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Simple Summary: Although immunotherapy has given the highest rate of improvement in cancer
treatment in recent years, there is an urgent need to further improve its efficacy. Numerous strategies
aim to transform non-responsive, immunosuppressive tumours into sensitive, immunopermissive
tumours. The modulation of the tumour microenvironment, and especially the tumour vasculature
offers opportunities for improved sensitivity to immunotherapy. Modulation of tumour blood vessels
can enhance tumour oxygenation and T cell infiltration. Additionally, maturation of tumour blood
vessels is thought to be involved in the efficient delivery of therapeutic agents. This review compiles
the current strategies of vascular modulation to improve the efficacy of different immunotherapies:
PD-1/PD-L1 and CTLA-4 antibodies, CAR T cells and cancer vaccines.

Abstract: Several strategies have been developed to modulate the tumour vasculature for cancer
therapy including anti-angiogenesis and vascular normalisation. Vasculature modulation results
in changes to the tumour microenvironment including oxygenation and immune cell infiltration,
therefore lending itself to combination with cancer therapy. The development of immunotherapies has
led to significant improvements in cancer treatment. Particularly promising are immune checkpoint
blockade and CAR T cell therapies, which use antibodies against negative regulators of T cell
activation and T cells reprogrammed to better target tumour antigens, respectively. However, while
immunotherapy is successful in some patients, including those with advanced or metastatic cancers,
only a subset of patients respond. Therefore, better predictors of patient response and methods
to overcome resistance warrant investigation. Poor, or periphery-limited, T cell infiltration in the
tumour is associated with poor responses to immunotherapy. Given that (1) lymphocyte recruitment
requires leucocyte–endothelial cell adhesion and (2) the vasculature controls tumour oxygenation
and plays a pivotal role in T cell infiltration and activation, vessel targeting strategies including
anti-angiogenesis and vascular normalisation in combination with immunotherapy are providing
possible new strategies to enhance therapy. Here, we review the progress of vessel modulation in
enhancing immunotherapy efficacy.

Keywords: immunotherapy; blood vessels; angiogenesis; vascular normalisation

1. Introduction
1.1. The Advancement and Efficacy of Immunotherapies Give Hope

Immune modulation has provided a wide range of new potential therapies for many
cancer types with some exciting advances in many malignancies [1–3]. Here, we explore
the concept of tumour blood vessel modulation and the potential to improve response
to immunotherapy. Solid tumours are heterogeneous and comprise cancer and stromal
cells embedded within an extracellular matrix irrigated by an aberrant vasculature [4]. The
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dynamics between tumour cells and their environment is regulated by several cell types
such as cancer-associated fibroblasts (CAFs) and tumour infiltrating leukocytes (TILs) [5].

It is well established that tumours are antigenic and induce a tumour specific immune
response. For the host immune response to be effective, immune cells must simultaneously
access the inside of the tumour and recognise it as ‘foreign’ to destroy it. The adaptive im-
mune response comprises cytotoxic CD8+ cells, helper CD4+ T cells and antibody-producing
plasma cells. Antigen binding to corresponding B or T cell receptors promotes the activation
of the immune response as well as the generation of memory cells. Both CD8+ and CD4+
T cells recognise tumour antigens; CD8+ T cells play the main role in the antitumour re-
sponse and CD4+ T cells differentiate into several types of helper CD4+ T cells [6]. Moreover,
CD4+ T cells can differentiate into regulatory T cells (Tregs), which can inhibit the host
antitumour response. As such, Tregs are an important target in cancer immunotherapy [5].

The emerging immunotherapy field is based on targeting mechanisms that are com-
monly used by cancer cells to evade the host immune response. For example, the use of
mAbs directed against PD-1, PD-L1 and CTLA-4 have shown promising results in clinical
trials [7] (Figure 1). PD-1, expressed by T cells, promotes the inhibition of T cell activity
when it binds to ligands such as PD-L1, which is expressed on tumour and Treg cells [8]. In
fact, PD-1 binding to cancer cell PD-L1 can also activate survival signals further in-creasing
the ability of cancer cells to evad the T cells [9,10]. PD-L1 can bind CD28, thus regulating cy-
tokine production and downregulating T cell activation [11]. Several PD-1 mAbs have been
developed, including Nivolumab and Pembrolizumab, and they have shown efficacy in
treating NSCLC [12]. Similarly, antibodies to PD-L1 such as Atezolizumab and Durvalumab
have shown clinical benefit in NSCLC [13]. However, although PD1-PD-L1 interaction
blockade has been generally successful in clinical trials for melanoma, NSCLC, renal cell
cancer and ovarian cancer, the same treatments have not provided objective responses
in other cancers including pancreat-ic cancer patients [14]. Although monotherapeutic
immune checkpoint blockade for breast cancer has gener-ally not been as successful as
expected, there are numerous clinical trials ongoing to determine the effect of this therapy
in combination with radio and chemotherapies for breast cancer treatment (NCT04681287,
NCT04418154).

The most significant predictors of immunotherapy response include the PD-L1 status,
tumour mutational burden (TMB), immune gene signatures, and the abundance of tumour
infiltrating lymphocytes (TILs) [15–17]. In line with this, the majority of pancreatic ductal
adenocarcinomas have poor immune cell infiltration [18] and the absence of a response
in pancreatic cancer patients is thought to be due to the highly immunosuppressive TME
which harbours a higher proportion of tumour-associated macrophages (TAMs), regula-
tory CD4+ T cells (Tregs), myeloid-derived suppressor cells (MDSCs), in addition to the
development of a dense desmoplastic stroma that is thought to be a physical barrier to
immune infiltration [19]. In surgically resected pancreatic ductal adenocarcinoma (PDAC)
patients, higher tumour infiltrating CD4+ and CD8+ cells can correlate with better sur-
vival [20]. Therefore, human whole cell granulocyte macrophage colony-stimulating factor
(GM-CSF) secreting pancreatic cancer vaccines (GVAX) are being developed to increase
PD-L1 expression and enhance tumour antigen-specific interferon-γ producing T cells in
peripheral lymphocytes. In combination with anti-PD-1 vaccination, this approach has
improved survival compared to either treatment alone [18].

