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Abstract: Bacterioplankton communities play a crucial role in freshwater ecosystem functioning, but
it is unknown how co-occurrence networks within these communities respond to human activity
disturbances. This represents an important knowledge gap because changes in microbial networks
could have implications for their functionality and vulnerability to future disturbances. Here, we
compare the spatiotemporal and biogeographical patterns of bacterioplankton molecular ecological
networks using high-throughput sequencing of Illumina HiSeq and multivariate statistical analyses
from a subtropical river during wet and dry seasons. Results demonstrated that the lower reaches
(high human activity intensity) network had less of an average degree (10.568/18.363), especially
during the dry season, when compared with the upper reaches (low human activity intensity)
network (10.685/37.552) during the wet and dry seasons, respectively. The latter formed more
complexity networks with more modularity (0.622/0.556) than the lower reaches (high human activity
intensity) network (0.505/0.41) during the wet and dry seasons, respectively. Bacterioplankton
molecular ecological network under high human activity intensity became significantly less robust,
which is mainly caused by altering of the environmental conditions and keystone species. Human
activity altered the composition of modules but preserved their ecological roles in the network
and environmental factors (dissolved organic carbon, temperature, arsenic, oxidation–reduction
potential and Chao1 index) were the best parameters for explaining the variations in bacterioplankton
molecular ecological network structure and modules. Proteobacteria, Actinobacteria and Bacteroidetes
were the keystone phylum in shaping the structure and niche differentiations in the network. In
addition, the lower reaches (high human activity intensity) reduce the bacterioplankton diversity
and ecological niche differentiation, which deterministic processes become more important with
increased farmland and constructed land area (especially farmland) with only 35% and 40% of the
community variation explained by the neutral community model during the wet season and dry
season, respectively. Keystone species in high human activity intensity stress habitats yield intense
functional potentials and Bacterioplankton communities harbor keystone taxa in different human
activity intensity stress habitats, which may exert their influence on microbiome network composition
regardless of abundance. Therefore, human activity plays a crucial role in shaping the structure and
function of bacterioplankton molecular ecological networks in subtropical rivers and understanding
the mechanisms of this process can provide important information about human–water interaction
processes, sustainable uses of freshwater as well as watershed management and conservation.

Keywords: human activity intensity; bacterioplankton; molecular ecological networks; freshwater
ecosystem functioning
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1. Introduction

River ecosystems provide important support for terrestrial and aquatic ecosystems
and provide important services for human health, well-being as well as economic and so-
cial benefits [1]. The bacterioplankton community is especially sensitive to environmental
change, which is a ubiquitous and indispensable freshwater river ecosystem component
that plays a key role in biogeochemical processes [2]. The structure of the bacterioplankton
community can also reflect the ecological environment of the river to a certain extent and is
an ideal indicator that can be used to monitor the ecological impacts of human activities
on the functional characteristics of the river water environment [3]. Previous work has
shown that human influences affect microbiome composition [4–6], microbe–microbe inter-
actions [7,8] and microbe–host interactions [3,9,10]. Although it is well documented that
such changes in network structure affect ecosystem functioning and stability, little is known
about the link between human activity intensity and the stability of these microbial systems
and whether and how the ecological networks, particularly bacterioplankton molecular
ecological networks, will change under human activity intensity change scenarios.

To meet human needs, human activities directly affect land use and change landscape
pattern [11,12]. As a hydrological connection between terrestrial systems and coastal sys-
tems, rivers are intimately associated with surrounding changes in land use and play an
important role in the biogeochemical cycle [13]. The conversion of natural vegetation to
anthropogenic land uses (e.g., urban expansion and agriculture) is often accompanied by
increases in impervious surfaces as well as the fragmentation of natural vegetation [14]. An
increased level of nutrient loads and no-point pollutants from domestic sewage, industries,
and agriculture can considerably affect the water environment conditions [15], disturb
the spatial distributions of bacterioplankton population, communities and habitats [16],
reduce microbial diversity [17], and destabilize microbial co-occurrence networks inter-
actions (e.g., through predation and growth competition) [18]. These findings highlight
the fact that rivers are among the most vulnerable ecosystems in the context of a growing
human population, much of which is often concentrated along the riverside, and increasing
anthropogenic pressure. Furthermore, the ecological mechanisms controlling microbial
community assembly and interspecies interactions in anthropogenically disturbed rivers
have not been resolved with respect to complex abiotic and biotic environmental fac-
tors. Understanding the response of river bacterioplankton molecular ecological network
and functioning to human activity is critical to human well-being and river sustainable
management.

Network analyses have been used to explore the ecological interaction patterns among
microbial species in oceans [19], rivers [20], lakes [21] and soils [22], which can reveal
complex associations within microbial communities [23]. Properties of ecological networks,
which might represent interactions between co-existing organisms, can influence the re-
sponse of communities to environmental change, including human activity [24–27]. The
topological properties obtained from network analysis can be used to define network
complexity or stability between microbial community and environmental factors [28,29].
Network analysis also can help identify potential keystone species [30]. These keystone
taxa can help disentangle microbial co-abundance and provides comprehensive insights
into the microbial community structure and assembly patterns [31,32]. Additionally, each
network can be partitioned into ecological clusters of exclusive taxa, here denoted “mod-
ules”, which allow more robust statistical inferences by integrating higher-dimensional
data into predictable ecological clusters [33]. Despite an increasing use of network analysis
in ecology [6,24,34], our understanding of co-occurrences or potential interactions within
complex bacterioplankton, studies focused on microbial keystone species among multiple
bacterioplankton in subtropical freshwater ecosystems and how bacterioplankton networks
respond to disturbances such as human perturbation (such as land-use change), remains
scant.

