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Abstract: The powder bed selective laser process (sintering/melting) has revolutionised many
industries, including aerospace and biomedicine. However, PBSLP of ceramic remains a formidable
challenge. Here, we present a unique slurry-based approach for fabricating high-strength ceramic
components instead of traditional PBSLP. A special PBSLP platform capable of 1000 ◦C pre-heating
was designed for this purpose. In this paper, PBSLP of Al2O3 was accomplished at different SiC
loads up to 20 wt%. Several specimens on different laser powers (120 W to 225 W) were printed.
When the SiC content was 10 wt% or more, the chemical interaction made it difficult to process.
Severe melt pool disturbances led to poor sintering and melting. The structural analysis revealed that
the micro-structure was significantly affected by the weight fraction of SiC. Interestingly, when the
content was less than 2 wt%, it showed significant improvement in the microstructure during PBSLP
and no effects of LPS or chemical interaction. Particularly, a crack pinning effect could be clearly seen
at 0.5 wt%.

Keywords: additive manufacturing; 3D printing; selective laser sintering/melting (PBSLP); ceramic;
composites

1. Introduction

Additive manufacturing (AM) has revolutionised many industries, and more are
diving in, partially or completely, to accomplish design freedom with reduced time to
market [1–9]. LPBF is AM method for producing parts and freeform articles in such a
way that the manufacturing layer is fused selectively by a high-energy laser beam [10]
after powder deposition [11–14]. LPBF is able to achieve 100 percent density and excellent
mechanical properties [15–20] for alloys with melting of powder particles. It is of great
interest to accomplish direct LPBF for non-weldable materials including ceramics [21,22]
due to its utility in many applications. Indirect LPBF of ceramics is achievable using metal,
polymer or glass as binder to consolidate parts. These binders can also be removed by
debinding in the case of polymers [23]. However, due to the low densities and weak binding
strength, the horizon of application is very limited. Direct LPBF can give 100 percent density
of ceramics; however, melting–solidification dynamics increase thermal stresses, which
make it impossible to obtain consistent ceramic parts. By controlling the laser melt pool
and reducing thermal stresses, ceramics parts production could be possible, but clear
information on melt pool physics as well as laser–material interaction is needed.

LPBF has the extraordinary cycling rate of heating and cooling which triggers nonequi-
librium conditions; new microstructures and material phases are usually formed during
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the process [24]. It is well established that the LPBF of alloys and metals works on same
principle of welding during melting and solidification. It has been extensively studied
for fabricating high-performance parts for a variety of metals, including tungsten [25],
titanium [26–30], aluminium [31–35], stainless steel [36–38] and high-speed steel [39,40].
Welding concepts such as nucleation theory and undercooling [39] have also been used to
achieve high-strength metal parts [41–43]. Our findings suggest that laser-induced melt
pool is also effective.

Controlling the laser-driven melt pool is the key to diversifying the materials process-
ability of LPBF [44–46]. The laser beam has a specific direction and intensity along with
the mechanical impact it carries due to the energy packets within the beam [47]. Great
efforts have been made by researchers to see the laser-induced flow through many tech-
niques, which might be due to one or several of combined effects of matter–light interaction,
fluid physics, laser-induced thermodynamics and laser-induced ultrasound. A laser can
move liquid with less surface tension very easily. Laser irradiation is not simply heat,
typically correlated in LPBF. Lasers may induce several physical phenomena that have been
extensively proven in the literature, e.g., momentum transfer is also achievable through
indirect transfer by fluorescent photons or direct transfer from incident photons [48], and
the momentum of the laser may drive a microfluidic device in high-energy lasers [49,50].
Liquid deformation has been demonstrated through light scattering using a liquid–liquid
interface by minimising surface tension at the two-phase boundary using a mixture of
two liquids [51]. Matter–light manipulation has also pushed the development of many
techniques. Laser beams can transport matter in radiometric force or photopheresis us-
ing gas media for low-density materials [52]. Laser irradiation may also induce special
flow due to the ultrasound induced by lasers. Fluid motion is controlled by lasers in
optical tweezing [53,54]. Fluid mixing [55,56] or generation of droplets [57] can be accom-
plished, and the chromocapillary effect [58,59] or optothermocapillary effect [60–62] can
realize the transportation of droplets. Droplet manipulation can also be achieved using
these techniques [58–62]. The well-known Marangoni effect is the driving force behind
all the chromocapillary or optothermocapillary effects in all these studies, which is quite
remarkable.