Several immune checkpoint blockade strategies have shown efficacy. For example,
CTLA-4, a protein expressed in Treg cells and memory T cell membranes, was one of the
first immune checkpoints studied [21]. CTLA-4 competes with CD28 for CD80, also known
as B7.1, and CD86, also known as B7.2, ligands leading to the downregulation of T cell
activation [22] (See Figure 1). Additionally, blockade of the PD-1/PD-L1 axis has offered
consistent clinical improvement [23].
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Figure 1. Molecular basis of PD-1/PD-L1 immunotherapies. Upper panels: The interaction between tumour cell PD-1 and 

T cell PD-L1 inhibits the anti-tumour effect of T cells. Inhibition of PD-1/PD-L1 interaction activates T cells and promotes 

their anti-tumour effect. Lower panels: CTLA-4 competes with CD28 for B7.1/ B7.2 binding. CTLA-4 binding to B7.1/B7.2 

maintains T cells in an exhausted state. Blocking this interaction using CTLA-4 antibodies activates T cells to induce their 

anti-tumour effect. Moreover, CTLA-4 inhibition also acts to enhance T cell priming and expansion in lymph nodes and 

at tumour sites by inhibiting Treg activity. This potentiates its anti-tumour effect. Created with BioRender.com. 
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(CARs) to redirect and reprogram patient T cells. CARs are genetically engineered syn-

thetic receptors which provide T cells with the ability to target specific tumour surface 

antigens. Among others, candidate target antigens, anti-PD-1 and anti-tyrosine kinase-

like orphan receptor, CAR-T cells have been developed for lung cancer and malignant 

pleural mesothelioma treatment respectively [24,25]. Additionally, anti-CD-19 CAR-T 

cells have shown success in clinical trials for acute lymphoblastic leukaemia in both adults 

and children [26]. Importantly, CAR-T cells offer great promise in cancers with extremely 

poor prognosis. Multiple myeloma (MM), for example, was considered broadly incurable, 

but with current immunotherapy interventions, the MM specific B cell maturation antigen 

(BCMA) has proved to be a good target for CAR T cell therapy and clinical safety and 

ability to produce a short-term objective response are encouraging and extending the time 

to remission [27]. 

Apart from CAR T strategies, there are some therapies that can infiltrate T cells into 

the tumours and activate them such as the expansion of tumour-infiltrated lymphocytes 

(TIL) or transgenic TCR therapies. Expanded TIL therapy was set up in the 1980s when 
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Figure 1. Anti-PD-1/PD-L1 and anti-CTLA4 immunotherapies basic principles. Upper panels: The
interaction between tumour cell PD-L1 and T cell PD-1 inhibits the anti-tumour effect of T cells.
Inhibition of PD-1/PD-L1 interaction activates T cells and promotes their anti-tumour effect. Lower
panels: CTLA-4 competes with CD28 for B7.1/B7.2 binding. CTLA-4 binding to B7.1/B7.2 maintains
T cells in an exhausted state. Blocking this interaction using CTLA-4 antibodies activates T cells to
induce their anti-tumour effect. Moreover, CTLA-4 inhibition also acts to enhance T cell priming
and expansion in lymph nodes and at tumour sites by inhibiting Treg activity. This potentiates its
anti-tumour effect. Created with BioRender.com, accessed on 16 September 2021.

An alternative immunotherapy strategy consists of using chimeric antigen recep-tors
(CARs) to redirect and reprogram patient T cells. CARs are genetically engineered synthetic
receptors which provide T cells with the ability to target specific tumour surface antigens.
Among others, CAR-T cells have been developed for lung cancer and malignant pleural
mesothelioma treatment respectively [24,25]. Additionally, anti-CD-19 CAR-T cells have
shown success in clinical trials for acute lymphoblastic leukaemia in both adults and
children [26]. Importantly, CAR-T cells offer great promise in cancers with extremely poor
prognosis. Multiple myeloma (MM), for example, was considered broadly incurable, but
with current immunotherapy interventions, the MM specific B cell maturation antigen
(BCMA) has proved to be a good target for CAR T cell therapy and clinical safety and
ability to produce a short-term objective response are encouraging and extending the time
to remission [27].

Apart from CAR T strategies, there are some therapies that can infiltrate T cells into
the tumours and activate them such as the expansion of tumour-infiltrated lymphocytes
(TIL) or transgenic TCR therapies. Expanded TIL therapy was set up in the 1980s when
clinicians in the US developed a therapy by isolating and expanding tumour-infiltrated
lymphocytes (TIL) hypothesising that ex vivo enrichment and expansion of them could
provide a therapeutic benefit [28–30]. Recent studies have demonstrated that neoantigen
specific T cells exhibit stronger responses, and this evidence has encouraged the identification
of neoantigen targets in different cancers such as melanoma, lung cancer, gastric cancer,
ovarian cancer and others [31]. Another strategy consists in the use of transgenic (Tg)TCR
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sequences. These TCR sequences can be captured from neoantigen-specific T cells and are
being tested in preclinical models of acute myeloid leukaemia or solid tumours [32].

Other promising immunotherapies include cancer vaccines which prime the immune
system to target one or more tumour-specific antigens. The aim of cancer vaccines is to induce
tumour regression by stimulation of the patient’s adaptative immune response. They involve
tumour antigens that activate dendritic cells [33]. For example, sipuleucel-T is an anti-cancer
vaccine based on dendric cells loaded with prostatic acid phosphatase which is specific to
prostate cancer cells. In 2010, it was the first cancer vaccine to be FDA approved [34].

1.2. Immunotherapy: Achievements and Challenges Focused on PD-1/PD-L1 and CTLA-4 Pathways

Immune checkpoints such as PD-1/PD-L1 and CTLA-4 pathways have introduced a
new era in cancer treatment, with a number of drugs currently in Phase I-III trials.