The Yuan River is a tributary of the Ganjiang River, which is the largest tributary
of Poyang Lake, China. The Yuan River has diverse riparian habitats from upstream
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to downstream, including forest, mountains, cities, and even a reservoir along streams
in the middle reaches. Previous studies have determined that the Yuan River contains
abundant nitrogen and phosphorus pollution [35]. Moreover, chromium (Cr), iron (Fe) and
arsenic (As) in the river mainly come from urban sewage industrial activities and mining
activities [36]. Xu et al. [37] evaluated the influence of landscape structures, including
structural composition and spatial configuration, on river water quality at scales ranging
from riparian zones to entire watersheds. Previous efforts (e.g., Zhao et al. [16]) have
investigated the role of environmental factors in shaping bacterioplankton communities
in this study area. However, the effect of human activity intensity on the spatial and
temporal distribution of bacterioplankton molecular ecological networks is still unclear.
Consequently, we hypothesized that human activity intensity affect bacterioplankton co-
occurrence patterns, as reflected by changes in topological properties, keystone species, and
module composition, and these changes would increase with the intensification of human
activities. Our objectives were to (i) investigate the effect of human activity intensity on
the topological properties of bacterioplankton molecular ecological networks; (ii) identify
keystone species and evaluate their relationships with water chemistry parameters; and
(iii) evaluate how human activity intensity affects the composition of each module within
the bacterioplankton molecular ecological network.

2. Materials and Methods
2.1. Study Area, Sampling and Physiochemical Analysis

The Yuan River basin (N 27◦33′~28◦05′, E 113◦54′~114◦37′) is located in the Jiangxi
Province, southeastern China, originating in the western foothills of the Wugong Mountains
and ultimately discharging into the Ganjiang River (Figure 1). The watershed covers a
total area of 6262 km2 and has a total length of 279 km (the mainstream is indicated by “Y”
in Figure 1). Upstream reaches of the river (Y01–Y05) have substantial forest cover. The
middle reach of the river (Y06–Y11) has a large-scale water project (Jiangkou Reservoir),
with a storage capacity of 320 million m3. Downstream (Y12–Y16) is mainly farmland, and
here is a crucial industrial base of Jiangxi province. The Yuan River basin is situated in a
humid subtropical monsoon climate zone. The average annual precipitation in the basin is
1583 mm, with the rainfall in April to June accounting for 45% of the total.
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In this study, we gathered surface water samples from 16 sites in the mainstream of the
Yuan River. The surface waters of the river at a depth of 50 cm were collected in August 2018
and January 2019, representing the wet and dry seasons, respectively. The samples were
filtered through a 0.45 µm acetate filter membrane, placed into a sealed sampling bottle,
and then refrigerated at 0–4 ◦C. Field determinations of dissolved oxygen (DO), oxidation–
reduction potential (ORP), formazine nephelometric unit (FNU), electric conductivity
(EC) and pH were performed using a portable water quality analyzer (HI9828, Hanna
Instruments Ltd., Rome, Italy); an automatic discontinuous analyzer (Smartchem 200
Brookfield, WI, USA) for determination of ammonia nitrogen (NH4+-N), nitrate–nitrogen
(NO3

−–N) and total phosphorus (TP); and chlorine and sulfate ions (Cl−, SO4
2−) were

determined using an Ics-2100 ion chromatography system. Dissolved organic carbon (DOC)
was measured with a TOC analyzer (Shimadzu TOC-L CPH, Kyoto, Japan). Trace metals,
including aluminum (Al); Cr; vanadium (V); molybdenum (Mo); titanium (Ti); manganese
(Mn); uranium (U); Fe, cobalt (Co); nickel (Ni); cuprum (Cu); zinc (Zn); As; cadmium (Cd),
and lead (Pb), were measured with ICP–MS (Thermo X series II, NE, USA). Kalium (K),
calcium (Ca), sodium (Na) and magnesium (Mg) were measured with ICP-AES (Optima
8000, PerkinElmer, Waltham, MS, USA).

Digital elevation model (DEM) data (at a 30 m resolution) were used to delineate basin
boundaries. Sub-basin classifications at each sampling site ranged from a single sampling
site that encompassed the sub-basin area to the inclusion of adjacent upper sample sites
to reflect the inputs of allochthonous bacteria due to the fast population growth and
replacement rates of bacterial communities.

Landsat 8 satellite imagery from 2017 was used to generate a land-cover classification
at 30 m resolution. Land use pattern images were obtained from the Geospatial Data Cloud.
Images were then binned into five classes: farmlands, forests, freshwaters, urban areas
and others. ArcGIS v 10.3 was used to delineate basin boundaries and calculate land use
proportions.

2.2. DNA Extraction and Illumina DNA Sequencing

Samples were pre-filtered through a 5 µm Durapore membrane filter (diameter 25 mm;
Xinya, China) to remove particulates and algal biomass, followed by filtering through a
0.22 µm Durapore membrane filter (diameter 25 mm; Xinya, China) to collect microbial
cells. Each water sample was simultaneously filtered through several filters to reduce
filtering time. Filters from each sample were mixed and stored at −80 ◦C for subsequent
DNA extraction.

Total DNA was extracted from the water samples using the E.Z.N.A.® Soil DNA Kit
(Omega Bio-tek, Norcross, GA, USA). The bacterial V4–V5 hypervariable regions of 16S
rRNA genes were amplified using the forward primer 338F (5′-ACTCCTACGGGAGGCAG-
CA-3′) and reverse primer 806R (5′-GGACTACHVGGGTWTCTAAT-3′) [16]. PCRs were
conducted using the following PCR cycling parameters: initial denaturation for 2 min at
95 ◦C, followed by 25 cycles of 30 s at 95 ◦C, annealing for 30 s at 55 ◦C, and elongation for
30 s at 72 ◦C, all followed by a final elongation step for 5 min at 72 ◦C. Gel electrophoresis
on 2% agarose gels was used to ensure to evaluate successful PCR amplification. Triplicate
PCR amplicon products were pooled for each sample, purified using an AxyPrep DNA
gel extraction kit (Axygen, Corning, NY, USA), and quantified using the QuantiFluor™-ST
system (Promega, Madison, Wi, USA). DNA sequencing was conducted on the Illumina
MiSeq platform (Illumina, San Diego, CA, USA) following standard operating procedures
and paired-end 2 × 250 bp sequencing chemistry. The sequencing was conducted at the
Shanghai Majorbio Bio-Pharm Technology Co., Ltd. of China. Raw sequence data files were
deposited in the NCBI Sequence Read Archive database (Accession number: SRP194014).