Additive manufacturing (AM) of ceramics is one of the most widely studied subjects
because of its useability in many industrial sectors. Researchers have tried indirect ways
to manufacture ceramics with binders (i.e., polymers) that can be removed by the debind-
ing process, but the process may drastically decrease the density of ceramics and also
influence mechanical properties [21,23,63,64]. Powder bed selective laser process (sinter-
ing/melting) of pure ceramics without any binder or direct PBSLP remains a formidable
challenge [21,63–67]. However, direct PBSLP is highly desirable, and researchers have
investigated many individual factors which effect the PBSLP process, from pre-heating,
surrounding temperature, scanning speed, hatch spacing, laser power, interval time, laser
scanning strategy (diagonal, island, zigzag and others), the influence of the non-steady-state
melting regime in the scanning track, influence of porosity on fatigue crack initiation, laser
pre-heating of ceramic powder, powder particle size, mixed nano and micron-sized powder
particles, to various materials [27,63,65,67–72]. At this stage, direct PBSLP of ceramic is not
mature enough until all the factors affecting it are combined to secure the most efficient
quality of ceramic articles [12,14].

Manufacturing of Al2O3 through PBSLP is challenging and potentially rewarding
for its low cost and use in advanced applications. It has also become the focus of recent
research because of its remarkable properties such as high hardness, low electrical conduc-
tivity, excellent chemical stability, oxidation resistance and high wear resistance [73–77].
Despite these excellent qualities, Al2O3 ceramics have low flexural strength and fracture.
Remarkable improvements have been observed when a small amount of SiC is added
to Al2O3 [78]. The factors responsible for the improvement in mechanical properties of
Al2O3/SiC composites are still under investigation; however, some researchers pointed out
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that this change is caused by residual stresses created upon cooling around SiC due to the
difference in thermal expansion coefficients [78–80].

While manufacturing fully dense ceramics directly through PBSLP can generate cracks
and other manufacturing defects [81], the material addition can improve the manufactura-
bility [13]. Since SiC has slightly higher sublimation/melting temperature (2700–~3000 ◦C)
than Al2O3 that is ~2300 ◦C, it can improve the manufacturability by crack deflection and
pinning effect [82].

Alejandro et al. investigated the manufacturing possibility that silicon carbide (SiC)
may be processed using direct Powder Bed Selective Laser Processing (PBSLP) and de-
tailed how the laser power and scanning speed must be adjusted such that the scanning
temperature was between the sintering and decomposition limitations [83].

Zhang et al. studied at how the surface morphology and melting state of pure Al2O3
ceramics changed as a result of changes in laser parameters. The laser power was adjusted
from 100 to 200 W, while the scan speed was modified from 60 to 90 mm/s. Thermal
capillary convection was noticed by the researchers during the SLM procedure, according
to the findings. SLM of Al2O3 slurry produced streak convection and flowing Bénard cells
by varying the temperature gradient. The researchers came to the conclusion that it is
possible to fabricate slurry ceramic pieces without the need for binders using SLM [84].

In the present paper, the influence of SiC particles on Al2O3 in PBSLP is investigated.
When SiC is used as an additive, it can prevent cracks, mainly through crack pinning and
crack deflection. During traditional as well as additive manufacturing methods, Al2O3 and
SiC have many uses in both ways when Al2O3 is used as a matrix or as an additive in SiC.
When Al2O3 is used as an additive, it can cause liquid phase sintering of SiC at much lower
temperatures. There are some similar chemical effects to liquid phase sintering when the
SiC is more than 10 wt% that have also been discussed.