Nivolumab is a fully human IgG4 programmed death 1 (PD-1) immune-checkpoint in-
hibitory mAb, that drives improvements in overall survival, response rate and progression-
free survival in lung cancer. The beneficial effects of Nivolumab were shown to be sig-
nificantly better than docetaxel, independent of PD-L1 levels [35]. Pembrolizumab, a
humanised anti-PD-1 mAb of the IgG4 kappa isotype, blocks the interaction between PD-1
and the ligands PD-L1 and PD-L2 [36]. Pembrolizumab has shown an acceptable side-
effect profile and strong anti-tumour activity in patients with advanced NSCLC. Moreover,
the efficacy of Pembrolizumab correlated with PD-L1 levels in at least 50% of tumour
cells [37]. On the other hand, Atezolizumab is a humanised anti PD-L1 mAb that inhibits
its interactions with PD-1 and B7-1. Atezolizumab has demonstrated an improvement in
overall survival when compared to docetaxel in previously treated NSCLC patients. This
occurs without any correlation with PD-L1 expression, as shown in the first randomised
Phase III study [38]. Apart from the mAbs targeting the PD-1/PD-L1 pathway, several
anti-CTLA-4 mAb, such as Ipilimumab and Tremelimumab, are showing improvements in
combinations with second-line chemotherapies [39]. It is necessary to mention the poor
response observed with anti-CTLA-4 monotherapy, as demonstrated using Ipilimumab
in metastatic melanoma. However, there is a strong additive response when using in
combination with anti-PD-1 therapy [40].

Patients who do not respond to immunotherapies normally lack cytotoxic immune
cell infiltration in their tissues and exhibit variable PD-L1 expression on their tumour cells
which can impair the efficacy of immunotherapies. Elevated levels of immunosuppressive
cells (Tregs, myeloid-derived suppressor cells (MDSCs) and TAMs) are present in both
pancreatic cancer patients [41] and mouse models of pancreatic cancer [42]. Tregs produce
an immunosuppressive TME and are actively recruited to pancreatic cancers [43]. Treg
levels are increased in both the tumour and in the circulation [44,45], and this is associated
with progression of disease and worse prognosis [45,46]. Impaired delivery of mAbs in
several tumours could limit the efficacy of immunotherapy treatment.

Increasing immune infiltration to the tumour is another feature that is considered
to be essential for immunotherapy efficacy. The CXCR4 antagonist BL-8040 has shown
promise pre-clinically for its ability to mobilise immune cells in PDAC, specifically CD4+,
activated CD8+ T cells and dendritic cells and is now in clinical trials in combination with
pembrolizumab and chemotherapy for pancreatic cancer: the COMBAT trial or combination
with the anti-PD-L1 mAb Atezolizumab (NCI-2017-01495).

Although the efficacy of immune checkpoint inhibitors (ICI) has been explored and
demonstrated in monotherapy, current clinical trials consider the use of ICI in combination
with chemotherapy and immunotherapy [35,38,47–50]. Numerous studies have demon-
strated the induction of an immunopermissive tumour microenvironment by the chemother-
apeutic agents. Chemotherapy has the ability to increase the number of CD8+ T cells, enhance
the levels of PD-L1, promote the maturation of antigen presenting cells and the down-
regulation of immunosuppressive cells such as Tregs or MDSCs [51,52]. This modification
of the tumour microenvironment is helpful to enhance the efficacy of immunotherapy.
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Based on this evidence, numerous clinical trials are assessing the efficacy and safety of
chemotherapies with ICI [53–56].

Recent studies have also demonstrated the synergy of radiotherapy (RT) and immune
checkpoint blockade in preclinical models [57]. Similar to chemotherapy, radiotherapy also
promotes an immunopermissive tumour microenvironment [58]. The impact of radiation
on the vasculature has been extensively reviewed previously [59,60]. Overall, low radiation
dosages seem to have a pro-angiogenic effect (<2 Gy), while higher dosages seem to be
anti-angiogenic. Importantly, radiation induces endothelial cell activation, causing the
quiescent phenotype to switch to a proinflammatory state, characterised by activation of the
genotoxic stress-induced nuclear factor (NF)- kB pathway and expression of chemokines,
cytokines and adhesion molecules that facilitate the recruitment and attachment of both
leucocytes and tumour cells on the vascular wall [61]. However, when exposure is repeated
and/or prolonged its exhausts the protective physiological effects of the endothelium,
leading to endothelial cell dysfunction with consequent deterioration of the vascular
tone, blood haemostasis problems, inflammation and oedema at the sites of the affected
endothelium. As mentioned before, depending on the radiation dose, quality and intrinsic
sensitivity of the vascular bed, ionising radiation can also cause endothelial cell death,
therefore compromising the endothelial barrier and delivery of oxygen, nutrients and
possible therapeutic drugs administered systemically [59]. A few reports suggest that after
ablative radiation dosages, the vasculature can be restored by vasculogenesis aided by
immune cells: Kuonen and colleagues have shown that hypoxia, induced by irradiation
anti-angiogenic effects, drives expression of CXCL12 promoting mobilisation from the bone
marrow and recruitment to primary tumour sites of CXCR4+CD11b+ bone marrow-derived
cells that assist vasculogenesis [62]; In experimental pre-clinical models, restoration of the
vasculature after RT is mediated by irradiation induced influx of bone marrow derived
monocytes and macrophages, which eventually contributes to tumour regrowth [63–65].
Conversely, the direct effects of radiation on the vasculature have also been shown to
polarise macrophages towards an M2 phenotype- this effect was shown to be dependent on
CXCR4 (SDF-1 receptor) upregulated in irradiated ECs [66]. A very recent study has shown
the beneficial effects on restricting tumour progression using a combination of vascular
targeting, hypofractionated radiotherapy (administering higher dosages in less frequent
fractions), and immune checkpoint inhibitor [67]. The authors have used a TEM1 (Tumour
endothelial marker1 is a protein expressed in the tumour-associated endothelium) vaccine
together with RT and anti-PD1 antibody in subcutaneous colorectal and lung tumours and
shown an effective anti-tumour response. Mechanistically, RT increased MHCI expression
in ECs, thus improving immune recognition with consequent vascular damage by anti-
TEM1 T cells. The TEM1 vaccine combined with RT boosted tumour-associated antigen
(TAA) cross-priming driving increased PD-1/PD-L1 signalling. Additional blockade of
PD-1/PD-L1 axis further boosted the dual-therapy anti-tumour effect and TAA immune
responses [67]. Of note, combination of immune checkpoint inhibitors with different
radiotherapies: external beam radiation therapy, intensity-modulated radiation therapy or
stereotactic body radiation therapy [68] are currently being tested in clinical trials.