2.3. Statistical Analyses

Operational taxonomic units (OTUs) were clustered with a 97% similarity cutoff
using UPARSE (version 7.1) and chimeric sequences were identified and removed using
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UCHIME. The phylogenetic affiliation of each 16S rRNA gene sequence was analyzed by
the RDP Classifier (Release11.3) against the Silva (Release 119) 16S rRNA database using a
confidence threshold of 70%. Dilution curve analysis was performed based on OTU. We
evaluated the alpha-diversity through the Chao1 richness index and the Shannon diversity
index. All the data were tested for normality (Shapiro–Wilk test). Variables that were
not normally distributed were log transformed to normality. Pearson correlations and
one-way analyses of variance (ANOVA) with Fisher’s least significant difference (LSD)
post hoc tests were performed using SPSS Statistics v20. The LSD method was used for
multiple comparison, and Pearson correlation analysis was used for correlation analysis
(with a significance level of p≤ 0.05 considered as a significant difference). A Venn diagram
was constructed to reflect the number of common and unique OTUs among two bacterial
molecular ecology networks.

To estimate the potential contribution of stochastic processes to bacterioplankton
communities, a neutral community model was used [38]. The parameter R2 was used to
indicate the overall fit to the neutral model, while m represents the immigration rate. R2 > 0
means that the population conforms to the neutral model (stochastic processes), while
R2 < 0 indicates the opposite. Please refer to Mo et al. [39] for the calculation process of the
neutral model.

Bacterioplankton molecular ecological networks were constructed by the 16Sr DNA
and molecular ecological network technologies. Network analysis (based on phyla level)
was performed to identify the interrelations between microbial taxa, using Cytoscape
version 3.4.0 combined with the CONET plug-in (http://apps.cytoscape.org/apps/conet,
accessed on 1 July 2021) [21]. Cytoscape (version 3.4.0) was used for network visual-
ization and modularization analysis to determine associations (positive and negative
correlations) between bacterial community members [22]. To highlight the most im-
portant interactions, only strong positive (r > 0.8) and strong negative (r < −0.8) rela-
tionships were shown in the network diagrams [17]. The Network Analyzer tool was
used to calculate the network topology parameters, such as average clustering coefficient
(avgCC), average path distance (APD), average degree (avgK) and centralization of de-
gree (CD). The classification identifier for each OTU was assigned at the category level.
The resulting original OTU table (one with taxonomic abundance) was used as the in-
put matrix. The network was built according to the guidelines provided on the CONET
website (http://psbweb05.psb.ugent.be/conet/tutorial4.php, accessed on 1 July 2021). Pa-
rameters were set as follows: at least 30 sequences are preprocessed and filtered for each
OTU, and there are four similarity measures (Spearman, Pearson, Kullbackleibler and
Bray–Curtis) and an automatic threshold setting. The error detection rate (FDR) correction
was set to 0.05 (p < 0.05).

In addition, the zi-score and pi-score cut-offs were based on the methods of metabolic
networks [40]. Here, we define nodes as network hubs (zi-score > 2.5; pi-score > 0.62),
module hubs (zi-score > 2.5; pi-score < 0.62), connectors (zi-score < 2.5; pi-score > 0.62) and
peripherals (zi-score < 2.5; pi-score < 0.62), based on their within-module degree (zi -score)
and participation coefficient (pi-score) threshold value [41], which determines how each
node is positioned within a specific module or how it interacts with other modules [9].
The network hubs were highly connected, both in general and within a module, the
module hubs were highly connected within a module, the connectors provided links
among multiple modules and the peripherals had few links to other species [41]. Network
hubs, module hubs, and connectors were termed keystone network topological features;
these are considered to play important roles in the stability and resistance of microbial
communities [42]; thus, we define the OTUs associated with these nodes as keystone
species.

Based on the perspective of the land use/cover concept, the human activity intensity of
land surface is defined as the degree of natural cover use, transformation, and exploitation
of land surface by humans in a certain region [11]. This degree can be reflected by land
use/cover types. Obviously, the human activity intensity of land surface belongs to the

http://apps.cytoscape.org/apps/conet
http://psbweb05.psb.ugent.be/conet/tutorial4.php
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conceptual category of the general human activity intensity, which refers to the influence
of economic and social activities on a regional natural complex. The use, transformation,
and exploitation of land surface can be seen as the main body of human activity, but not
the whole. Therefore, this paper determines that the human activity intensity is the overall
degree of human interference to the surface. Direct human interference types mainly
include farmland and residential land. Human activity intensity of land surface can be
expressed as

HAILS =
Si
S
× 100%

where HAILS is human activity intensity of land surface; Si is the area of human activity-
influenced land; i is the cover type; and S is the total land area.

3. Results
3.1. Quantification of the Human Activity Intensity

We examined the spatial distribution of farmland, forests, water, residential land and
other areas, to quantify the effects of human disturbance. Forest and farmland are the
dominant land cover types in the watershed. Forest areas significantly decreased (p = 0.001)
in the lower reaches of the river while farmlands increased significantly (p = 0.002). In
order to further analyze the human activity intensity of land surface, the change in the
HAILS parameter was calculated, as shown in Table S1. The results show that the Yuan
River watershed under different human activity intensity has a gradient from upstream
to downstream and was divided into three parts according to the HAILS level: (1) upper
reaches (low HAILS level); (2) middle reaches (middle HAILS level); and (3) lower reaches
(high HAILS level).