2. Materials and Methods

Al2O3 powder with 99% purity and an average particle size of 0.62 µm was used; the
chemical composition is given in Table 1. SiC powder has 0.5–0.7 µm average particle size
with 99% purity. The preliminary powder mixture with different concentrations of both
powders has been prepared in different ratios: Al2O3 wt% of 99.5, 98, 95, 90 and 80 with
SiC wt% of 0.5, 2, 5, 10 and 20, respectively.

Table 1. Chemical component of Al2O3 powder (wt%) as described by the supplier.

Al2O3
(wt%)

Na2O
(wt%)

Fe2O3
(wt%)

SiO2
(wt%)

MgO
(wt%)

TiO2
(wt%)

CaO
(wt%)

99.00 0.0776 0.0124 0.0238 0.0521 0.0035 0.0136

Layer Deposition Method

In manufacturing SiC-Al2O3 composites through PBSLP, ceramic layer deposition
of the pure powder is hard to maintain because of the inherent properties of the ceramic
powder, so during material layer deposition, we used a two-step deposition methodology
as described in Figure 1. Firstly, the powder as per the desired material composition
was mixed with water, resulting in a slurry, which was deposited onto the layer movable
platforms. The movable system’s platform thickness can be increased from a minimum of
10 µm. The slurry was deposited onto the platform with the layer thickness 50 µm with a
powder levelling system equipped with rubber scrapers. Then, the water was evaporated
completely by heating the base plate at ~110 ◦C. The laser irradiation of each layer of the
mixed powder directly sinters or melts the ceramic particles. The whole process is repeated
until the required number of layers are manufactured as per the requirements of the final
article.
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Figure 1. Layer deposition method.

Experimental Setup

The PBSLP system is equipped with the IPG YLR-500 fibre laser, (IPG Photonics,
Oxford, MA, US), which produces a laser beam with the wavelength of 1070 nm and can
reach a maximum power of the 500 W in continuous mode. The laser is led through a
scanner (SCANLAB intelliSCAN 20, SCANLAB GmbH, Puchheim, Germany). The spot
size of the focused laser beam is about 60 µm. The system is also integrated with the
induction heating system (20 KW) produced by the Shanghai Bamac, Shanghai, China
capable of rapid heating, and the maximum preheating temperature is about 1000 ◦C. The
PBSLP system designed and built for ceramics capable of pre-heating up to 1000 ◦C has
been shown in Figure 2a while the induction heating system mechanism has been broken
down in Figure 2d. The printed specimen of Alumina has been shown in Figure 2b while
the printing strategy has been shown in Figure 2c.
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The experiment was carried out with some variable process parameters, such as laser
power (P = 10–50%), while keeping some factors constant, such as the scanning speed
(200 mm/min) and the laser hatch distance (50 µm). Parts were printed in the layer after
layer pattern, and the layer thickness was kept at 50 µm. The size of every part was kept
under the 40 layers. After the manufacturing was completed, the samples were cleaned.

For scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS)
analysis (Oxford Instrument, Bristol, UK), the samples were gold-coated (by the Leica ACE,
(Leica Gmbh, Wetzlar, Germany) coater for five minutes). SEM was used to detect and
examine the structure of the material.