1.3. Tumour Infiltrated Leukocytes (TIL) as A Prognostic Marker

Tumours poorly infiltrated by T cells, or tumours where this infiltration is not observed
in the core of the tumour mass, generally do not respond to immunotherapies [69]. In
lung cancer, several studies have demonstrated a correlation between CD8+ TILs and
prognosis. In some studies, high CD4+/CD8+ infiltration correlates with longer overall
survival [70,71]. Moreover, Tregs, Cox2 or mature dendritic cells have been correlated with
prognosis of recurrence in NSCLC [72], although a more recent study failed to find a link
between the CD8+ infiltrate and a better prognostic value, finding only an association with
better outcome [73]. To overcome the limitation of TIL infiltration, modulating the tumour
vasculature is an interesting approach.
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2. Tumour-Associated Vasculature

One of the hallmarks of tumour development and dissemination is angiogenesis [74].
Due to the metabolic demands of the tumour cells together with the diffusion limitations
of both oxygen and nutrients from pre-existing vessels, for a tumour mass to grow be-
yond 1–2 mm3 it requires the triggering of an angiogenic switch. This switch is induced
when a tumour produces sufficient pro-angiogenic growth factors and/or suppresses the
expression of anti-angiogenic molecules [75].

Tumour blood vessels, particularly those in the inner regions of the tumour, are struc-
turally and functionally abnormal. Structurally, these vessels exhibit a highly disorganised
architecture, irregular diameters along their length, tortuous branching, oversized pores
and an absence of mural cell (pericytes and smooth muscle cells) coverage. These structural
abnormalities lead to functional changes, characterised by irregular and slow blood flow
with increased vessel permeability and leakiness. This form of vasculature leads to an
inadequate supply of nutrients and oxygen and inefficient delivery of cancer therapeutics.
We will describe all these mentioned features and the cellular and molecular mechanisms
in the following sections.

2.1. Mechanisms of Tumour Neovascularisation

Tumours become vascularised through a combination of new vessel development and
exploitation of the surrounding vasculature from healthy tissue. Angiogenesis is perhaps
the most well understood mechanism of tumour vascularisation and is a target for therapy.

2.1.1. Angiogenesis

The formation of new blood vessels from the pre-existing vasculature is the main
method of neovascularisation in tumours with their hypoxic and necrotic regions acting as
inducers of angiogenesis.

When a capillary receives an angiogenic stimulus, endothelial cell basal membrane
and extracellular matrix are degraded, releasing endothelial cells from their basement
membrane anchors (including integrins). This process is mediated by metalloproteases,
leading to disruption of tight junctions, vasodilation and pericyte detachment. Existing
soluble growth factors coupled with the synthesis of a new matrix by stromal cells en-
able the migration and proliferation of endothelial cells [75]. Migration is performed by
specialised endothelial tip cells and the direction of migration is mainly determined by
vascular endothelial growth factor A (VEGF-A) [76]. Endothelial sprouts form solid migrat-
ing columns, which can be remodelled into a lumen when endothelial cells adhere to each
other and inter-endothelial tight junctions are re-established. Newly formed capillaries are
stabilised and matured by recruitment of perivascular cells (pericytes and smooth muscle
cells). Ultimately, if proper angiogenesis occurs, blood flow is established in the newly
vascularised area [75].

2.1.2. Vessel Co-Option

There is evidence that both primary tumours and metastases can progress without an-
giogenesis [77]. Vessel co-option is a mechanism in which tumours receive a blood supply
by hijacking the pre-existing vasculature and this can be the main mode of tumour metas-
tasis support in breast cancer to the lung and brain and colon cancer to the liver [78–82].
Additionally, this is seen in primary tumours of highly vascularised organs, such as lung
and liver [81]. Some other evidence suggests that tumour cells can compress and desta-
bilise the pre-existing vasculature, activating a host defence mechanism which initiates an
apoptotic response leading to regression of co-opted vessels and perfusion impairment [83].
This ultimately leads to hypoxia and necrosis triggering further neovascularisation, so a
combination of neovascularisation and co-option can exist together [84].

Vessel co-option has been suggested as a mechanism of resistance to anti-angiogenic
therapy [83]. Preclinical models of pulmonary metastases display vessel co-option after
anti-VEGF therapy [84]. On the other hand, it was shown that in human patients with
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colorectal cancer liver metastasis, vessel co-option appears in those with poor response to
the anti-angiogenic drug bevacizumab [85].

2.2. Cellular and Molecular Mechanisms Controlling Angiogenesis
2.2.1. HIF1α

As tumours grow, nutrient and oxygen supplies become insufficient causing tumour
necrosis, especially in the central part of the growing mass. Together with increased
metabolic waste accumulation, acidosis and hypoxia soon develop. Tumour hypoxia is the
major driver of neovascularisation. Under hypoxic conditions, hypoxia-inducible factor-1
(HIF1α) accumulates and binds to hypoxia response elements (HREs), a DNA sequence
motif present in HIF target genes. Among these are numerous genes involved in cellular
responses to hypoxia, such as metabolic reprogramming and angiogenesis which are
typically markers of poor prognosis [86,87]. Thus, hypoxia stimulates the secretion of both
pro-angiogenic factors, i.e., VEGF-A, angiopoietins, fibroblast growth factor (FGF), platelet-
derived growth factor (PDGF) and TNF-α, and anti-angiogenic factors, i.e., angiostatin,
endostatin, interferons, tumour necrosis factor-β and thrombospondins.

