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Abstract

With the rapid development of biomedical sciences, contradictory results on the relationships be-

tween biological responses and material properties emerge continuously, adding to the challenge of

interpreting the incomprehensible interfacial process. In the present paper, we use cell proliferation

on titanium dioxide nanotubes (TNTs) as a case study and apply machine learning methodologies to

decipher contradictory results in the literature. The gradient boosting decision tree model demon-

strates that cell density has a higher impact on cell proliferation than other obtainable experimental

features in most publications. Together with the variation of other essential features, the controversy

of cell proliferation trends on various TNTs is understandable. By traversing all combinational exper-

imental features and the corresponding forecast using an exhausted grid search strategy, we find

that adjusting cell density and sterilization methods can simultaneously induce opposite cell prolifer-

ation trends on various TNTs diameter, which is further validated by experiments. This case study

reveals that machine learning is a burgeoning tool in deciphering controversial results in biomedical

researches, opening up an avenue to explore the structure–property relationships of biomaterials.
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Introduction

Upon intimate contact of tissue with biomaterials, spontaneous

adsorption/adhesion of biological components occurs rapidly, includ-

ing small molecules adsorption, protein adsorption, cell adhesion,

matrix deposition, etc. [1–3]. However, this process is extremely so-

phisticated as it involves not only luxuriant bio-components (such as

proteins, cells, blood, etc.) but also convoluted biomaterials with var-

ious properties [4–6]. With decades of endeavors, our understanding

of the structure–property–function relationships grows with a com-

mon knowledge that a small change of single property could affect bi-

ological responses, leaving many impenetrable fundamental

problems [7–9]. Especially, with copious controversial examples

keeping recurring incessantly in the literature, the structure–property

relationships remain enigmatic. For example, a general rule for cell

adhesion is that hydrophilic surfaces are more conducive to cells than

hydrophobic surfaces [10]. But many studies indicate hydrophobic

substrate might induce better cell adhesion [11].
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After scrutinizing the literature, we find that the contradictory

results might be caused by different experimental details, including

cell species and origins, cell density, protein types and concentration,

sample variabilities, etc [12, 13]. But could we get more information

about structure–property relationships from publications to improve

materials design and fabrication? Is it possible to obtain ‘controver-

sial results’ or desirable results by rational design of experimental

variables, i.e. could we manipulate the results by strategical tweaks

of the variables? The answer is ‘It depends’. Apparently, the current

information we acquired from human knowledge, literature analy-

sis, and massive data is incomplete. More importantly, with the

rapid development of biomaterials science, it is challenging to keep

pace with the growing rate of data/publications using traditional

analysis methods. Thus, it is difficult to use traditional methods to

solve the questions above. We need other methodologies to learn

from vast literature, unravel the sophisticated relationships, and rec-

ommend experimental features for desired properties.

As an interdisciplinary subfield of computer science, machine

learning uses data analysis methods to discover hidden, attractive,

and potentially useful patterns and relationships from massive data

[14, 15]. Compared with traditional data analysis methodologies,

machine learning can abstract and build meaningful mathematical

models from reality and convert extensive data into useful informa-

tion and knowledge [16]. For example, Paul et al. employed ma-

chine-learning algorithms to train failed or unsuccessful reaction

data and built models to predict conditions to form a brand-new or-

ganically templated inorganic product with a high success rate [14].

Additionally, in terms of material design, machine learning methods

could save researchers from the dilemma of the traditional trial-and-

error methods by establishing a model that could quantitatively de-

scribe the relationships between experimental conditions and prop-

erties [17]. For instance, the neural network is a multi-layer

feedforward network trained by a backpropagation algorithm. It

can provide a new recipe to realize the property-oriented composi-

tional design for high-performance complex alloys by training the

collected data from publications [16]. Herein, the advantage of ma-

chine learning in processing and analyzing a comprehensive set of

literature data can be exploited to explore the structure–property

relationships of biomaterials.

As a case study, we utilize machine learning algorithms to ex-

plore structure–property relationships between titanium dioxide

nanotubes (TNTs) and cell responses. In the past decade, TNTs

have been extensively proved to be an excellent candidate for bio-

medical applications, including bone/dental implants, drug delivery,

cardiovascular stents, biosensors, brain tumors, etc [18–21].