3. Results and Discussions

In the experimental process, two phenomena were involved. Firstly, when the SiC
content is in low, there is no chemical interaction, and an improvement can be observed.
Secondly, when the SiC content is 10% or above, we found that the increase in SiC content
in Al2O3 can increase the chemical reaction, which leads to high deformations and porosity.
It is quite interesting because similar effects can only be found in the literature on liquid
phase sintering of SiC. During manufacturing of SiC with the aid of metal oxides, such
as Al2O3, Y2O3 and other rare-earth oxides, liquid phase sintering of SiC can be achieved
at much lower temperatures (1800–1900 ◦C) [85,86]. The oxide sintering aids react with
SiO2, which is always present at the surface of SiC particles while forming a silicate melt
and enhancing densification. However, oxides interact with SiC with massive gaseous
products formation leading to high weight loss and porosity [87]. It is known that Al2O3
may interact with SiC according to the following reactions [88]:

SiC (S) + Al2O3 (S) → Al2O (g) + SiO (g) + CO (g) (1)

2SiC (S) + Al2O3 (S) → Al2O(S) (g) + 2Si (l) + 2CO (g) (2)

3SiC (S) + Al2O3 (S) → 2Al (l) + 3Si (l) + 3CO (g) (3)

In PBSLP, higher content of SiC triggers a chemical reaction to a large quantity which
can disturb the melt pool and the surface of the article, as mentioned in Equations (1)–(3).
This leads to the unpredictable surface under the same laser parameters for which there
is no reaction for the article (under same experimental conditions) with less SiC. The
chemical reaction leads to high porosity, increased warping and cracks. The samples of 10%
SiC content and beyond were high in the deformation, and the layer size increased due
to warping, cracks, deformation and greater porosity, making it challenging to continue
to deposit another layer because of the collision between the edges of powder levelling
system and the surface of the printed layer of the article. New laser scanning strategies
(as shown in Figure 3) were employed to analyse the chemical interaction and its effect of
laser-induced melt flow in laser scanning lines, and vice versa. In the laser strategy, small
island-like laser scanning lines were used (instead of long scanning lines or so-called zigzag
scanning strategy) to decrease the warping and to limit the chemical effects to smaller
regions. According to a recent study of the real-time analysis of the melt pool under the
laser, the melt pool is in a steady state in the middle of the scanning track and unsteady
on the edges of the scanning track [71]. The chemical reaction is affected by the melt pool;
it can be seen in Figure 3a,b that when the melt pool is in steady state, the reaction rate is
higher as compared to the edges, when the flow is not steady. The reactions mentioned
above may also increase with the increase in laser energy density and the SiC content.
Apart from the certain conditions mentioned above, other laser parameters also effect this
chemical response.
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When SiC content increases in Al2O3, the tendency of the chemical reaction increases.
As described in Equations (1)–(3), the interaction of Al2O3 and SiC will ultimately generate
the high porosity within the article manufactured by PBSLP. In Figure 4c, the high porosity
was seen in the middle of the track (when the laser power was increased to 140 W with the
composition of the 90 wt% Al2O3 and 10 wt% of SiC). However, near the edges of the track
of the same article, it can be seen that the additive manufacturing and reaction conditions
are entirely different because they show high quality and multi-directional grains of the
ceramic article.

The laser scanning line has a clear impact on the material powder layer due to the
momentum of the high energy density of the laser beam. However, the laser path also has
a significant effect on the melt pool, and it is responsible for the melt pool flow, but the
chemical reaction changes can also hinder the flow. The employed laser scanning strategy
makes it easier to see the effects of the laser path and chemical reaction with the state of
the melt pool in the SEM, as shown in Figure 3a with small island-like horizontal scanning
lines and long continuous vertical and horizontal lines in between. From the analysis
of Figure 4a–c as well as Figure 5a,b, it can be deduced that the melt pool state is quite
important to control the chemical reaction. In the centre, the laser scanning island (island
is a term for small portions of unidirectional laser scanning lines), the chemical change is
high compared to the edges of the island, which could be due to the disturbance led by
the smaller to higher chemical reaction in the melt pool from the edges. Both the melt pool
steady state as well as the chemical interaction are interdependent. When the flow is steady,
the chemical interaction starts, and the melt pool starts to become unstable, but when the
flow is unsteady, the chemical reaction is less evident.
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Figure 4. (a) Alumina wt% 90, silicon carbide wt% 10 at 140 W laser power. (b) Microstructure
showing high quality of ceramics where the chemical reaction is low. (c) Microstructure showing
high porosity due to production of gaseous content where the chemical reaction is high.

