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ABSTRACT The natural forest ecosystem in Eastern China, from tropical forest to
boreal forest, has declined due to cropland development during the last 300 years,
yet little is known about the historical biogeographic patterns and driving processes
for the major domains of microorganisms along this continental-scale natural vege-
tation gradient. We predicted the biogeographic patterns of soil archaeal, bacterial,
and fungal communities across 110 natural forest sites along a transect across four
vegetation zones in Eastern China. The distance decay relationships demonstrated
the distinct biogeographic patterns of archaeal, bacterial, and fungal communities.
While historical processes mainly influenced bacterial community variations, spatially
autocorrelated environmental variables mainly influenced the fungal community. Ar-
chaea did not display a distance decay pattern along the vegetation gradient. Bacte-
rial community diversity and structure were correlated with the ratio of acid oxalate-
soluble Fe to free Fe oxides (Feo/Fed ratio). Fungal community diversity and
structure were influenced by dissolved organic carbon (DOC) and free aluminum
(Ald), respectively. The role of these environmental variables was confirmed by the
correlations between dominant operational taxonomic units (OTUs) and edaphic
variables. However, most of the dominant OTUs were not correlated with the major
driving variables for the entire communities. These results demonstrate that soil ar-
chaea, bacteria, and fungi have different biogeographic patterns and driving pro-
cesses along this continental-scale natural vegetation gradient, implying different
community assembly mechanisms and ecological functions for archaea, bacteria, and
fungi in soil ecosystems.

IMPORTANCE Understanding biogeographic patterns is a precursor to improving
our knowledge of the function of microbiomes and to predicting ecosystem re-
sponses to environmental change. Using natural forest soil samples from 110 loca-
tions, this study is one of the largest attempts to comprehensively understand the
different patterns of soil archaeal, bacterial, and fungal biogeography at the conti-
nental scale in eastern China. These patterns in natural forest sites could ascertain
reliable soil microbial biogeographic patterns by eliminating anthropogenic influ-
ences. This information provides guidelines for monitoring the belowground ecosy-
stem’s decline and restoration. Meanwhile, the deviations in the soil microbial com-
munities from corresponding natural forest states indicate the extent of degradation
of the soil ecosystem. Moreover, given the association between vegetation type and
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the microbial community, this information could be used to predict the long-term
response of the underground ecosystem to the vegetation distribution caused by
global climate change.

KEYWORDS Eastern China, edaphic factors, forest soil, historical processes, microbial
diversity, vegetation zone

Eastern China experiences a continual natural vegetation gradient from tropical
forest to boreal forest. There is growing awareness of the importance of soil

microbiomes, including bacteria, archaea, and fungi, for regulating ecosystem services
(1). Soil microbiomes perform the majority of soil carbon and nutrient biogeochemical
transformations (2), control plant and animal population growth as decomposers,
mutualists, or pathogens (3), and influence global climate change through greenhouse
gas emissions (4). Soil microbiomes are extremely complex and diverse, with a large
number of archaeal, bacterial, and fungal taxa being typically found in 1 g of soil (5).
Numerous studies have established that microorganisms display spatial geographic
patterns (6–8). Our recent study also confirmed clear biogeographic patterns for a
cooccurrence relationship at the continental scale across Eastern China (9). However,
while biogeographic patterns have been observed, little is known regarding the
influence of the naturally occurring vegetation gradient on these patterns. Although
these natural forest ecosystems have been extensively reduced by expanding cropland
and urban area in the last 300 years (10), the ecosystem relicts preserved in nature
reserves allow the reconstruction of historically widespread microbiomes (11). Given
the relatively low anthropogenic influence on preserved natural forest ecosystems, we
argue that it is possible to identify natural biogeographic patterns from microbiomes in
forest reserves (12).