However, the relationships between cell responses and nanotube di-

ameter remain unclear. For example, Park et al. demonstrated that

cell differentiation decreased with TNTs diameter, with 15 nm

TNTs significantly accelerating cell differentiation [22]. In contrast,

Yu et al. showed that TNTs with larger diameter (120 nm) had

higher cell (canine bone marrow stromal cells) proliferation and in-

creased gene expression (Runx2, COL1, OCN) than TNTs with

diameters of 30 and 70 nm [23]. It is understandable the discrepan-

cies derive from the synergistic of experimental parameters, includ-

ing cell type/source, cell culture media components, diverse TNTs

(e.g. variation in nanotube diameter, nanotube length, wall thick-

ness, crystalline phase, etc.), and sterilization method, etc [13, 24].

Tremendous endeavors have been devoted to exploring the struc-

ture–property relationships; however, controversial results keep re-

curring [13, 23, 25]. It is unclear the feature importances of each

experimental variable. And it is ambiguous whether we can overturn

cell proliferation patterns on diverse TNTs by tuning only one vari-

able, or does the adjustment of multiple variables required? For in-

stance, it has been demonstrated that annealing could enhance cell

proliferation [26], that we tested if annealing could tune cell prolif-

eration patterns on diverse TNTs. However, to our surprise, anneal-

ing would not affect cell proliferation patterns on TNTs with a wide

diameter range [27, 28]. Apparently, it is tedious to explore all other

possibilities through traditional experiments.

In this paper, we resorted to machine learning approaches to de-

code the relationships and rank the feature importance via thorough

learning of related publications. We used the model to traverse all

kinds of possibilities and chose two sets of experimental features

that were most likely to induce reverse cell proliferation patterns.

Further experimental verification proved the feasibility of our model

in predicting cell proliferation patterns.

Materials and methods

Data acquisition
We thoroughly searched relevant publications from Web of Science,

Google Scholar, PubMed, NCBI, etc. We retrieved over 1000 records

from all different search engines and narrowed them down to 68 pub-

lications involving cell proliferation on TiO2 nanotubes with different

diameters. As the data quality is critical to the following machine

learning step, the experimental features utilized for learning should be

available in most publications to ensure the accuracy and integrity of

data. By elaborative examination of the publications mentioned

above, we set collected experimental features that are available in

most publications, including nanotube diameter, sample annealing,

sterilization method, incubation time, and cell density. For the publi-

cations that did not state the sterilization method, we set it as wet

autoclaving as commonly used. As for cell density, in some

researches, the cell seeding number was calculated for the 24-well

plates instead of the surface area of samples. We computed cell den-

sity as cell number per square centimeter of the testing samples to

maintain consistency between different publications.

In the biomaterials science field, most publications do not provide

open-source datasets. So we acquired cell proliferation data from the

graphs by GetData Graph Digitizer (2.26) according to the manual.

To reduce the difference between different literature, we have to nor-

malize the data. For most publications, titanium foils were set as the

control. So titanium was utilized for the normalization of each publi-

cation. A database containing around 270 well-labeled samples from

29 publications was established for the following machine learning

process (Fig. S1, online supplementary material).

Data processing
The data should be preprocessed before feeding into our models. For

categorical variables/features, such as annealing and sterilization,

we applied one-hot encoding to improve the model’s performance.

One hot encoding process can convert categorical variables into a bi-

nary form which machine learning algorithms can easily recognize.

It could avoid the appearance of decimals with no practical meaning

during the calculating process. Then all data were normalized by

Min–Max scaling using the following metric to eliminate numerical

gaps between features:

x
0 ¼ x� xmin

xmax � xmin
(1)

where x is the original value or assigned value after one-hot encod-

ing, xmax and xmin are the maximum and minimum values in the

dataset.
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For the regression, the property y was normalized by the follow-

ing metric:

y ¼ yi

yTi

(2)

where yi is the original data of cell proliferation on TiO2 nanotubes,

yTi
is the cell proliferation rate on the titanium surface.

Computational modeling
We split the datasets into training (80%) and test datasets (20%).

The training dataset was used for model building and the test dataset

was used for model evaluation. As the data size was relatively small

in this study (Data set in online supplementary material), we com-

pared several models that were suitable for our dataset, including

group vector machines (GVMs), support vector machines (SVM),

decision Tree (DT), random forests (RF), eXtreme gradient boosting

(XGBoost), and gradient boosting decision tree (GBDT) (more

details can be found in online supplementary material). The R

Squared (R2), explained variance score (EVS), mean absolute error

(MAE) and mean squared error (MSE) were used to evaluate model

performance. As GBDT presented higher EVS and R2, and lower

MAE and MSE, it was used for further study. For the experimental

validation, we utilized the grid search method to acquire certain ex-

perimental features for controversial results basing on the predictive

ability of the GBDT model. Detailed parameters for the grid search

method could be found in Table S2 (online supplementary material).