3.2. Taxonomic Diversity of the Bacterioplankton Community in the Yuan River

After quality filtering and subsampling (57,068 reads per sample), a total of 3945
bacterial OTUs included here belonged to 46 taxonomic groups in the soil samples. All
OTUs were assigned to 1619 species, 847 genera, 392 families, 213 orders, 118 classes and
46 phyla. There are differences in the number of OTU species between wet and dry seasons
and the number of species obtained at various taxonomic levels (Table S2). Good’s coverage
for the observed OTUs was 99.21 ± 0.61%, indicating a near-complete sampling of the
community.

The Chao1 richness index was significantly higher in the upper reaches than in the
lower reaches (p = 0.022) in the dry season communities (Figure S1). During both the wet
season and the dry season, there were no significant differences in the Shannon diversity
index between the upper, middle and lower reaches.

PLS-DA analysis clearly distinguished three groups of wet season communities and
three groups of dry season bacterioplankton communities that were based on the different
reaches, with the first two axes explaining 29.98% and 9.99% of the total variation in during
the wet season and 17.02% and 12.59% during the dry season, respectively (Figure S2). Due
to a limited sampling number, there is a limited explanation to the observed variability.
Additionally, we observed significant differences (especially the upper and middle reaches)
in bacterioplankton communities between different sample sites during both the wet season
and the dry season.

The neutral community model (NCM) successfully estimated a large fraction of the
relationship between the occurrence frequency of OTUs and their relative abundance
variations (Figure S3). These results indicated that the explained variation of NCM tended
to remain relatively large and consistent and the relative importance of stochastic processes
decreased in the following order: upper reaches (R2 = 0.615/0.563, m = 0.6882/0.8151)
> middle reaches (R2 = 0.439/0.462, m = 0.2266/0.541) > lower reaches (R2 = 0.35/0.4,
m = 0.4525/0.6514) during the wet and dry seasons, respectively.
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3.3. Taxonomic Composition and Functional Analysis of the Bacterioplankton Community in the
Yuan River

The most common phyla identified in the water samples were Actinobacteria, Proteobac-
teria and Bacteroidetes (Figure 2). The majority of bacterial sequences identified during
the wet season belonged to Actinobacteria (35.14%); these bacteria were significantly more
abundant during the wet season than during the dry season (28.89%). During both the
wet season and dry season, Actinobacteria abundance was significantly lower in the upper
reaches, as compared to either the middle reaches or the lower reaches. Proteobacteria was
the most abundant phylum during the dry season (33.41%) and the second largest phylum
during the wet season (33.88%), which showed no significant difference between the dry
season and the wet season. The abundance of Proteobacteria was significantly higher in
the upper reaches (as compared to the lower and middle reaches) during the wet season.
Bacteroidetes were the third most abundant phylum during the dry season (28.23%); these
bacteria were significantly more abundant during the dry season than during the wet
season (17.56%). During the wet season, Bacteroidetes were significantly more abundant
in the upper reaches than in the middle and lower reaches. In contrast, Proteobacteria
and Bacteroidetes abundance was stable across all of the sites during the dry season. In
addition, Proteobacteria and Cyanobacteria abundance fluctuated among sampling sites in
during the wet season. Cyanobacteria and Verrucomicrobia were significantly more abundant
during the wet season (6.22% and 3.77%, respectively) than during the dry season (1.56%
and 1.33%,respectively). During the wet season, Cyanobacteria were significantly more
abundant in the middle reaches than in the upper and lower reaches. In the lower reaches,
Verrucomicrobia abundance was significantly lower during both the dry season and the wet
season, as compared to either the upper reaches or the middle reaches.
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The relative abundance of the PICRUSt inferred function is illustrated in Figure S4.
Compared to taxonomic composition, the functional analysis of all samples was similar
during both the wet season and dry season. Amino acid transport and metabolism, cell
cycle control, cell division, chromosome partitioning, general function prediction only and
function unknown were the most abundant functions in all samples.

3.4. Interactions between Bacterial Taxa in the Network

The six networks of bacterial communities revealed distinct co-occurrence patterns
(Tables 1 and 2). These nodes belong to 31 bacteria phyla, where Proteobacteria, Actinobacteria
Bacteroidetes and Parcubacteria were primarily found (Figure 3). Furthermore, Proteobacteria
was the dominant phyla in bacterial networks and was not altered by spatial and temporal
distribution.

Table 1. The topological properties of the bacterioplankton molecular ecological networks during the
wet season.

Network Indexes
Wet Season

Upper Reaches Middle Reaches Lower Reaches

Total nodes (TNs) 260 257 317
Total links (TLs) 1389 896 1675

Negative links (NLs) 480 316 493
Positive links (PL) 909 580 1182

Negative/positive (NP) 0.528 0.545 0.417
R square of power-law (R) 0.25 0.639 0.488

Average degree (avgK) 10.685 6.973 10.568
Average clustering coefficient

(avgCC) 0.342 0.299 0.264

Average path distance (APD) 3.814 4.509 3.49
Centralization of degree (CD) 0.067 0.071 0.068

Graph density (GD) 0.041 0.027 0.033
Modularity (M) 0.622 0.635 0.505

Number of modules (NMs) 12 31 10

Table 2. The topological properties of the bacterioplankton molecular ecological networks during the
dry season.