When the laser melts the material powder during laser scanning, the chemical reaction
between the SiC and Al2O3 inhibits and hinders the laser scan line of the melt pool, and
production of SiO particle can also be seen at the surface as a result of the reaction. The
silicon oxide particle is more abundantly available on the surface where the melt pool is
hindered (orange highlighted area in Figure 5b) and less available where the melt pool is
continuous (green highlighted area in Figure 5b), which provides a strong argument for the
possible chemical reaction.

Laser irradiation is very rapid, and it may also involve the Si sublimation similar to
that of high-temperature annealing of SiC, which may leave a carbon-rich surface where
mobile C atoms are in abundance [89]. However, as the experiments are conducted in open
air, the increase in chemical interaction between SiC and Al2O3 by varying the laser power
or energy density can be analysed in XRD profile changes in Figure 6a–c. The experiments
are conducted in open air, which may lead to chemical oxidation of SiO mentioned in
Equation (1) into SiO2. Similarly, Al2SiO5 phase in XRD could be due to the formation of an
intermediate phase of SiO2 and Al2O3, which is also decreasing with the increase in laser
power.
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laser.

One phenomenon in PBSLP of Al2O3 and SiC is the chemical interaction during the
process. The other phenomenon is when there is no chemical interaction between the
SiC and Al2O3, as the amount of SiC is decreased. In this case, when SiC is mixed in
the specified quantity, it may change the melting temperature of the Al2O3-SiC mixture,
which can be slightly higher than melting temperature of Al2O3 and slightly lower than
the SiC depending on the proportion of the quantity. When the SiC content is increasing, it
shows that the melting temperature is also increasing. In Figure 7, two different material
proportions (Al2O3 wt% 95, SiC wt% 5 and Al2O3 wt% 98, SiC wt% 2, respectively) are
presented (each material composition at three different laser powers, 120 W, 150 W and
180 W). The grain in Figure 7f shows partial melting when the SiC content is relatively
lower. However, the grains in Figure 7c show sintering with the same laser power. Similarly,
the increase in laser power also has the obvious effect of increasing the temperature of the
melt pool, which defines the state of PBSLP process from solid-state sintering to partial and
complete melting. The solid-state sintering to partial melting can be seen in Figure 7d–f in
the samples with the same composition. All the micrographs of Figure 7 can be seen in a
more magnified form in Figure 8.
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When the laser scan line during PBSLP encounters SiC in bulk or more than usual (as
compared to the rest of the material mixture powder layer), it can leave that part un-melted
(as the mixing is random), leading to pores clearly showing un-melted morphology on
the surface, which can be seen in Figure 8d,e. Even though the melting temperature was
higher due to the relatively large amount of SiC in Figure 8a–c, this phenomenon was more
abundant within the sintered articles.

Interestingly, when the SiC is in lesser quantities, the un-melted particles of SiC can
form a dispersion in the matrix composites. Materials have a clear effect on the crack
propagation of the composite, and SiC at the microscopic level can hinder the cracks. Due
to the addition of SiC, the un-melted particle (because of the higher temperature of SiC)
may exhibit the pinning effect and deflection in crack propagation when used in minimal
quantity (Al2O3 wt% 99.5, SiC wt% 0.5). The crack pinning effects can be seen more clearly
in the polished and etched article in Figure 9. Subjected to microscopic examination, the
pinning effect can hinder the crack growth trend and crack deflection, or crack bending can
shorten the crack in the length of the expansion direction. In more magnified SEM of the
same article (Figure 9b), the SiC particles can be visualised in darker regions. An EDS map
of the surface of the same article with SiC wt% 0.5 and Al2O3 wt% 99.5 is also shown in
Figure 10.