2.2.2. VEGF

The VEGF signalling cascade is considered the main pathway for regulation of an-
giogenesis. VEGF-A, a pro-survival factor, is considered the main mediator in hypoxia-
induced tumour growth [88], it inhibits endothelial cell apoptosis [89], and regulates
vascular permeability and vessel dilation by loosening inter-endothelial tight junctions [90].
More specifically, VEGF-A exerts its pro-angiogenic biological function by interacting with
VEGFR-2, a transmembrane receptor that belongs to the superfamily of receptor tyrosine
kinases (RTK) located on endothelial cell membranes. Ligand–receptor interaction causes
their dimerisation, triggering trans/auto-phosphorylation of tyrosine residues in the cyto-
plasmic kinase domain which stimulates a number of signal transduction pathways that
drive mitogenesis, migration and survival of endothelial cells [91]. However, despite its
importance in angiogenesis, there is redundancy in VEGF-A-driven tumour angiogene-
sis which is one possible reason why tumours can become resistant to VEGF-A targeted
anti-angiogenic therapy [92].

2.2.3. Angiopoietins

Another signalling system involved in the balance between quiescent and activated
endothelium, particularly in the regulation of interactions between endothelium and
surrounding support cells, is the tyrosine kinase receptor Tie-2 (Tek) and its ligands—
angiopoietins (Ang). Angiopoietin 1 is expressed by mesenchymal cells, including pericytes
and smooth muscle cells, while Tie-2 is expressed on the surface of endothelial cells [93].
Consequently, Ang-1/Tie-2 signalling promotes the association between endothelial cells
and perivascular support cells, contributing to stabilisation of the maturing vascular
system and decreased vascular permeability. Opposingly, Ang-2 is a competitive inhibitor,
or antagonist, of Ang-1. Ang-2 binds to Tie-2 on endothelial cells leading to weakened tight
junctions and pericyte dissociation, destabilising blood vessels and acting as a cooperative
driver of angiogenesis [94,95]. However, in the presence of VEGF-A, Ang-2 is able to bind
integrins leading to sprouting angiogenesis [96].

2.2.4. PDGF

Platelet-derived growth factor (PDGF) promotes the survival, proliferation and migra-
tion of cells of mesenchymal origin [97]; the PDGF signalling pathway is also involved in re-
cruitment of pericytes to newly formed vessels [98]. During angiogenesis, endothelial cells,
particularly tip cells, express Pdgf-b, which exerts a mitogenic effect on pericytes/vSMCs
expressing Pdgfr-β, driving proliferation, directed migration and incorporation into the
vessel wall [93]. When vascular smooth muscle cells (vSMCs) and pericytes are attracted,
they tightly encircle and associate with the endothelium producing survival and anti-
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proliferative factors that stabilise nascent vessels [99]. Dysfunction of PDGF signalling is
common in cancer and is therefore considered a potential drug target [97].

2.2.5. Integrins

Integrins are a family of heterodimeric transmembrane glycoproteins that mediate cell–
cell and cell–ECM interactions. The integrin family consists of eight β- and 18 α- subunits
that assemble as heterodimers to form 24 distinct integrins [100]. Each integrin heterodimer
binds a specific set of endogenous ligands, which include ECM components (such as
collagen, fibronectin and vitronectin), soluble ligands and ligands on the cell surface
such as VCAM-1 (Vascular cell adhesion molecule-1) or ICAM-1 (Inter cellular adhesion
molecule-1). Each integrin subunit consists of an extracellular domain, a transmembrane
region and a short cytoplasmic region that links them to the cytoskeleton. Therefore,
integrins are able to transduce signals across the plasma membrane in both directions.
Upon ligand binding, integrins cluster and activate intracellular signal transduction that
promotes endothelial cell migration, proliferation and survival [101].

Endothelial cells express up to ten different integrins: α1β1, α2β1, α3β1, α4β1, α5β1,
α6β1, α6β4, αvβ3, αvβ5 and αvβ8 [102]. Of these, during angiogenesis, integrins α5β1,
α2β1 and α1β are upregulated, promoting cell migration, proliferation and matrix reorgan-
isation [103]. Additionally, it has also been shown that αv integrins play important roles
in angiogenesis, with αvβ3 being selectively expressed on proliferating endothelial cells.
Results from studies of integrin antagonists indicate that αv integrins (αvβ5 and αvβ3)
promote angiogenesis [104–111]. However, genetic ablation studies indicate that αvβ5 and
αvβ3 integrins are not required for angiogenesis, because loss of αvβ3 enhances VEGF-
receptor 2 expression [112,113]. Indeed, low doses of αvb3/αvb5-specific RGD-mimetic,
Cilengitide, can actually enhance tumour angiogenesis [114] and this feature can be used to
enhance the efficacy of gemcitabine treatment in non-small cell lung cancer and pancreatic
ductal adenocarcinoma models in mice [115–117].

2.3. Vascular Regulation of the Immune Infiltrate: Endothelial Anergy

The roles of endothelial cells and angiogenic factors are closely linked with immu-
nity and inflammation. Angiogenic factors in the TME promote immunosuppressive
features [118–120]. Increasing types of immune cells are being identified as promoting both
immunosuppression and angiogenesis, including Tregs [121], myeloid-derived suppressor
cells (MDSCs) [122], natural killer (NK) cells [123] and neutrophils [118,124]. These cells
also increase the production of VEGF-A [118] which, in addition to its role driving tumour
angiogenesis, also potently suppress both the innate and adaptive anti-tumour immunity.
It inactivates NF-kB signalling preventing dendritic cells from maturing and presenting
antigens to T cells in mouse models [125–127]. The T cell response is further depleted as
VEGF inhibits their development and upregulates immune checkpoints preventing T cell
activation [128,129].