After thorough exploration, we obtained two sets of experimental

features (Table 1) that had the highest possibility to generate re-

versed results. Those two sets of experimental features were applied

for the following experimental validation.

Sample preparation
The typical electrochemical anodization process was employed to

fabricate TiO2 nanotubes with different dimensions [17]. Briefly, ti-

tanium foils of 0.1 mm thickness (99.6% purity) were cleaned by the

ultrasonic cleaner in the sequence of acetone, ethanol and deionized

water. The electrolyte consisted of 0.5 w/v% hydrofluoric acid in

water. A platinum electrode with a size of 4 cm � 3 cm was utilized

as the counter electrode. The anodization was carried at different

voltages (5, 10, 15, 20 V) for 30 min before rinsing with D.I. water.

The as-prepared nanotubes were further annealed at 500�C for 2 h

to obtain crystalline phases. The morphologies of TiO2 nanotube

arrays were examined by a scanning electron microscope (SEM).

Crystalline phases were determined by X-ray diffraction spectros-

copy (Philips, Panalytical X’pert) with Cu Ka radiation.

Two kinds of sterilization methods were employed: ultraviolet

(UV) irradiation and wet autoclaving. Wet autoclaving was carried

out in an autoclave sterilizer at 121�C, followed by drying at 80�C

for 30 min. For UV sterilization, samples were irradiated by a UV

lamp for 30 min before use. Ti foils were used as a control group for

each method.

Cell adhesion and proliferation
Mouse osteoblast-like cells (MC3T3-E1) were maintained in T-25

flasks (Corning, TCPS) placed in a CO2 incubator. Cells were fed

with alpha-modified minimum essential medium (a-MEM-Hyclone)

containing 10% fetal bovine serum (FBS, Pansera ES) and 1% peni-

cillin–streptomycin. At the confluence of 80% to 100%, cells were

harvested and seeded on the autoclaved samples with a density of

1.6�104 cells/cm2, whereas a density of 1.0�104 cells/cm2 was ap-

plied for UV-irradiated samples. For wet autoclaving, samples be-

came hydrophobic that cell culture media was difficult to stay or

spread out on the surface. So we utilized an O-ring on each substrate

to maintain the media. Cell adhesion and proliferation were assessed

after 1 day and 3 days’ culture using both fluorescence imaging

(Calcein-AM, Sigma) and the WST-1 assay (Beoytime) following the

manufacturer’s guidelines.

Statistical analysis
At least three replicates were tested, and the results were expressed

as a mean 6 standard deviation (SD). Statistical analysis was evalu-

ated using a one-way analysis of variance (ANOVA) followed by

Turkey post hoc tests. A P value <0.05 indicates a statistically sig-

nificant difference, and P-value <0.01 shows a highly significant

difference.

Results and discussion

An overview of the learning strategy
Figure 1 illustrates our learning strategy and shows the critical steps

to explore the relationships between cell proliferation and experi-

mental features. Generally, the learning process contains four essen-

tial steps: (i) data preprocessing and feature extraction from

literature to build data set, (ii) model training and model-validation,

(iii) analysis of feature importance and grid search for converse

results, and (iv) assessment and validation by experiments.

Data collection and preprocessing
The first step is to find related publications in the literature. By a

thorough literature review, we retrieve 68 publications regarding

cell proliferation on TNTs with varied nanotube diameters. In addi-

tion to nanotube diameter, other predominant surface properties

and experimental details influencing cell proliferation include

annealing, surface chemistry, surface charge, cell type, cell density,

cell culture nutrients, sterilization methods, etc [13].

However, different research focuses on particular goals, and

only specific details are revealed that the available data/features are

uneven, and lots of essential elements are missing in some publica-

tions. It is well established that the quality of the original dataset has

a significant impact on the accuracy of the resulting model. Some ex-

perimental features, such as cell type and cell passage, have been ex-

cluded from our model because similar proliferation patterns have

been reported from different labs using different cell types [25, 29].