The biogeographic patterns of archaea, bacteria, and fungi have been investigated
from local to global scales, but the exact mechanisms governing their distribution
remain poorly understood (13). Microbial communities have been found to display
different biogeographic patterns than plants and animals (14). Some studies showed
that soil bacterial biogeographic patterns are controlled by soil pH at both regional and
global scales (2, 12, 15). Other studies, however, suggest that bacterial spatial distribu-
tion patterns are associated with differences in carbon dynamics; e.g., the dominant
Verrucomicrobia in prairie soils specialize in the degradation of recalcitrant carbon
compounds (11). Globally, soil C/N ratios influence archaeal relative abundances, which
are higher in soils with lower C/N ratios (16). Additionally, soil salinity, rather than
temperature, is one of the principal driving forces responsible for the creation and
maintenance of uncultured-Archaea distribution patterns at the global scale (17). A
regional study along a steep precipitation gradient suggests that the compositions of
archaeal and bacterial communities differ profoundly according to ecosystem type,
which can be explained largely by the precipitation gradient combined with vegetation
cover (18). Fungal richness is strongly and positively associated with soil pH and Ca
concentration (2). However, processes operating at large spatial scales, such as dispersal
limitation, were identified as first-order determinants of both regional species pools
and the community composition of soil fungi at landscape scales across North Amer-
ican soil microbiomes (19). These apparently contradictory conclusions may arise
through the differences in scale of the studies, since certain ecological processes might
only be dominant at a particular scale (20). For example, dispersal barriers determine
species pools at a large spatial scale, environmental conditions determine community
composition in particular habitats at an intermediate spatial scale, and coexistence at
a small spatial scale is determined by niche differences (19). Moreover, differences in
methodological and theoretical frameworks make comparisons across studies difficult
(14). Therefore, it is essential that consistent sampling and analytical methods should
be applied to compare the biogeographic patterns of archaea, bacteria, and fungi
under the same sampling regimes. Recent advances in DNA sequencing technology
have permitted a more robust characterization of microbial biogeographic patterns
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(14). Despite this, to date, processes that determine the biogeographic patterns of soil
archaea, bacteria, and fungi have not been investigated simultaneously.

In this study, we used large-scale, systematic sampling and soil analytical methods
to investigate soil archaeal, bacterial, and fungal communities along a latitudinal
gradient range from 18.9 to 48.7°N (over 3,000 km) across four continual vegetation
types in Eastern China. These vegetation types included tropical seasonal forests (TSF),
subtropical broad-leaved evergreen forests (SBEF), temperate deciduous broad-leaved
forests (TDBF), and temperate mixed coniferous-broadleaf forests (TMCF) (see Table S1
in the supplemental material). Previous microbial biogeography studies in this region
were largely carried out at local scales or on arable soils (21–23). To minimize the
influence of land use on soil microbial communities (24), all soil samples in this study
were collected from natural forest reserves, where the changes in soil microbial
communities can represent unperturbed biogeographic patterns without obvious an-
thropogenic influence. The aim of this study was to determine and compare biogeo-
graphic patterns and drivers for archaeal, bacterial, and fungal communities at a
continental scale. Our research questions were as follows. (i) Do biogeographic patterns
differ for soil archaeal, bacterial, and fungal communities along this continual vegeta-
tion gradient? (ii) What are the determinant drivers for soil archaeal, bacterial, and
fungal biogeographic patterns?

RESULTS
Changes in forest soil microbiota across the vegetation gradient. We sequenced

variable regions 3 to 5 (the V3–V5 region) of the archaeal 16S rRNA gene, the V1–V3
region of the bacterial 16S rRNA gene, and the V1–V3 region of the fungal 18S rRNA
gene. After quality filtering, we obtained 144,706 archaeal sequences (1,316 � 815
reads [mean � standard deviation] per sample), 504,359 bacterial sequences (4,585 �

1,354 reads per sample), and 470,872 fungal sequences (4,280 � 2,133 reads per
sample) from 110 distinct sampling sites (Fig. 1). At 97% sequence identity, a total of
3,366 operational taxonomic units (OTUs) were detected for the archaeal community,
57,561 for the bacterial community, and 12,862 for the fungal community. Nine samples

FIG 1 Locations and vegetation types of 110 sampling sites in China.
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with less than 300 archaeal sequences were removed from the archaeal community
analysis. A majority of the archaeal sequences belonged to the orders Nitrososphaerales
(59.7%), Cenarchaeales (22.5%), and NRP-J (5.6%) of the phylum Thaumarchaeota
(92.3%) and subgroup E2 (5.8%) of the phylum Euryarchaeota (7.1%) (Fig. 2a). Members
of the bacterial taxa Alphaproteobacteria (16.4%), Gammaproteobacteria (12.7), EC1113
(11.2%), Actinobacteria (9.4%), Thermoleophilia (9.2%), Acidobacteria (6.0%), and Beta-
proteobacteria (5.0%) comprised the largest proportion of sequences (Fig. 2b). The most
abundant fungal classes belonged to the classes Eurotiomycetes (20.2%), Sordariomy-
cetes (19.6%), Dothideomycetes (12.1%), and Leotiomycetes (8.1%) of the phylum
Ascomycota (73.7%), class Mucoromycotina (10.3%) of the phylum Mucoromycota
(10.3%), and class Agaricomycetes (8.5%) of the phylum Basidiomycota (8.5%) (Fig. 2c).

FIG 2 Composition profiles of archaeal, bacterial, and fungal communities in metacommunities (pie
charts) and different vegetation types (bar charts).
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Overall, our OTU-level classification revealed that 128 (3.8%) archaeal OTUs and 6,021
(10.5%) bacterial OTUs exhibited �97% identity to 16S rRNA gene sequences in the
Greengenes database (13_8 release). Likewise, 2,762 (21.5%) fungal OTUs exhibited
�97% identity to 18S rRNA gene sequences in the SILVA database (version 111).