Network Indexes
Dry Season

Upper Reaches Middle Reaches Lower Reaches

Total nodes (TN) 1010 534 524
Total links (TL) 1.964 4638 4811

Negative links (NLs) 4605 1452 1560
Positive links (PLs) 1.4359 3186 3251

Negative/positive (NP) 0.321 0.456 0.480
R square of power-law (R) 0.306 0.431 0.433

Average degree (avgK) 37.552 17.371 18.363
Average clustering coefficient

(avgCC) 0.426 0.416 0.221

Average path distance (APD) 3.483 3.857 3.21
Centralization of degree (CD) 0.117 0.075 0.061

Graph density (GD) 0.037 0.033 0.035
Modularity (M) 0.556 0.595 0.410

Number of modules (NMs) 26 29 10
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All the bacterial networks during the dry season were larger, more connected, more
modular and had more negative correlations than during the wet season. Compared to
the upper and middle reaches, the ratio of negative/positive and modularity in bacterial
networks decreased in the lower reaches, indicating that the bacterial network here was
more robust during the wet season. However, there were no significant differences between
the upper and lower reaches networks during the wet season as measured by the number
of nodes (TNs), links (TLs), and avgK. In contrast, Figure 3 shows that the network in the
upper reaches were much more complex and harbored more dominant phyla than other
networks during the dry season. TNs in the upper reaches network increased during the
dry season compared to the middle and lower reaches; the lower reaches network was
48.1% lower than the upper reaches network. Although the ratio of negative/positive
(NP) in the upper reaches network was the lowest, TLs were the largest during the dry
season. In particular, Proteobacteria, Actinobacteria Bacteroidetes and Parcubacteria were more
intricately linked, indicating that the upper reaches promote the interaction (especially
competition) between bacterial taxa. In addition, as compared to the upper and middle
reaches, the lower modularity (M) and avgCC in the lower reaches resulted in decreasing
interactions of bacterial taxa during the dry season.

The overlapped and unique OTUs in the bacterioplankton molecular network are
illustrated by a Venn diagram (Figure 4). The upper, middle and lower reaches shared 123,
72 and 99 OTUs by the two seasons, which accounted for 10.7%, 10% and 13.3% of the
total bacterial OTUs, respectively. The results indicated that different seasons and reaches
significantly affected the distribution of species in the bacterial ecological networks of the
Yuan River.

We also calculated how co-occurrence network complexity was correlated with en-
vironmental variables (Figure 5). We observed that DOC, T, and As were significantly
negatively correlated with avgK, negative links (NLs), positive links (PLs), TLs and TNs,
while correlations with ORP, Mn and the Chao1 index were positive. Similarly, SO4

2− was
significantly negatively correlated with NLs, TLs, and TNs. However, the co-occurrence
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network was uncorrelated with any nutrient variables factors except for TP, which was
significantly negatively correlated with graph density (GD).
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+-N and TP), heavy metals (including Pb, Fe, Ni, Cd, Zn, Co,

Mn, Cu, V, Mo, Ti, U, As, Cr and Al) and diversity index (including Shannon index and Chao1 index), respectively.
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3.5. Keystone Species in Bacterial Networks

We defined the hubs and connectors as keystone species, by which we mean that if
these taxa were removed, the modules and networks may also disassemble. During both
the wet season and the dry season, no node in the bacterial network in the upper, middle,
and lower reaches falls in the network hubs and more than 78% of the nodes fall in the
peripheral modules; the remaining nodes are classified as module hubs and connectors
(Figure 6). The proportion of module hubs (wet season: 0%, 0%, 1.26%; dry season: 0.3%,
0.19%, 1.53%) and connectors (wet season: 7.69%, 7%, 14.83%; dry season: 12.97%, 11.42%,
19.66%) increased from the upper reaches to the lower reaches while the proportion of
peripheral modules (wet season: 92.31%, 93%, 83.91%; dry season: 86.73%, 88.39%, 78.82%)
decreased, indicating a more hub-based and connected network structure in the lower
reaches.
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The node with the highest connectivity among the keystone species in the module
hubs and connectors is completely different between the wet season and the dry season.
Some of these had low relative abundance. In the upper reaches, there was one single
connector during the wet season belonging to Gemmatimonadetes and two connector OTUs
during the dry season belonging to Proteobacteria and Ignavibacteriae. In the middle reaches,
there was one single connector OTU belonging to Proteobacteria during the wet season and
one single connector OTU during the dry season belonging to Bacteroidetes. For the lower
reaches, there were one single connector during the wet season belonging to Verrucomicrobia
and two module hub OTUs during the dry season belonging to Bacteroidetes and Firmicutes.

The number of edges that linked network hubs, module hubs and connector nodes
with functional nodes reflects the linkage between keystone species and functions. Gen-
erally, the middle reaches only presented overall lower average degrees during the dry
season (Figure S5). Conversely, stronger connections indicated by the number of edges
between the nodes were observed in other networks, especially in the lower reaches and
the upper reaches during the dry season. However, fewer of the module hubs presented
weak connections with functions, while connectors had strong connections with functions
and occupied nearly all of the connections.

We constructed new networks by correlating the relative abundance of keystone
species with the water chemistry parameters (Figure S6). When significant correlations
were present, the strength of correlations increased from the upper reaches to the lower
reaches, especially during the dry season. Furthermore, DOC, EC, HCL−, ORP, Ca, NO3

−-
N, Cr and Mn were correlated with more keystone species than other water properties.
When considering the correlated links, the proportion of negative correlations between
keystone species and water properties was greater than the number of positive correlations,
and the negative correlations were numerically greater in the lower reaches as compared
to the upper and middle reaches.
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3.6. Major Modules in Bacterial Networks

Modules are groups of nodes that are well connected with one another but less
connected with nodes belonging to other modules [43]. To identify assemblages that
potentially interact or share niches within bacterioplankton, we focused on major modules
(node number > 5% of the total nodes) (Figure 7). There were direct interactions between
modules except in the middle reaches, and most of the edges of networks were intra-
modular. Fewer direct interactions were detected in the wet season networks, as taxa
tended to co-occur (positive correlations, green lines) rather than co-exclude (negative
correlations, red lines). The proportion of inter-module edges was higher in upper reaches,
indicating that modules were more isolated in the middle and lower reaches during both
the wet season and dry season.
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The composition of modules differed within each network and changed over time.
Proteobacteria, Actinobacteria and Bacteroidetes (especially Proteobacteria) were mostly dis-
tributed in the modules of the wet season and Proteobacteria, Parcubacteria, Firmicutes and
Bacteroidetes (especially Proteobacteria) were mostly distributed in the modules of the dry
season. These results indicate that specific modules might occupy distinct niches or perform
unique functions, while human activity did not change their ecological roles. Interestingly,
DOC, T, As and Cr were significantly negatively correlated with TL, while ORP, DO and
the Chao1 index was positively correlated. Similarly, SO4

2− was significantly negatively
correlated with TL (Figure S8).