And it is impossible to track and compare the individual differences

from one publication to the other. Herein, we choose features

Table 1. Proposed experimental parameters for experimental verification

Trend Sterilization method Density (cells/cm2) Diameter (nm) Annealing Time

Decreasing UV irradiation 10 000 30, 50, 70, 100 True 1 day, 3 days

Increasing Wet autoclaving 16 000
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widely considered dominant factors affecting cell fate and are avail-

able in most publications, including nanotube diameter, annealing,

sterilization method, incubation time, and cell density. As for crys-

talline phases, pure rutile or anatase TNTs are difficult to obtain,

and anatase dominated TNTs are more common [30, 31]. Herein,

we classify TNTs by whether annealing is applied, i.e. as-prepared

TNTs vs. annealed TNTs. After a meticulous screening of all related

publications, we extracted data by GetData Graph Digitizer, and

our dataset is composed of 272 items screened from 30 publications

[13, 18, 22–25, 29, 32–54].

Model training and selection
Once the dataset has been built, we feed the data into the machine

learning regression models for model training. Among all models se-

lected in Section Computational modeling, the GBDT regression

model has the highest coefficient of determination R2 score of 0.75

and the lowest Mean Absolute Error (MAE) of 0.22 on test data

(other metrics are listed in the online supplementary material, Figs.

S2, S3, and Table S1).

Figure 2a compares the predicted values and the experimental

results collected from the literature to show the GBDT model’s accu-

racy. Most data points distribute around the diagonal, while some

larger values deviate from the diagonal line. This variation is most

likely attributed to the complexity of biological experiments and

limited datasets, and particularly we only have a few samples of

high cell proliferation values (Fig. 2a). Apparently, the model accu-

racy is less than satisfactory. But during model verification of spe-

cific researches, we find that the predicted cell proliferation trends

are generally analogous to the reported publications (See online sup-

plementary material, Figs. S4 and S5). Given we have limited data-

sets and the biases in biological experiments are high, we use the

GBDT model for subsequent research and verify if we could obtain

reversed cell proliferation patterns through grid search.

As an ensemble model based on the decision tree, the GBDT

model can provide feature importance. The feature importance in

Fig. 2b shows that cell density has the highest impact (0.33) on cell

proliferation, followed by nanotube diameter (0.29), sterilization

method (0.15), incubation time (0.15), and annealing (0.08). The

feature importance of annealing is relatively low, but it is consistent

with previous studies from our group and other groups demonstrat-

ing that annealing would not significantly affect cell proliferation on

TNTs [28, 55].

Grid search for converse results
To further verify the model by experiments, we apply the grid search

method to find certain experimental features to obtain controversial

results (i.e. cell proliferation increases with nanotube diameter vs.

cell proliferation decreases with nanotube diameter). Here, we pre-

sent partial predicted data to illustrate how single features affect the

results and how we choose the experimental verification features. As

cell density stands out in the earlier discussion, we display how cell

density affects cell proliferation on varied TNTs in Fig. 3.

When using UV irradiation on annealed nanotubes, cell prolifer-

ation decreases with nanotube diameter within a wide range of cell

density. Strikingly, when using the wet autoclave method on

annealed nanotubes, cell proliferation trend changes from decreas-

ing to smooth or even increasing with the increment of tube diame-

ter (Fig. 3b and d). We also explored if we could obtain strikingly

different results by tuning other single variables (sterilization meth-

ods in Fig. S6 and crystalline phases in Fig. S7, online supplementary

material), however, there is no such distinct difference. This further

validates the feature importance in Fig. 2b, in which cell density has

the highest feature importance, whereas the feature importance of

sterilization and annealing are relatively low.

Figure 3b shows a distinct increment on 70 nm TNTs when we

set cell density at 1.6�104 and 3.5�104 cells/cm2 on day 1, using

wet autoclaving as the sterilization method. However, on day 3, the

increasing pattern persists only when cell density is 1.6�104cells/

cm2 (Fig. 3d). Thus, we enlist this particular combination of features

for experimental verification (Table 1). As for the decreasing pat-

tern, it seems as if cell density 5�103cells/cm2 could be a good

choice. Nonetheless, such a low cell density is usually around or be-

yond the detection limit when using WST-1 cell proliferation assay

kit for normal sample size (1�1 cm2). On the other hand, we previ-

ously demonstrated cell proliferation diminished with nanotube di-

ameter when using the UV irradiation method [28, 56], consistent

with Fig. 3a and b. Herein, we adapted experimental parameters

from our previous study for the decreasing pattern [56]. Table 1 lists

Figure 1. Flow chart of data-driven exploration of the relationship between TiO2 nanotubes (TNTs) and cell proliferation.
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two sets of experimental parameters utilized for conversed results.

The sterilization method and cell density are different, whereas the

preparation procedure of TNT samples and cell culture time are

identical.