The dominant archaeal, bacterial, and fungal phylogenetic groups were present in
soils supporting all vegetation types, but their relative proportions varied across the
vegetation gradient. For archaeal taxa (Fig. 2d), the relative abundance of Nitrososphae-
rales was highest in TDBF (64.3%) and lowest in TSF (55.3%). Conversely, the relative
abundances of Cenarchaeales and NRP-J were highest in TSF (26.4% and 10.7%) and
lowest in TDBF (20.4% and 8.3%). Members of E2 were most abundant in SBEF (6.7%).
For bacterial taxa (Fig. 2e), the relative abundances of Alphaproteobacteria were highest
in TSF (31.3%) and lowest in TMCF (23.8%). The relative abundances of Thermoleophilia
ranged from 10% in TSF to 14.4% in TMCF. Acidobacteria, Ktedonobacteria, and ABS-6
were abundant in TDBF (8.3, 2.7, and 1.4% relative abundances, respectively), SBEF (7.9,
3.5, and 4%, relative abundances, respectively), and TSF (7.8, 2, and 1.7% relative
abundances, respectively). For fungal taxa (Fig. 2f), members of Eurotiomycetes were
the most abundant in TSF (36.8%). The relative abundances of Sordariomycetes (27.5%),
Dothideomycetes (13.6%), Leotiomycetes (11.3%), Cryptomycotina (3.8%), and Chytrid-
iomycetes (1.8%) were highest in TMCF. Likewise, the relative abundances of Mucoro-
mycotina, Agaricomycetes, and Glomeromycetes were highest in TMCF (17.5, 7.4, and
1.6%, respectively).

Geographic patterns of microbial community diversity. We used the Shannon

index to measure microbial alpha-diversity in each of the soil samples (101 samples for
archaea and 110 for bacteria and fungi). The differences between the Shannon index
values for the different vegetation types were not significant for archaea (F � 0.98,
df � 3, P � 0.41) and fungi (F � 1.29, df � 3, P � 0.28). However, significant differences
in the bacterial Shannon index values were observed for the different vegetation types
(F � 5.32, df � 3, P � 0.002) (Fig. 3a). The mean bacterial Shannon index values in the
SBEF were significantly lower than those observed in the TMCF (P � 0.001, Tukey
honestly significant difference [HSD], 95% confidence).

We performed multiple regression modeling (MRM) and structural equation mod-
eling (SEM) to test for the effects of environmental variables, including edaphic and
climatic factors, on the Shannon index values. The archaeal Shannon index values were
not significantly affected by any of the environmental variables. However, total nitro-
gen (TN) explained 16% of the archaeal Shannon index variation (F � 3.36, df � 99,
P � 0.07 for MRM; P � 0.02 in SEM) (Fig. 3b; see also Fig. S1a in the supplemental
material). The ratio of acid oxalate-soluble Fe to free Fe oxides (Feo/Fed ratio) was the
strongest predictor of bacterial Shannon index values (F � 12.85, df � 108, P � 0.001
for MRM) (Fig. 3c) and explained 12% of the bacterial Shannon index variation (P � 0.05
in SEM) (see Fig. S1b). The fungal Shannon index values were significantly influenced by
dissolved organic carbon (DOC) (F � 5.88, df � 108, P � 0.017) (Fig. 3d). This
observation was also reflected in our SEM results (P � 0.05), where 21% of the variation
in the fungal Shannon index values was explained by DOC (see Fig. S1c).

To extend our results beyond the 110 soil samples directly assayed, we constructed
spatial maps of the alpha-diversities of soil microbial communities for whole sampling
regions using a kriging interpolation approach (Fig. 4). The predicted maps showed that
soils from the central region of China had lower archaeal diversities but higher bacterial
and fungal diversities. Soils from the northern region had higher bacterial and fungal
diversities than those in the southern regions. In addition, bacterial and fungal diver-
sities displayed different spatial patterns in the northern regions. All of the predicted
diversity distributions for archaea, bacteria, and fungi exhibited nonrandom spatial
patterns. However, geographic distance had no significant effect on Shannon index
values (the Mantel r values were 0.02 for archaea [P � 0.26], 0.01 for bacteria [P � 0.47],
and 0.02 for fungi [P � 0.26]).
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To evaluate changes in microbial composition across the four vegetation types, we
used principal coordinate analysis (PCoA) to represent pairwise Bray-Curtis dissimilar-
ities across soil microbial community profiles (Fig. 5). We also used permutational
multivariate analysis of variance (PERMANOVA) to assess significant differences in
microbial community compositions across the vegetation types. While the archaeal
communities were not significantly different (R2 � 0.03, P � 0.68) across the different
vegetation types, the bacterial (R2 � 0.055, P � 0.001) and fungal communities (R2 �

0.054, P � 0.001) showed significant differences according to vegetation type. We then
utilized linear fitting to reveal the effects of environmental variables on compositional
variations. The archaeal community composition was significantly affected by mean
annual air temperature (MAAT) (R2 � 0.074, P � 0.024) (see Table S2 in the supple-
mental material). The bacterial community composition was dominantly affected by the

FIG 3 Shannon diversity index values for archaeal, bacterial, and fungal communities. (a) Distributions of archaea,
bacteria, and fungi in tropical seasonal forests (TSF), subtropical broad-leaved evergreen forests (SBEF), temperate
deciduous broad-leaved forests (TDBF), and temperate mixed coniferous-broadleaf forests (TMCF) and relationships
between (b) Shannon index values of archaeal community and total nitrogen (TN), (c) bacterial community and
amorphous iron/free iron ratio (Feo/Fed ratio), and (d) fungal community and dissolved organic carbon (DOC). The
boxes show the distribution of values. The lower and upper hinges correspond to the first and third quartiles. The
upper and lower whiskers extend from the hinge to the largest value no further than 1.5 times of the interquartile
range from the upper and lower hinges, respectively. The outlier points are the data beyond the end of the
whiskers.

FIG 4 Spatial mapping of Shannon index values for archaeal (a), bacterial (b), and fungal communities (c) across sampling regions using kriging interpolation.
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Feo/Fed ratio (R2 � 0.13, P � 0.002), Fed (R2 � 0.08, P � 0.01), total dissolved nitrogen
(R2 � 0.07, P � 0.02), humic acid (R2 � 0.06, P � 0.04), and available potassium (R2 �

0.06, P � 0.04) (see Table S3). The fungal community composition was dominantly
affected by free aluminum (Ald) (R2 � 0.142, P � 0.001), mean annual precipitation
(MAP) (R2 � 0.15, P � 0.002), MAAT (R2 � 0.14, P � 0.002), and soil pH (R2 � 0.11, P �

0.01) (see Table S4). These observations were confirmed by constrained correspon-
dence analysis (CCA), where the Feo/Fed ratio and Ald were the most important
variables associated with changes in bacterial and fungal communities, respectively
(see Fig. S2 to S4).

To identify additional spatial sources of variation in the microbial communities, we
examined the correlations between community similarity and spatial distance matrices.
When examining entire data sets, we found that geographic distance correlated
positively with bacterial (R2 � 0.06, P � 0.001) and fungal (R2 � 0.09, P � 0.001)
community dissimilarities. In contrast, archaeal community dissimilarities were not
correlated with geographic distance (R2 � �0.02, P � 0.105) (Fig. 6). The Mantel test
results showed that dissimilarities in bacterial communities were significantly correlated
with geographic distance (P � 0.012) and dissimilarities in fungal communities were
significantly correlated with environmental variables (P � 0.010) and marginally signif-
icantly correlated with geographic distance (P � 0.051). The partial Mantel test results

FIG 5 Ordination of microbial communities. The Bray-Curtis dissimilarity distances are represented using PCoA ordination for archaeal, bacterial, and fungal
communities in tropical seasonal forests (TSF), subtropical broad-leaved evergreen forests (SBEF), temperate deciduous broad-leaved forests (TDBF), and
temperate mixed coniferous-broadleaf forests (TMCF).

FIG 6 Relationships between the Bray-Curtis similarities of archaeal, bacterial, and fungal communities and geographic distance. The lines
represent the linear regression results. The shaded areas show the 95% confidence interval.
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indicated that bacterial and fungal communities were primarily governed by spatial
distance when the variation associated with environmental variables was removed (P �

0.011 for bacteria, and P � 0.016 for fungi) (Table 1).
Associations between dominant OTUs and environmental factors. The re-

sponses of the different taxa to different environmental variables may vary. Therefore,
we calculated the Spearman correlation coefficients between environmental variables
and dominant OTUs in archaeal, bacterial, and fungal communities (Fig. 7; see also

TABLE 1 Mantel and partial Mantel test results for the correlation between community
similarity and environmental and geographic distance

Effect of Controlling for

Mantel statistic r (P value) fora:

Archaea Bacteria Fungi

Geographic distance �0.015 (0.657) 0.059 (0.012*) 0.055 (0.051)
Environmental variables �0.044 (0.738) 0.010 (0.398) 0.109 (0.010**)
Geographic distance Environmental variables 0.012 (0.370) 0.054 (0.011*) 0.056 (0.016*)
Environmental variables Geographic distance �0.043 (0.738) 0.026 (0.234) 0.012 (0.314)
aStatistical significance was tested based on 9,999 permutations. *, P � 0.05; **, P � 0.01.