4. Discussion
4.1. Human Activity Mediates the Assembly Processes of Bacterioplankton Communities via
Altering Environmental Conditions

Human activity intensity has an important influence on the assembly of all bacte-
rioplankton communities, primarily by affecting the balance between deterministic and
stochastic processes. The degree to which deterministic vs. stochastic processes shape the
bacterioplankton community in the Yuan River is determined more by human activity
intensity rather than by seasonality. Our results suggested that stochastic and deterministic
processes were simultaneously responsible for shaping the bacterioplankton communities
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in the Yuan River. These results are consistent with the findings of numerous previous
studies, where the stochastic and deterministic processes were jointly credited for the
assembly of bacterioplankton communities [44,45]. However, the relative importance of
deterministic and stochastic processes varied in different hydrological seasons and reaches.
The community variation explained by stochastic processes decreased from 61.5%/56.3%
at the high-human activity intensity level to 35%/40% at low-human activity intensity level
during the wet and dry seasons, respectively (Figure S3). In other words, the relative impor-
tance of deterministic processes (e.g., environmental filtering) tended to increase from the
upper reaches to the lower reaches and the lower reaches bacterioplankton communities
were more likely to be affected by the changes in the riverine environmental conditions.
Increased human activities along rivers may not only increase the quantities of nutrients,
but also change the forms and proportion of nutrients and physicochemical variables [46].
In addition, the HAILS level (Table S1) and the strength of correlations between the relative
abundance of keystone species with water chemistry parameter (Figure S6) increased from
the upper reaches to the lower reaches, implying that the community assembly was more
strongly influenced by deterministic processes at the high-human activity intensity level.

4.2. Human Activity Destabilizes Bacterioplankton Molecular Ecological Network Stability in the
Yuan River

Human activity decreased the bacterioplankton interactive stability in the network.
Negative links might stabilize co-oscillation in communities and promote the stability of
networks [28]. Stability is promoted by limiting positive feedbacks and weakening ecologi-
cal interactions. There were higher negative/positive ratios seen the upper reaches during
the wet season, which indicates that hosts can benefit from microbial competition when
this competition dampens cooperative networks and increases stability. However, when
the lower reaches with the lowest negative/positive ratio are perturbed by the external
environment, the interaction network of the bacterioplankton community will transmit the
environmental perturbation to the entire network in a short time and result in an unstable
network structure. At the same time, this unstable network may lead to significant changes
in the bacterial community involved in amino acid transport and metabolism, cell cycle
control, cell division, chromosome partitioning and other functions [47], which in turn
affect river ecosystem functions and stability. Meanwhile, the upper reaches bacterioplank-
ton molecular ecological networks formed a much more complex (i.e., higher connectivity)
and larger (i.e., more nodes and links) network during the dry season. In this way, the
increased complexity of the network structure in the upper reaches may lead to higher com-
munity stability with a mixed interaction, increase the breadth of the niche, strengthen the
interconnections between different bacteria in the bacterioplankton food web, enhance the
efficiency of resource transfer and help it use water nutrients more effectively; this result is
similar to that reported by Zhang [48]. Therefore, although the ratio of negative/positive in
the upper reaches network was the lowest, the microbe (especially Proteobacteria, Actinobac-
teria Bacteroidetes and Parcubacteria) can respond to environmental pressures by reducing
competition and strengthening cooperation during the dry season. Additionally, a higher
modularity and clustering coefficient indicated a marginally higher modularity [49]. An
increase in the number of modules indicates more niches and network modularity also
can enhance the stability of the network under human activity disturbances [50]. Our
network analyses showed that compared to the upper and middle reaches, the lower
modularity and clustering coefficient yielded less bacterial links in the lower reaches, an
outcome perhaps related to the frequency of competitive interactions decreases and that of
facilitative interactions increases as stress intensifies. Meanwhile, modularity measures the
connectivity between nodes within their own modules that would not occur by chance [51].
Although the connectors and module hubs were more likely to cope with environmental
perturbation through mutual cooperation (Figure S7), the interaction network of the lower
reaches was easily perturbed by the external environment, and the resource competition
within the bacterial community was weak and the stability of the interaction of the bacterial
community was poor.
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The copiotrophic Proteobacteria dominated during the dry season, providing evidence
for the existence of distinct and discrete ecological niches over temporal scales (i.e., mod-
ules) in the river ecosystem that are preferentially occupied by different groups of microbial
taxa. We found that the predominant taxa (especially Proteobacteria) drive network structure
in the upper reaches or the middle reaches. Compared with other predominant bacterial
phyla, Proteobacteria with copiotrophic advantages may demonstrate wider niche breadths
and higher anti-interference capacities and play a dominant role in maintaining the stability
of the bacterioplankton community interaction networks. Other less dominant phyla can
be used as a diversified library to enhance the resilience of microbial communities and
resistance capacities to environmental perturbations. While the relationships between
bacterial phylogeny and function are complex, shifts in the abundance of indicator taxa
might inform us of the stability of these networks, and consequently, on the response of
bacterioplankton communities to human activity. In the upper reaches, we also found
that Actinobacteria, which are well known as “ultramicrobacteria” that prefer oligotrophic
niches [52], were significantly lower during both the dry season and the wet season, as
compared to the middle reaches and the lower reaches. The “competitive” taxa that engage
in many antagonistic interspecific interactions are replaced by slow-growing, stress-tolerant
species (e.g., oligotrophic microbes) as stress increases [6], indicating that the bacterial
network under the upper reaches was more robust during both the wet season and dry
season.

