result suggests that a long-term
low-fiber diet may lead to an irreversible decrease in the diversity of
microbiota.

Fig. 5. Estimated bacterial interaction networks corresponding to states. The num-

ber shown in each node indicates the strain ID in Supplementary Table S2. The

width of the edge indicates that the estimated interaction parameter divided by the

standard deviation of the growth rate, and values below 0.25 were omitted. The red

arrow and blue T-shaped edges indicate positive and negative interactions,

respectively

Fig. 6. Simulated interaction state and bacterial abundance trajectories. We fixed the first 20 days in State 5 and randomly shifted the state for the next 30 days. The trajectories

were divided into two pains because of differences in the abundance scale. The top, middle and bottom figures show the simulated trajectory of the bacteria with high abun-

dance and low abundance and the simulated interaction states, respectively. The x-axis indicates the number of days elapsed, whereas the y-axis indicates the abundance of

bacteria or the interaction state
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4 Discussion

Here, we propose a new method, Umibato, for estimating time-vary-
ing microbial interaction networks. The first step of Umibato is
growth rate estimation. Our proposed method uses GPR, which ena-
bles accurate and hyperparameter-free growth rate estimation. The
second step is interaction estimation. Umibato adopted a new prob-
abilistic model, the CTRHMM, proposed in this study. CTRHMM
can capture changes of gLVE parameters in time by assuming dis-
crete state variables. Umibato was shown to outperform existing
methods for synthetic datasets. In the real mouse gut dataset, specif-
ic states were estimated at the low-fiber dietary time, suggesting that
gut bacterial interactions changed in a diet-dependent manner.

There is still room for improvement in the growth rate estima-
tion. First, we can utilize trajectory noise as well as variances of
growth rates. Umibato estimated growth rate distributions from tra-
jectories of bacterial quantitative abundances and used their expect-
ations and variances in the CTRHMM. By extending CTRHMM,
we can also utilize the trajectory noise. Specifically, the true quanti-
tative abundance matrix ~X is defined as a new latent variable, and
X is assumed to be stochastically generated from ~X. Here, the trajec-
tory noise estimated by the GPR is used as the noise of the distribu-
tion of X. As suggested by Cao et al. (2017), noise exists in the
quantitative abundance matrix X. Therefore, it may be useful to es-
timate gLVE parameters considering the trajectory noise. Second, it
is also possible to use growth rate estimation methods based on the
peak-to-trough ratio (PTR), which has been proposed recently
(Brown et al., 2016; Emiola and Oh, 2018; Korem et al., 2015;
Suzuki and Yamada, 2020). The PTR-based growth rate estimation
methods require a metagenomic shotgun sequencing dataset and are
based on the fact that the higher the growth rate, the more DNA is
mapped around the replication origin (Bremer and Churchward,
1977; Cooper and Helmstetter, 1968). Adopting the PTR-based
growth rate estimation enables using cross-sectional datasets.
However, the performance of PTR-based methods is questionable
(Long et al., 2020), and the use of this method should be considered
carefully.

Three directions can be used to improve the interaction state esti-
mation by CTRHMM. The first direction is model selection. In the
synthetic dataset experiments, several observation points (>20
points out of all 700 points) failed in the state estimation of
Umibato in the practical case, whereas Umibato in the true model
case could estimate the correct state with few failures (<5 points out
of all 700 points) (Section 3.1). Therefore, estimating the correct
number of states in advance, that is, accurate model selection, ena-
bles us to improve the state estimation. A typical model selection
method involves the use of information criteria. One information
criterion that can be applied to mixture models is the WBIC
(Watanabe, 2013). However, WBIC assumes independent and iden-
tically distributed latent variables and is not applicable to HMMs. A
mathematically justified method for applying WBIC to HMMs has
not yet been established. The second direction is a Bayesian estima-
tion of the transition rate matrix Q. The Bayesian estimation of Q is
expected to be more robust than the maximum likelihood estimation
adopted in this study. Robust estimation of Q allows robust state es-
timation because Q constitutes the prior distribution of interaction
states Z. To perform a Bayesian estimation of Q in variational infer-
ence, we compute the expectations with respect to the approxima-
tion posterior distribution qðQÞ for calculations involving Q, such
as qðZÞ [Eq. (18)] and qðfðtÞjZÞ [Eq. (28 and 29)], which cannot be
computed analytically. Therefore, the approximation of the matrix
exponential or sampling approximation of the expectations must be
used. The third direction is semi-supervised learning. In the applica-
tion of mouse gut bacterial dataset (Section 3.2), State 5 interaction,
which seems to be due to low-fiber diets, was estimated without giv-
ing labels in an unsupervised learning framework. We also suggested
that there were two primary states (i.e. States 3 and 4) on high-fiber
diets. As we have seen, unsupervised learning is powerful, but we
can also take an approach that utilizes labels for learning. In the pre-
sent case, semi-supervised learning can be applied for state estima-
tion using diet labels. That is, CTRHMM is trained where some of
the states of the observation points are known. This method can be

easily implemented by fixing qðzðsÞn Þ of the observation points given
the label during the model learning iterations (Nigam et al., 1998).

There are several candidates for the application of Umibato.
First, the most interesting candidate is the human gut microbiota.
Relationships between the host’s disease and microbial interactions
have been suggested (Fraune et al., 2015; McGregor et al., 2020);
hence, changes in microbial interactions estimated by Umibato may
reveal the dynamics of contracting diseases. Indeed, simulations of
bacterial trajectories (Section 3.2.4) suggested the effect of a long-
term low-fiber diet on the gut microbiome. Some bacteria were elim-
inated by the low-fiber diet. A decrease in community diversity in
the human gut microbiome is called dysbiosis and has been reported
to be associated with several diseases (Levy et al., 2017; Tamboli,
2004). Unfortunately, to the best of our knowledge, there are no
long-term quantitative time-series data of human gut microbiota.
Therefore, further data accumulation is required. Second, the appli-
cation of Umibato to the microbiome data of the natural environ-
ment, such as ocean and soil, may be useful. Umibato is expected to
be effective for analyzing environmental data with dramatic changes
in conditions (Ramsby et al., 2018). Investigating the relationship
between seasons/weather/temperature and microbial interactions in
natural environments through long-term sampling may provide new
insights into microbial research.
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