Under normal, non-inflamed, conditions blood vessels are quiescent. Due to minimal
surface expression of adhesion proteins, leukocytes are prevented from adhering. However,
in response to proinflammatory cytokines, such as TNF, IFNγ and IL-1, endothelial cells
are activated and adhesion proteins are trafficked to the surface. This allows leukocytes
to extravasate as ICAM1 surface expression is sufficient for their migration out of blood
vessels [120,130,131].

In response to angiogenic factors, tumour blood vessel endothelial cells change pheno-
typically, and one feature of this is the downregulation of adhesion molecules expression
such as ICAM-1, making the endothelial cells unresponsive to inflammatory cytokines and
increasing expression of immune inhibitory molecules. Together these changes create a
barrier for immune cells in a process known as endothelial cell anergy [120,132].

The promotion of the immunosuppressive tumour microenvironment by ECs occurs
in several directions. First, the upregulation of molecules such as common lymphatic
endothelial and vasculature endothelial receptor 1 (CLEVER1) has been shown to promote
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the accumulation of Tregs [133]. Second, tumour ECs upregulate receptors which limit T cell
activity, such as PD-L1, PDL-2 or TIM3 [134–136]. Other inhibitory molecules such as IL-6,
PGE2, IL-10 and TGFβ have been shown to be secreted by ECs within the tumour [137].
Apart from these cytokines, the induction of apoptosis by ECs is promoted by the secretion
of molecules such as TRAIL and FasL [138].

In the tumour setting, endothelial cells are continuously exposed to high levels of
angiogenic growth factors, become unresponsive to proinflammatory cytokines and thus
express fewer adhesion proteins. Therefore, continued angiogenesis is thought to prevent
effective leukocyte infiltration [120,139–141]. Endothelial anergy has been described as the
vascular counterpart of immune checkpoint as both are important regulators of immune
homeostasis. Physiological angiogenesis often takes place in concert with immunosup-
pression, in response to the same stimuli [120,142]. It has therefore been proposed that
exploiting the vascular normalisation effect of some anti-angiogenics may increase leuko-
cyte infiltration and thereby immune checkpoint immunotherapy efficacy [120,143–145].

3. Strategies for Tumour Vasculature Modulation and Improved Immunotherapy
3.1. Improving Immune Checkpoint Blockade: Anti-Angiogenic Therapy, Vascular Normalisation
and Induction of High Endothelial Venules (HEVs)
3.1.1. Anti-Angiogenesis and Vascular Normalisation

Over the last 20 years, a wide variety of anti-angiogenic compounds have been de-
veloped for solid tumours. These drugs prevent the formation of new blood vessels by
angiogenesis, and although they have not been as successful as hoped when used as
monotherapies [146,147], they have met considerable success when used in combination
with chemotherapy or immunotherapy [10,148,149]. Through their role in preventing
angiogenesis, many of these drugs also promote the maturation of blood vessels especially
when used at low doses. This concept, that lower doses of anti-angiogenic drugs can
‘normalise’ the tumour vasculature is referred to as vascular normalisation [150]. Low-dose
anti-angiogenic therapy increases pericyte coverage which improves vessel stabilisation,
reducing vascular permeability and leakiness [151,152]. Vascular normalisation reduces hy-
poxia and increases the delivery and efficacy of cytotoxic agents, overcoming the important
limitations observed in anti-angiogenic therapy. This normalised vasculature also reduces
immunosuppression through depletion of Tregs and regulatory B cells, enhancement of M1
TAMs and activation of T cells (especially CD8+) [153] (see Figure 2). Administration of
low dose DC101, a VEGFR2 inhibitor, in combination with a mitomycin C vaccine leads
to a higher infiltration of CD4+ and CD8+ cells and lower levels of MDSCs and Tregs,
resulting in decreased hypoxia, breast cancer cell proliferation and increased survival [154].
Many of these anti-angiogenics and vascular normalisation drugs are now being trialled in
combination with immunotherapy, in some cases, the anti-angiogenics and immunotherapy
are documented to work synergistically together [10].

DC101 enhances the anti-tumour response of a cancer vaccine targeting neu (the
murine equivalent of HER2) gene expression in an immunocompetent mouse model of
tumours driven by over expression of neu [10,155]. In this model, DC101 alone decreased
angiogenesis and increased tumour cell apoptosis. Despite the reduction in angiogenesis,
the numbers of tumour infiltrating lymphocytes were increased two weeks after DC101
treatment of tumour-bearing mice without vaccination. In fact, the reduced tumour growth
induced by DC101 was found to be in part through enhanced anti-tumour immunity with
increased tumour specific CD8+ T cells [155]. The reason for the enhanced immunity in
these DC101 treated animals was hypothesised to be due to a vascular normalisation effect,
as DC101 has been shown to promote the pruning of immature vessels and the maturation
of the remaining ones [156].

Immune checkpoint inhibitors have also shown promise in combination with anti-
angiogenics. In melanoma patients, increased levels of VEGF in the serum before treatment
with the anti-CTLA4 immune checkpoint blockade antibody ipilimumab is predictive
of worsened overall survival. In addition, in melanoma brain metastases, treatment
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with anti-angiogenics reduces the immunosuppressive microenvironment. Therefore, the
combination of anti CTLA-4 with axitinib, an inhibitor of VEGFR1, 2 and 3 was tested in
subcutaneous and intracranial mouse models of melanoma. Combination of anti-CTLA-4
with axitinib treatment increases the numbers of effector T cells and antigen presentation
by intratumoural dendritic cells while reducing the immunosuppression of MDSCs and
improving animal survival compared to axitinib alone [10,157] suggesting a very attractive
strategy for improving immunotherapy. Additionally, anti-PDL1, Atezolizumab, when
combined with bevacizumab plus chemotherapy significantly improved progression-free
survival and overall survival among patients with metastatic NSCLC [158].
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Figure 2. Modulating tumour vasculature to enhance immunotherapy efficacy. Immune checkpoint
blockade is not effective in many cancer types due to the hypoxic immunosuppressive tumour
microenvironment including endothelial cells of tumour blood vessels. Anti-angiogenic therapy
reduces blood vessel density and some of the immunosuppressive effects of tumour angiogenesis.
Anti-angiogenesis and vascular normalisation, using low dose anti-angiogenic drugs, reduces the
immunosuppressive tumour microenvironment by increasing blood flow, and drug delivery and
reducing subsequent hypoxia, making favourable conditions for the infiltration of CD8+ cells and
allowing the effectiveness of immune checkpoint blockade. Created with BioRender.com, accessed
on 16 September 2021.