The crack sensitivity is mainly affected due to the SiC particles in the ceramic mixture,
the different elastic modulus E of the heterogeneous matrix and the difference in thermal
expansion coefficients. Pinning and deflection occur due to lingering stress field around
the two phases and the stress at the crack tip. The melting point, hardness, elastic modulus
and thermal expansion coefficient are apparently different for each constituent.
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Figure 10. (a) Alumina wt% 99.5, silicon carbide wt% 0.5 at 160 W laser power. (b) EDS map of Si, C,
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article.

The grain growth inhibition is favourable to the refinement of matrix grains, which
eventually promote the densification with improved microstructure and toughening matrix
by hindering crack growth. When the SiC particles are in the course of a crack, then crack
lines cannot continue to grow. This effect is called crack pinning. Deflection occurs if the
crack expansion is large enough to pass through the SiC particles, or if the crack continues
to grow around the SiC particle.

An EDS map of the surface of the same article with silicon carbide at wt% 10 and
Al2O3 wt% 90 is shown in Figure 11. The surface morphology of the printed specimen with
different loads of silicon carbide are shown in Figure 12.
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Figure 12. Surface morphology of (a) Alumina wt% 80, silicon carbide wt% 20 (unpolished);
(b) alumina wt% 90, silicon carbide wt% 10 (polished); (c) alumina wt% 98, silicon carbide wt%
2 (polished); (d) alumina wt% 99.5, silicon carbide wt% 0.5 at 200 W laser power (polished).

The printed specimen with alumina wt% 80 and silicon carbide wt% 20 (unpolished)
can be seen in Figure 12a, alumina wt% 90 with silicon carbide wt% 10 (polished) in
Figure 12b and alumina wt% 98 with silicon carbide wt% 2 in Figure 12c. Lastly, alumina
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wt% 99.5, silicon carbide wt% 0.5 printed specimen can be seen in Figure 12d. It can be
clearly seen that with the reduction in silicon carbide content, the surface morphology
keeps improving. When the silicon carbide content is 20 percent, the specimen is prone
to cracking and cannot be polished. If subjected to polishing, the sample cracks down
completely. The samples with lesser amounts of silicon carbide did not show this behaviour.
The porosity and internal defects can also be visualised to be decreasing with the decrease
in silicon carbide content. The specimen with the silicon carbide wt% 0.5 has the lowest
number of defects.

4. Conclusions

In this study, we analysed AM of Al2O3 and SiC with PBSLP to reduce the cracks
by the pinning effect. Furthermore, we carried out an investigation to explore the factors
responsible for structural deformation.

At the microscopic level, when the SiC was 2% or less in quantity, it prevented cracks
fabricated by PBSLP. The crack pinning effect was more evident when the SiC was in a very
small quantity, 0.5%, and evenly distributed.

When the SiC constituent was 10% or higher, it triggered the chemical reaction be-
tween Al2O3 and SiC, which led to structural and surface deformation with a chemical
reaction, which may have also resulted in high porosity and unwanted complexion in
the manufactured article. The chemical interaction may have also depended on the laser
scan steady state. Near the edges of the island, the melt pool was unsteady, showing very
low chemical reaction, but when the melt pool became steady, the chemical interaction
increased. Both chemical reaction and melt pool stability were interdependent. It is also
evident that the hindrance of the melt pool was due to the chemical interaction between
the SiC and Al2O3.

The laser power during the PBSLP of Al2O3 and SiC led to the obvious effect of solid-
state sintering to partial melting and complete melting. The improved properties of Al2O3
and SiC composite were achieved by adopting the optimised process parameters as per the
given weight percentage of the SiC in the composite.

Using very small amounts of SiC reduced cracks during PBSLP of Al2O3. Future work
may focus on the control of the large-scale shrinkage of the article and the cracks at the
macroscopic level. During the PBSLP of Al2O3 and SiC, a composite with a higher amount
of SiC (10% or more) may also be possible, but melt pool state control would be required.
Future research may focus on the stability of melt pool.
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