FIG 7 Correlations between dominant microbial OTUs and edaphic variables. Colors indicate the Spearman’s correlation coefficients, as shown in the key.
Dominant OTUs uncorrelated with any edaphic variables are not displayed. The order, family, and genus names for the corresponding OTUs are shown to the
left of the grids; “NA” indicates unclear classification at the corresponding taxonomic level. pH, soil pH; HA, humic acid; FA, fulvic acid; HA/FA ratio, humic
acid/fulvic acid ratio; TN, total nitrogen; TDN, total dissolved nitrogen; OC, organic carbon; DOC dissolved organic matter; C/N ratio, carbon/nitrogen ratio; AK,
available potassium; Clay, proportion of clay; Silt, proportion of silt; Sand, proportion of sand; Ald, free aluminum; Alo, amorphous aluminum; Feo, amorphous
iron; Fed, free iron; Feo/Fed ratio, amorphous iron/free iron ratio.
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Fig. S5 in the supplemental material). Dominant OTUs were defined as those with
relative abundances above 0.1%. These included 42 archaeal OTUs, 85 bacterial OTUs,
and 108 fungal OTUs. Most of the dominant microbial OTUs were not associated with
any of the environmental variables measured (see Fig. S5). Fifty-four dominant bacterial
OTUs (63.5% of the dominant bacterial OTUs) mainly correlated with the Feo/Fed ratio,
Fed, amorphous aluminum (Alo), and pH. Clay content, DOC, and Ald were the most
crucial environmental variables for 43 fungal OTUs (39.8% of the dominant fungal
OTUs). Soil Ald was the major edaphic variable closely correlated with 9 dominant
archaeal OTUs (21.4% of the dominant fungal OTUs). The dominant microbial OTUs
from the same taxonomic group had similar responses to environmental variables. Ald
was negatively correlated with archaeal OTUs belonging to the genera Nitrososphaera
but positively correlated with the archaeal OTUs belonging to the NRP-J group. One
archaeal OTU belonging to the SAGMA-X group correlated positively with available
potassium. The soil Fed concentrations were positively correlated with the bacterial
OTUs belonging to the orders Acidobacteriales, Actinomycetales, and Solirubrobacterales
but negatively correlated with the OTUs belonging to the order Rhizobiales. The
bacterial OTUs belonging to the order Gaiellales were not correlated with soil Fed
concentrations but were either positively correlated with soil pH or negatively corre-
lated with soil Ald concentrations. The soil Ald concentrations were negatively corre-
lated with the fungal OTUs belonging to the Dothideomycetes and Sordariomycetes.
The fungal OTUs belonging to the Archaeorhizomyces and Mucoromycotina, however,
were correlated with either soil fulvic acid (FA) concentrations or soil pH rather than soil
Ald concentrations. The fungal OTUs belonging to the Eurotiomycetes were negatively
correlated with soil DOC concentrations rather than soil Ald concentrations.

DISCUSSION

Understanding biogeographic patterns requires characterization of the contribu-
tions of contemporary environmental factors versus those made by historical events.
Given that distance decay of community similarity indicates the influence of historical
factors (5), the different influences of geographic distance on archaeal, bacterial, and
fungal community dissimilarities (Fig. 6) imply a discrepancy in the historical effects
upon the different taxa. The distance decay pattern of bacterial community dissimilarity
is consistent with previous observations based on high-throughput sequencing (25) but
not with those using relatively low-resolution community profiling tools, such as
terminal restriction fragment length polymorphism (T-RFLP) (9). Likewise, the correla-
tion between geographic distance and fungal community dissimilarity agrees with
previous observations of the global distribution of soil fungi (2) and protists (26). We did
not observe a distance decay pattern for archaea, as previously reported for trophic lake
sediments (27), or for ammonium-oxidizing archaea, as previously reported for the
agricultural soils of Eastern China (28). However, spatial distance was also not a
significant predictor of archaeal community composition in subpolar and arctic waters
(29). The distance decay pattern of microbial community dissimilarity is generated by
selection effects and drift, counteracted by dispersal, and modified by mutation (14).
The effects of mutation cannot be considered in this data set, due to the highly
conserved nature of the 16S and 18S rRNA marker genes (30). We found that the
archaeal community did not show distance decay at the continental scale and was not
significantly influenced by the selection effects of local environmental variables. Ar-
chaeal species represent a low proportion of total microbial communities and can be
grouped into the rare biosphere (31). When relative abundance is low, selection is
ineffective, and neutral forces shape rare biosphere assemblies (32). These assemblies
may persist in the environment for a long time and exhibit different biogeographic
patterns than groups that are more abundant. However, the lack of a distance decay
pattern for archaea might only be due to their cosmopolitan ability to thrive in a variety
of habits or domain-level resolutions which obscured meaningful correlations at lower
taxonomic levels. The spatial structures of bacteria and fungi may have resulted from
autocorrelated environmental variables or from dispersal limitation. In our study,
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bacterial community similarities were not correlated with environmental variables
regardless of whether the test was controlled by the geographic distance or not,
indicating that the distance decay pattern for bacterial communities related to histor-
ical dispersal limitation. The Mantel test results suggested a selection effect of envi-
ronmental variables on fungal communities (Table 1). However, this correlation of
environmental variables disappeared when the geographic distance was controlled in
the partial Mantel test. Accordingly, the distance decay patterns of fungi can be
predominantly attributed to the autocorrelated environmental variables. The contribu-
tion of historical processes represented by the distance effect may be overestimated, as
a spurious distance effect will be found if some spatial autocorrelated environmental
variables are not measured, such as climatic conditions, countless edaphic variables,
and the disregarded interactions within microbial communities. The correlation be-
tween different compositions in a community influences microbial distributions and
also displays biogeographic patterns (33).