Abiotic and biotic factors showed significant correlation with network indexes in
bacterioplankton co-occurrence patterns. DOC, T, As, ORP, Mn, SO42− and TP were
significantly correlated with network properties, while the increased network size and
connectivity was accompanied by increasing bacterial Chao1 diversity (Figure 5). The
effect of pollution on the bacterioplankton community structure can be translated into
environmental filtering. Therefore, the less complex network in the lower reaches during
the dry season may be caused by the combined human activities of sewage discharge,
urban runoff and other anthropogenic contaminants. Decline in bacterioplankton diversity
was closely related to human activity such as increasing agricultural land use, impervious
surface cover, housing density and urban population pressure. These results indicate
that although the lower reaches during the wet season increased the number of positive
and negative correlation links in the bacterial network, the Chao1 index was the lowest.
These stronger negative interactions between only a few species under the lower reaches
exclude more species from the community and result in a loss of biodiversity (Figure S7).
At the same time, these stronger interactions also decrease the stability of the bacterial
communities, providing a mechanistic link between species interaction, biodiversity and
stability.

4.3. Human Activity Increase Triggers Keystone Species Change

Different keystone species may play the same functional role in different human
activity intensity and less abundant taxa can be as important as abundant ones in main-
taining microbial networks. Module hubs and connectors are often treated as keystone
species, as they have disproportionately important roles in maintaining a network structure
relative to the other taxa in the network. The disappearance of these keystone taxa may
cause modules and networks to disassemble and thus keystone taxa may play a role in
maintaining ecosystem stability [53]. In this study, the keystone species in the three reaches
are mostly different, with the middle and lower reaches during the wet season being the
only exception (Figure 6). Seasonal variability determines the structural and compositional
properties of microbiomes in an environment, and as such, a keystone species might only
be present in a specific season or time period [54]. Similarly, the keystone species were
assigned to diverse OTUs, indicating that the topological roles of individual OTUs and
keystone species can be altered by human activity. A few taxa acted as hubs or connectors
in two different networks, which suggests that the conditions present were not identical
in terms of human activity intensity and supports the context dependency theory that
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keystone species play critical roles only under certain conditions [55]. Lupatini et al. [56]
also found that the keystone species changed as conditions changed. However, changes
in keystone species are not necessarily associated with changes in bacterioplankton func-
tion. The general functional structures of all samples were similar to one another in the
present study (Figure S4). Alternatively, the unique keystone taxa detected in the river
networks could be explained by functional redundancy [57]. Given the possibility that
most microbes inhabiting in river possessed similar functional genes, the fluctuation in
taxonomic structure along human activity intensity stress habitats would not necessarily
alter the microbial function structure. Such an ability could serve as a fundamental property
of bacterioplankton which is essential to environmental perturbation. The similar weak
linkages between microbial taxonomic and functional community structure were previ-
ously observed in microbial stream biofilms [58], which further corroborates the theory. In
addition, most of the bacterial keystone species belonged to Proteobacteria and Bacteroidetes,
which is consistent with other studies [45]. The dominate phyla often affect ecosystem
exclusively by virtue of sheer abundance [54]. Some of the highest connectivity among the
keystone species had relatively low abundance, which suggests that low abundance taxa
(Gemmatimonadetes, Ignavibacteriae, Firmicutes and Verrucomicrobia) may play important roles
in maintaining network structures in bacterioplankton communities. Zeng et al. [59] found
that Gemmatimonadetes contained chlorophyll-based phototrophic species, suggesting a
strong ability to support fundamental biological processes. Ignavibacteriae were reported to
be core populations that endowed the bacterial community with stronger dechlorination
and phenol-degradation abilities [60]. Not only are Firmicutes able to withstand resource
stress via the formation of endospores, but they are also able to adapt to resource-rich
conditions [61]. A recent freshwater metagenomic study of 19 Verrucomicrobia suggest
that members of this phylum act as polysaccharide degraders in freshwater systems [62].
These studies support the idea that although the species are rare, they are likely to provide
complementary or unique metabolic pathways to service the ecosystem.

In addition, keystone species in higher human activity intensity stress habitats provide
intense functional potentials. Generally, stronger connections indicated by the number of
edges between nodes were observed in keystone species and functional networks, especially
in the lower reaches (Figure S5). On the contrary, less of the connectors or module hubs
presented a strong connection with functions in other networks (Figure S5). This means
they may play fundamental roles in monitoring the functioning of multiple ecosystem
processes in higher human activity intensity stress habitats. However, the influence of water
chemistry on bacterioplankton community networks may be due to the spatial distribution
of land use patterns. There were more significant correlations between keystone species and
water chemistry parameters in higher human activity intensity stress habitats (Figure S6).
The network is more influenced by keystone species with greater sensitivity to water
chemistry parameters after disturbance, and once disrupted, the ecosystem will have
difficulty recovering.

4.4. Human Activity Reduces Ecological Niche Differentiation and These Interacts Less with Each
Other in the Yuan River

The potential for extensive mutualistic interactions exists among bacterioplankton
in river assemblages, especially in the upper and middle reaches. We identified modules
within the networks that likely result from bacterioplankton–bacterioplankton interac-
tions or covariation in response to shared niches in the river. Modules have been treated
as niches, and each of the modules identified in the network reflected species’ environ-
mental preferences and habitat heterogeneity [55]. In our study, most interactions were
intra-module and the edges occurring within modules were predominantly positive. This
suggests that the microbial taxa within the same module might form cooperative interac-
tions or share similar guilds or niches. In addition, our results indicated that there was
lower modularity in the lower reaches (Tables 1 and 2). Nodes in the same module occupy
similar ecological functions and niches [63]. Hence, the bacterioplankton community could
hold more diverse but scattered niches in the upper and middle reaches. Meanwhile,
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MCODE analysis showed that the major modules in the upper and middle reaches formed
considerably larger complex networks as indicated by the values of TNs and TLs (Table S3),
indicative of the centralized functions and niches in the community operating to maintain
water ecosystem stability. The functional specialty of modules was to minimize the impact
of environmental turbulence [64]. Thus, more inter-module edges were detected in the
upper reaches network (especially during the dry season), which would ensure quicker
communication and more efficient regulation between its modules in response to environ-
mental stimuli. Alternatively, fewer inter-module edges in the lower reaches suggest that
modules in this network were more isolated. Convergence in microbial functions due to
the influence of human disturbance is likely to disturb microorganism dispersal and occur
over larger spatial scales owing to the degree of anthropogenic disturbance in streams,
resulting in less ecological interactions or niche sharing [65].