The multi-kinase inhibitor Sorafenib has anti-angiogenic properties and has been
used for advanced hepatocellular carcinoma (HCC) treatment since 2007. Sorafenib in-
hibits the molecular components of the Raf–MEK–ERK signalling pathway, inhibiting
tumour growth and VEGFR-1, VEGFR-2, VEGFR-3 and PDGFR-β, thereby inhibiting
angiogenesis [159,160]. This suggests that HCC responds to anti-angiogenic treatment. The
recent IMbrave150 phase III clinical trial, which combined an anti-PD-L1 checkpoint block-
ade inhibitor, Atezolizumab, and the anti-angiogenic drug, Bevacizumab, demonstrated
that combination therapy improved overall survival compared to Sorafenib monotherapy.
This combination therefore gained FDA approval in 2020 for the treatment of patients with
unresectable or metastatic HCC who have not received prior therapy. This combination of
anti-angiogenesis and immunotherapy was a significant breakthrough as there had been
little advance in the treatment of HCC [161].

BioRender.com
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3.1.2. Induction of HEVs

High endothelial venules (HEVs) are blood vessels especially adapted for lymphoid
cell trafficking and are normally found in secondary lymphoid organs such as lymph nodes
and Peyer’s patches. Additionally, they can develop in non-lymphoid organs during chronic
inflammation driven by autoimmunity, infection or allografts. More recently, HEVs have
been observed in solid and vascularised tumours, and their presence correlates with a re-
duced tumour size and good prognosis [162] making them a target for intervention in the
enhancement of immunotherapy. HEVs regulate the adhesion, migration and activation of
circulating T and B cells. Tumoural HEVs have been associated with improvement in patient
outcomes, suggesting further that therapeutic HEV induction in solid tumours could be a po-
tential tool to enhance T cell infiltration and sensitise tumours to immunotherapy. It has been
shown that the combination of immunotherapy (anti-PD-L1) and anti-angiogenic therapy
(anti-VEGFR2) increases HEV formation in breast and pancreatic experimental tumours, en-
hancing T cell infiltration [162]. Recently, it has been demonstrated that the administration of
LIGHT (Tumour necrosis factor superfamily member 14) in experimental glioblastoma mod-
els normalises tumour vasculature and induces HEV formation. The normalisation of the
angiogenic blood vessels, together with the induction of HEV formation, leads to an increase
in T cell infiltration, which is further amplified in combination with PD-1 therapy [163].

3.2. Improving the Efficacy of CAR-T Cell-Based Immunotherapy

CAR T cells activity is affected by the vascularity of the tumour microenvironment
and also has the capability to modulate it. As with other immunotherapies, the efficacy
of CAR T cell immunotherapy is closely linked with the microenvironment. For example,
high levels of hypoxia impair the expansion and differentiation of CAR-T cells into effector
memory cells in vitro [164,165]. In order for therapy to be effective, CAR-T cells must
infiltrate the solid tumour and have cytotoxic activity. It is thought that hypoxia in solid
tumours may allow immune escape and prevent CAR-T cell-mediated cytotoxicity. This
is proposed as a possible reason for the often disappointing results of CAR-T cell therapy
in the clinic [165,166]. This field has so far been hindered by a lack of in vitro models that
accurately model the complexity of the tumour microenvironment; novel tools are therefore
required. For example, a microfluidic device developed by Ando et al. recapitulates the
oxygen gradient across a solid tumour section. Using this model, they demonstrated
differential killing by CAR-T cells at different oxygen tensions which may be useful in
future in vitro preparation of CAR-T cells [166].

3.2.1. Careful Investigation of the Impact of Hypoxia on CAR-T Cells Is Important

The downstream effects of CD28 and 4-1BB show different effects on cell metabolism.
CAR T cells with 4-1BB show enhanced respiratory capacity, while CAR T cells with CD28
domains show increased glycolysis [165,167–169]. It is therefore important to consider the
state of oxygenation of the solid tumour, and consequently, modulation of the vasculature
could possibly be a useful tool to ensure the best level of oxygenation for the CAR-T
cell-based therapy. An alternative approach looks at using the level of hypoxia to direct
CAR T cells activity. Under normal circumstances, hypoxia may pose challenges to the
activity of CAR T cells, but many solid tumour environments are highly hypoxic in contrast
to surrounding organs. Therefore, manipulation of CAR T cells to make them active under
hypoxic conditions is a valuable target which may allow their activity to be directed to the
tumour rather than oxygenated, healthy microenvironments. This can be achieved by either
targeting CAR T cells specifically to antigens present in hypoxic microenvironments such as
carbonic anhydrase IX [170] or by adding regions to the CAR T cells such as a HIF domain
that will promote its hydroxylation and degradation in oxygenated environments [165,171].
These strategies in CAR T cells are interesting in that they may work best in hypoxic
conditions, possibly lending themselves to combination with anti-angiogenics. However,
in poorly vascularised tumours, there will be adverse effects of systemic CAR T cell
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delivery; Cui et al. propose that these may be mitigated by direct injection of the CAR
T cells into the tumour site [170].