Evidence for distinct biogeographic patterns of the three microbial taxa was also
witnessed through the differentiation of community diversity across vegetation types
(Fig. 3a). Consistent changes in the composition of the dominant taxa may result in
differences in the diversity of microbiomes across environmental gradients. Our results
suggested that the diversity of archaeal, bacterial, and fungal communities was con-
trolled by different environmental variables (Fig. 3b to d). The strong positive influence
of the Feo/Fed ratio on bacterial community diversity and structure is related to its
influence on bacterial succession during soil development (34). The Feo/Fed ratio has
been used for characterizing Fe oxide crystallinity and measuring the proportion of
amorphous Fe in total Fe oxides (35). In global and regional soils, pH was identified as
a major environmental variable that explained bacterial community diversity and
composition (1, 15, 36). Fierer and Jackson (1) reported that pH is probably masking
another environmental variable driving community assembly. The close association
between the Feo/Fed ratio and soil pH (35) suggests that the effects of soil pH on
bacterial community diversity and composition may be related to the soil Feo/Fed ratio.
The direct influence of DOC on fungal diversity agrees with the observed positive
correlation between ectomycorrhizal fungal (EMF) diversity and DOC (37). The global
fungal diversity is strongly affected by soil pH and Ca concentration (2). Notably, the
effect of Ca on fungal community diversity was attributed to the positive influence of
exchangeable Ca on the turnover rate of soil organic matter (38). The large influence of
soil Ald on fungal community diversity suggests that the community diversity may be
controlled by available aluminum, which increases as soil pH declines (39). The previ-
ously reported influence of soil pH on fungal community structure may be attributed
to aluminum toxicity. The tolerance of fungi for aluminum toxicity varies with different
phylogenetic groups (40). The marginally significant influence of TN on archaeal
diversity may be associated with the dominance of Nitrososphaerales, which can drive
nitrification in soils (41).

The nonrandom spatial variation of community composition (Fig. 2) and diversity
(Fig. 3) provides further evidence that archaea, bacteria, and fungi display different
biogeographic patterns. This was clearly observed through the influence of vegetation
type on the relative abundance of dominant taxa. The variation in the relative abun-
dances of Nitrososphaerales indicated that ammonium oxidation activity is higher in
temperate regions (TDBF and TMCF) than in tropical regions (TSF and SBEF). Members
of Nitrososphaerales play a crucial role in ammonia-oxidizing processes in soil (42). The
tendencies of Cenarchaeales and NRP-J suggest that those archaeal groups may re-
spond negatively to ammonium oxidation activities. The members of Cenarchaeales
have yet to be cultured (43), but denitrification genes were found in the genomes of
Cenarchaeales based on metagenomic approaches (44). The uncultured NRP-J in Cre-
narchaeota were identified from soils, but their functions were unknown (45). The
dominant bacterial taxa identified as part of this study were previously reported as
dominant taxa in soils globally (46). In addition to this, we found different distribution
patterns for several of these dominant bacterial taxa between tropical (TSF and SBEF)
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and temperate regions (TDBF and TMCF). For example, the relative abundances of the
classes Acidobacteria and Betaproteobacteria were higher in the temperate regions than
in tropical regions, but vice versa the relative abundances of the classes EC 1113 and
Thermoleophilia were higher in tropical regions than in temperate regions. Although
these groups are ubiquitous in soil microbiomes and our understanding of their
distribution is continually increasing, their functions remain largely unexplored. Inter-
estingly, it has been shown that the profiles of dominant fungal groups in this study are
divergent with previously reported fungal communities in soils globally (2), where half
of the sequences were classified as Agaricomycetes. However, Agaricomycetes se-
quences constituted less than 10% of all fungal sequences in our study. This discrep-
ancy may be attributed to the different resolutions offered by the internal transcribed
spacer (ITS) and 18S rRNA genes. The observed biogeographic patterns of dominant
fungal classes suggested a differentiation of dominant fungal groups across the differ-
ent vegetation types. Since most fungal species are uncultured as yet, their character-
istics and functions are poorly understood. Consequently, multiple alternative interpre-
tations can be made from their biogeographic patterns.