Human activity altered the composition of modules, but preserved their ecologi-
cal roles in the network, and the critical importance of Proteobacteria, Actinobacteria and
Bacteroidetes in shaping the structure and niche differentiations in the bacterioplankton
molecular ecological networks was revealed. This may also have been explained by the
insurance hypothesis and functional redundancy theory [43]. Considering that highly
connected species from the same module might share similar ecological characteristics or
play similar functional roles in ecosystem stability, it is possible that they are ecologically
redundant. Members of a module ultimately declined as a result of water chemistry param-
eter alteration after disturbance. However, these declining organisms can be replaced by
biologically unique but ecologically equivalent species, which then refill their unoccupied
niches [66]. This cycling of species might result in changes in module composition but
would preserve their ecological roles that are necessary to sustain the ecosystem [67].

Since the abundance and community distribution of microorganisms alone cannot
characterize the internal relationship between them [68], this paper analyzed the correlation
of water chemistry parameters from the perspective of molecular ecological network. We
found that the ORP and the Chao1 index were both significantly positively correlated
with the molecular ecological network structure and modules of the Yuan River, while
DOC, T and As were negatively correlated. Previous studies have observed that DOC is a
significant driver of microbial community composition in rivers [69–71]. DOC can come
from extracellular release and leachate from phytoplankton and macrophytes and soil flow
pathways and may be enriched by domestic sewage or agricultural runoff [16]. There is
evidence that bacterioplankton communities in rivers adapt to changes in the concentration
and the composition of organic carbon, reflecting the influence of species sorting [72]. These
observations indicate that DOC was strongly associated with point pollution effects due
to human activity. In addition, diverse pollutants (e.g., pesticides, insecticides, and heavy
metals) from industries, agriculture and untreated household sewage might influence
the bacterioplankton community in the middle and lower reaches [16]. The positive
effects of bacterioplankton diversity on ecosystem functioning decreased with increasing
environmental stress or multiple disturbances.

5. Conclusions

The high-throughput sequencing and network analyses of water samples from the
Yuan River provided the first evidence that naturally occurring bacterioplankton display
network properties characteristic of unstable communities with the intensification of hu-
man activities. High human activity intensity in the lower reaches significantly reduced the
bacterioplankton diversity, decreased the ecological niche differentiation and destabilized
the bacterioplankton community networks during both the wet and dry seasons. Though
human activity altered the composition of modules, they preserved their ecological roles
in the network, which is of critical importance for Proteobacteria, Actinobacteria and Bac-
teroidetes to shape the structure and niche differentiations in the bacterioplankton molecular
ecological networks. It was highlighted that the DOC, T, As, ORP and the Chao1 index
were the major drivers of these bacterioplankton’s molecular ecological network structure
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and modules. Although the study was somewhat limited by the lack of replicates in the
year, and bacterioplankton network–ecosystem functioning relationships remain unclear
in river ecosystems, this work provides important insights into understanding the role of
human activity in shaping the structure and function of bacterioplankton communities
in inland waters as well as guidance for the realization of more reasonable and effective
river management measures in the future. While the relationships between human activity
intensity and stable network properties were identified, we encourage that these relation-
ships be further tested in a wider variety of ecosystems, including the soil communities of
other terrestrial biomes and microbiomes from aquatic habitats.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/microorganisms9071532/s1, Table S1: Location information and HAILS of land use pattern
for 16 sampling sites in the Yuan River basin; Table S2: Numbers of OTUs, sequence reads, relative
percentage and taxonomic groups for bacterioplankton communities in the Yuan River; Figure S1:
Comparison of Shannon diversity indices and Chao1 richness of communities from along the up-
per and downstream reaches of the Yuan River. Boxes show means ± SE, while whiskers show
means ± SD. Wet season distributions are in red and dry season distributions are in blue. * indicates
a statistically significant difference at p < 0.05 (one-way ANOVA); Figure S2: Partial least squares
discriminant analysis score plots of bacterial communities; Figure S3: Fit of the neutral community
model (NCM) of community assembly. The predicted occurrence frequencies for wet, dry and all
representing bacterioplankton communities from wet, dry and both seasons, respectively. The solid
blue lines indicate the best fit to the NCM as in Chen et al. and the dashed blue lines represent 95%
confidence intervals around the model prediction. OTUs that occur more or less frequently than
predicted by the NCM are shown in different colors. Nm indicates the metacommunity size times
immigration, R2 indicates the fit to this model; Figure S4: Relative abundance of PICRUSt inferred
function in shaded (wet season and dry season). The relative abundances is calculated by averaging
the abundances of bacteria; Figure S5: Mutualistic networks of interaction between keystone species
community and functions during the wet and dry season on Yuan River; Figure S6: Mutualistic net-
works of interaction between keystone species community and water chemistry parameter during the
wet and dry season on Yuan River; Figure S7: Mutualistic networks of interaction between keystone
species community during the wet and dry seasons on Yuan River; Figure S8: Pearson’s correlation
values between major modules network indexes (including avgK, TN, TL, avgCC and APD) with
water chemistry parameter (including DO, ORP, Cl−, SO4

2−, T, DOC, pH, EC, FUN and HCl−);
nutrient variables (including K, Ca, Mg, NO3

−-N, Na, NH4
+-N and TP); heavy metal (including Pb,

Fe, Ni, Cd, Zn, Co, Mn, Cu, V, Mo, Ti, U, As, Cr and Al); and diversity index (including Shannon
index and Chao1 index), respectively; Table S3: Key topological features of the major modules in the
bacterioplankton molecular ecological networks.
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