Immunotherapy can also be used directly against the tumour vasculature. Human
prostate-specific membrane antigen (hPSMA) is present on the tumour endothelial cells of
many solid tumours but absent from healthy vasculature [172,173]. CAR-T cells engineered
against PSMA, known as P28BBζ CAR-T cells, recognise and kill PSMA+ tumour endothe-
lial cells in vitro including primary human endothelial cells isolated from gynaecologic
cancers. In mouse models of ovarian cancer with vessels expressing hPSMA, the P28BBζ
CAR T cells successfully ablate PSMA+ vessels, resulting in a depletion of tumour cells
and reduced tumour burden through their anti-angiogenic effects [4,174]. In addition
to CAR-T cells targeted against PSMA, they have also been targeted against the tumour
blood vessel markers VEGFR-2 [175], VEGFR1 [176], TEM8 [177] and fibronectin splice
variant EIIIB [165,178]. CAR-T cells against each of these antigens are capable of destroying
tumour vasculature and have shown promising results pre-clinically. However, a clinical
trial of CAR-T cells against VEGFR-2 in metastatic cancer patients that had not responded
to, or relapsed after, standard treatment, had to be discontinued due to a lack objective
responses (NCT01218867).

It is possible that CAR-T cells developed to target the blood vessels could be used in
combination with CAR-T cells targeted directly against the tumour. For example, CARs
against VEGFR-2 have been used in combination with transgenic TCR with specificity against
the murine melanoma antigens gp100 and tyrosinase-related protein-1 (TRP-1). In mice
bearing subcutaneously injected B16 melanomas, anti-VEGFR-2 CAR-T cells did not enhance
the antitumour affect alone but in combination with CARs targeted against melanoma;
they worked synergistically to increase intra-tumoural T cells, eradicating B16 tumours and
extending progression free survival [4,175,179]. The authors previously demonstrated that,
4 days after adoptive cell transfer (ACT) there was a reduced number of CD31+ endothelial
cells compared with those treated with empty vector-transduced cells [175] but could not
quantify the microvessel density due to high levels of tumour necrosis. They offer two
possible hypotheses for the synergistic enhancement of CAR-T cell therapy in this study.
They suggest that pruning of blood vessels by the anti-VEGFR-2 CAR-T cells may promote
vascular normalisation in the remaining blood vessels [150,180] more than compensating for
the lost vessels in terms of drug and possibly immune cell delivery [150]. Alternatively, the
anti-VEGFR-2 CAR-T cells may act to reduce the populations of immunosuppressive cells
including Tregs and MDSCs which express VEGFR-2 [122,179,181–186].

3.2.2. Vascular Modulation for Improved Cancer Vaccines Efficacy

Similar to CAR-T cells, cancer vaccines have been produced against tumour blood
vessels to promote an anti-angiogenic effect [187–189]. In addition, cancer vaccines have
been used in combination with anti-angiogenic treatments. For example, the tyrosine
kinase inhibitor sunitinib has been used in combination with a dendritic cell-based vaccine
expressing IL-12 and pulsed with ovalbumin (OVA) protein in a B16-OVA mouse model
of melanoma. Sunitinib improved the anti-tumour T cell infiltration and reduced the
protumourigenic immune cells such as Tregs and MDSCs and the same results could be
replicated with an alternative anti-angiogenic tyrosine kinase inhibitor, axitinib. The timing
of the anti-angiogenic agent in these studies was found to be important with best results
when the drug was administered at the same time as the vaccine and poorer results when
it was administered after [190–192].

Huang et al. demonstrated that a mitomycin C-pre-treated MCaP0008 cancer vaccine
stimulated splenic CD8+ T cells to produce IFN-γ, but it did not inhibit tumour growth in
mice bearing orthotopic MCaP0008 breast cancer, suggesting immune tolerance. However,
in combination with the anti-angiogenic DC101 at low, vascular normalising doses, tumour
growth was significantly inhibited. The exact dose of DC101 was shown to be important
in this combination [154]. When used as a monotherapy, in pre-clinical models, DC101
is only effective at the full, anti-angiogenic dose of 40 mg/kg but there does not delay
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tumour growth at the vascular normalising dose of 10 mg/kg [143,150,193]. In contrast, in
combination with the vaccine, at 10 mg/kg, tumour growth was inhibited but at 40 mg/kg,
there was no improvement with the combination compared to DC101 alone. with this low
dose of DC101, there was improved tissue perfusion, more immunostimulatory compared
to immunopermissive cells and, in the MMTV model, better survival demonstrating that
the enhanced vaccine effects were due to vascular normalisation [154,192].

Despite some promising results preclinically, combinations of cancer vaccines with
anti-angiogenic therapies have met limited success in clinical trials. For example, sunitinib
was combined with a personalised DC based vaccine (AGS-003) for the treatment of
metastatic renal cell carcinoma. In a phase II clinical trial, administering AGS-003 at the
start of the second sunitinib cycle resulted in an improved immunological response and
prolonged survival [194]. However, in a phase III trial of the same combination, AGS-003
failed to improve OS compared to sunitinib alone [195]. It is thought that more work
may be needed to optimise the correct dose and timing of the anti-angiogenic therapy
when used in combination with cancer vaccines [192]. However, several trials are still
ongoing or awaiting results including combination of Bevacizumab with personalised
cancer vaccine for recurrent glioblastoma multiforme [196] and intratumoural vaccination
pre-nephrectomy combined with post-nephrectomy sunitinib for the treatment of newly
diagnosed metastatic renal cell carcinoma [197].

4. Conclusions

The rise of immunotherapies has shown very promising results in clinical practice giv-
ing huge benefits in cancer treatment especially in combination with chemo/radiotherapy.
Recent work now shows that that modulation of tumour blood vessels in combination
with immunotherapy provides further advancement in the efficacy of immunotherapies.
Further studies will be required to explore the complex dosing and scheduling priorities
required and how best to mitigate toxicity issues. Future confirmation of whether such
multimodal combination therapies, including vessel modulation, will be effective across
multiple cancer types, especially those of unmet clinical need, raises excitement and hope
for the further improvement in cancer treatment.
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