The most important environmental variables for the dominant microbial OTUs,
including Feo/Fed ratio, Ald, and DOC (Fig. 7), were also identified as the best predictors
of community structure in CCA analysis (see Fig. S2 to S4 in the supplemental material).
Recently, studies of bacterial and eukaryotic communities revealed distinct patterns for
dominant and rare biospheres and identified similar controlling factors between dom-
inant OTUs and the entire community (47, 48). Our analysis, however, highlights that
the influence of less important environmental variables cannot be neglected. Although
not important drivers for whole communities, those environmental variables were the
dominant drivers for specific taxonomic groups, e.g., Ald for Gaiellales, FA for Archae-
orhizomyces and Mucoromycotina, and DOC for Eurotiomycetes. The global fungal
biogeographic pattern indicated that, in specific regions, abiotic conditions (such as soil
pH and climatic conditions) have probably stimulated evolutionary radiations in certain
geographic areas (2). Therefore, the dominant OTUs associated with particular envi-
ronmental variables that have smaller contributions to the entire community may be
stimulated by these environmental variables in specific regional areas. Furthermore,
dominant OTUs whose distribution patterns cannot be explained by any measured
environmental variable may lack obvious biogeographic patterns or may be controlled
by environmental variables that were not measured in this study. Another explanation
for this result may be that some OTUs have shorter phylogenetic histories and have not
had sufficient time for long-distance dispersal (49). Although the correlated environ-
mental variables varied in the same taxa, the dominant microbial OTUs belonging to
the same taxonomic groups had similar responses to environmental variables, suggest-
ing that the responses of microbes to environmental variables associate with more
highly resolved phylogenetic relationships.

We showed distinct biogeographic patterns for soil archaeal, bacterial, and fungal
communities in the natural forest sites across the vegetation gradient in Eastern China.
The continental-scale distributions of soil archaea, bacteria, and fungi were correlated
with different edaphic variables. While the similarity of the archaeal communities was
homogenous along geographic distance, the distance decay of bacterial and fungal
community similarities was explained by dispersal limitation and the spatially autocor-
related environmental variables, respectively. These results imply distinct mechanisms
for shaping the biogeographic patterns of different microbial taxa. The microbial
biogeographic patterns inferred from the natural forest soils could provide more
reliable evidence for understanding underlying mechanisms of microbial biogeogra-
phy. Our reconstructions of microbial diversity across the natural forest ecosystems
could provide a guideline for monitoring and evaluating the long-term success of the
forest restoration efforts from cropland that are under way in China (50), as restoring
belowground generally leads to a more successful belowground restoration (51).
Meanwhile, the deviation of soil microbial communities from the corresponding natural
forest state could be used to assess the extent of soil degradation. Moreover, the
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current microbial community states in different vegetation types could be used for
predicting the long-term response of the underground ecosystem to the future
changes of vegetation distribution caused by climate change. Given that the roles of
microbes varied with the taxonomic group, the discrepancy of the biogeographic
patterns for the three microbial taxa suggests different driving processes for various
functions of the soil microbial community.

MATERIALS AND METHODS
Study area and sampling. We collected three soil samples from a 100- by 100-m2 plot in natural,

undisturbed forest at each of the 110 sites across Eastern China using a uniform sampling protocol
(Fig. 1). These sites were categorized into four distinct biogeographic regions according to the classifi-
cation of the vegetation regionalization map of China (http://www.nsii.org.cn/chinavegetaion) to include
(i) tropical seasonal forests (TSF; 25 sites), (ii) subtropical broad-leaved evergreen forests (SBEF; 49 sites),
(iii) temperate deciduous broad-leaved forests (TDBF; 17 sites), and (iv) temperate mixed coniferous-
broadleaf forests (TMCF; 19 sites). Samples were collected at a depth of 0 to 15 cm after the removal of
loose debris from the forest floor. Five soil cores were combined to obtain one soil sample, resulting in
three analytical sample replicates per plot. All soil samples were transported to the laboratory on ice.
Coarse roots and stones were removed, and a subset of the soil was air dried for analysis of edaphic
properties. The methods used to obtain values for all measured edaphic variables were described in a
previous study (33).

DNA extraction, PCR, and high-throughput sequencing. Upon the arrival of fresh soil samples at
the laboratory, DNA was extracted from the soil samples using the MP FastDNA spin kit for soil (MP
Biomedicals, Solon, OH) according to the manufacturer’s instructions. Equal concentrations (200 �g) of
DNA extracted from the three replicates were combined to form a composite genetic pool representing
total DNA for each site. DNA purity and concentration were determined using a NanoDrop spectropho-
tometer (NanoDrop Technologies, Inc., Wilmington, DE). Isolated total DNA was stored at �20°C for
microbial diversity and sequence analyses.

We amplified a region of the 16S rRNA gene for archaea and bacteria and a region of the 18S rRNA
gene for fungi using microbial tag-encoded FLX amplicon pyrosequencing (TEFAP) procedures described
previously (52). The archaeal and bacterial 16S rRNA genes were amplified by primer pairs A340F90
(GYGCASCAGKCGMGAAW)/A806R96 (GGACATCVSGGGTATCTAAT) and Gray28F (GAGTTTGATCNTGGCT
CAG)/Gray519R (GTNTTACNGCGGCKGCTG), respectively (33). The fungal 18S rRNA gene was amplified by
primer pair funSSUF (TGGAGGGCAAGTCTGGTG)/funSSUR (TCGGCATAGTTTATGGTTAAG) (33). We used
positive and negative controls throughout our experimental work. Amplified PCR products were
sequenced on the 454 GS-FLX� platform across 11 plates at the Research and Testing Laboratory
(Lubbock, TX).

Sequence analysis. Raw sequence data were reassigned to samples in QIIME version 1.9.0 based on
the barcodes and trimmed to exclude short and low-quality sequences. The following parameters were
used: min_seq_length 200, max_seq_length 500, min_qual_score 25, max_homopolyer 6, truncate_am-
bi_bases TRUE. The remaining sequences were filtered using the denoiser_wrapper.py script with the
default settings. Sequences were clustered into OTUs using the pick_open_reference_otus.py script (53)
with 97% pairwise identity, using the Greengenes 16S rRNA database (release 13_8) for bacteria and
archaea and the SILVA 111 database for fungi. Chimera detection was performed with the UCHIME
module of USEARCH (version 8.0) (54). Putative chimeric sequences and singletons were discarded. The
OTUs that were not assigned to taxa in archaea, bacteria, or fungi were removed prior to further analysis.

Statistical analysis. Mean annual air temperature (MAAT) and mean annual precipitation (MAP)
values were obtained from the WorldClim database (http://www.worldclim.org). To reduce the bias
associated with differences in library size for different samples, we normalized the microbial count data
using the negative binomial model provided in the R (version 2.3.3) package phyloseq (55). To determine
the direct and indirect effects of climatic and edaphic variables on the Shannon index, we used structural
equation modeling (SEM) in the lavaan package (56). Model fits were explored based on root-mean-
square error of approximation (RMSEA). We included potentially important variables inferred from
multiple regression models and correlations to construct separate SEM models. All direct and indirect
relations between exogenous and endogenous variables were tested.

Bray-Curtis similarity matrices for archaeal, bacterial, and fungal community data were calculated in
vegan. Principal coordinate analysis was used to assess the differences in microbial communities
between sites based on Bray-Curtis similarity matrices. To test for the influence of vegetation type and
environmental variables on microbial communities, we used permutational multivariate analysis of
variance (PERMANOVA) with Bray-Curtis matrices. Canonical correspondence analysis (CCA) was utilized
to explore the relationships between bacterial and fungal communities and environmental variables, as
the longest gradient lengths for preliminary detrended correspondence analysis (DCA) of the bacterial
and fungal communities were all greater than three (DCA1 � 5.4 and 3.7 for bacteria and fungi,
respectively). Redundancy analysis (RDA) was used to explore the relationships between the archaeal
community and environmental variables, as the longest gradient length for the preliminary DCA of
archaeal communities was shorter than three (DCA1 � 2.2). All nonsignificant variables were eliminated
from CCA or RDA. To determine the spatial patterns of alpha- and beta-diversity, we used a kriging
method to interpolate the Shannon index and the first two PCoA axes beyond sampling sites. To
determine the effects of spatial distance and environmental variables on microbial communities, we
carried out standard and partial Mantel tests on the Bray-Curtis distances and Euclidean distances of
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significant variables. All P values were adjusted using the Benjamini-Hochberg false discovery rate (FDR)
controlling procedure (57).

To examine the influence of environmental variables on each dominant microbial OTU, a bipartite
network analysis was conducted between soil properties and dominant OTUs using the maximal
information coefficient in the minerva package in R. Dominant OTUs were identified as OTUs with relative
abundances greater than 0.1%. The network was generated in the igraph package (version 1.0.1) and
visualized in Gephi 0.8.2.

Accession number(s). Sequence data have been deposited in the public National Center for
Biotechnology Information (NCBI) database under BioProject accession number PRJNA293484.
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