Experimental verification
Figure 4a and b shows representative top-view scanning electron mi-

croscope (SEM) images of highly organized TNTs with diverse

nanotube diameters. The outer nanotube diameters for the UV

Figure 2. (a) A Comparison of GBDT predicted and measured (collected data from literature) cell proliferation values, using a split of 80% and 20% for the training

and testing data. (b) Radar plot of the importance of each experimental feature. Diameter stands for the average diameter of TNTs, density represents cell seeding

density on the samples, annealing differentiates whether samples have been annealed at high temperature, time means cell incubation time, and sterilization

denotes sample sterilization methods.

Figure 3. GBDT Model predicted cell proliferation trends with varied cell densities. All TNTs are annealed. Sterilization methods are UV irradiation (a, c) and wet

autoclaving (b, d).
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irradiated TNTs are around �30, 50, 70 and 100 nm, respectively

(Fig. 4a). The tube thickness increases from �92 nm to 351 nm (See

online supplementary material, Fig. S8). For smaller nanotubes with

diameters of 30 and 50 nm, nanotube walls are thickened by wet au-

toclave that the wall thickness rises from 11 nm to 14 nm (See online

supplementary material, Fig. S9).

The crystalline phases of the annealed TNTs are evaluated by

XRD, as displayed in Fig. 4c. The peak appeared at 25.3� is identi-

fied as anatase phase (A), and the peak that emerged at 27.5� corre-

sponds to the rutile phase (R). The smallest 30 nm TNTs are mainly

in rutile form, whereas the large nanotubes with diameters of 70 nm

and 100 nm are primarily in anatase form, consistent with our previ-

ous study [57]. For TNTs with a tube diameter of 50 nm, both ana-

tase and rutile peaks appear, implying a mixture of anatase and

rutile phases.

The static water contact angle is measured to detect wettability,

as depicted in Fig. 4d. All UV-irradiated TNTs have contact angles

smaller than 90�, suggesting the hydrophilicity of the TNTs. For

UV-irradiated samples, the water contact angle decreases from

34.4� on titanium to about 10� for all TNTs with varied sizes, im-

plying the excellent hydrophilicity of TNTs after UV irradiation. On

the contrary, the autoclave method dramatically increases the hy-

drophobicity that the contact angles of titanium and 30 nm TNTs

boost to 95.7�62.3� and 85.0�6 13.0�, respectively. And the water

contact angles of TNTs with a diameter range of 50–100 nm raise to

about �30�, suggesting autoclave sterilization can enhance the hy-

drophobicity of TNTs.

Cell proliferation on various TNTs is evaluated by fluorescence

(Fig. 5) and WST-1 (Fig. S10, online supplementary material). When

UV sterilization and relatively low cell density (1.0�104 cells/cm2)

are applied, cell proliferation slightly decreases with the increasing

diameter on day 1, which is generally consistent with previously

published results [28, 56]. In contrast, when wet autoclaving and

high cell density (1.6�104 cells/cm2) are applied, a slight increase

followed by a decrease could be observed on day 1, with the 50 nm

TNTs having the highest cell proliferation rate. There is no distinct

morphology difference in those samples, with some cells in a spheri-

cal shape and some in a fusiform shape.

On day 3, cell numbers are highly enhanced on all samples, with

most attached cells in fusiform shape. A sharp decreasing pattern

could be observed for UV irradiated samples. For wet autoclaving,

the 50 nm and 70 nm TNTs have a higher cell proliferation rate. The

WST-1 cell viability results in Fig. S10 (online supplementary mate-

rial) further confirm the fluorescence results. In general, those prolif-

eration trends are in line with the prediction in Fig. 4,

demonstrating our model’s effectiveness in predicting cell prolifera-

tion trends. It also indicates that we can utilize this model to predict

cell proliferation and guide material design and fabrication.

On the other hand, even though cell density seeded on auto-

claved TNTs is 1.6 times of that on UV irradiated TNTs, cell prolif-

eration values on autoclaved TNTs are no higher than

corresponding TNTs. And it is worth noting that cell numbers on

small UV-irradiated 30 nm TNTs are statistically higher than that of

autoclaved TNTs. It indicates that sterilization methods have a high

Figure 4. SEM Top-view of various annealed TNTs sterilized by UV-irradiation (a) and wet autoclaving (b). (c) XRD patterns of the annealed TNTs. ‘a’ presents ana-

tase phase, and ‘R’ denotes rutile phase. (d) Static water contact angles of specimens measured after sterilization.
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impact on cell adhesion and proliferation on TNTs, and UV irradia-

tion is more beneficial to cell adhesion and proliferation [24]. This is

probably due to the changes in surface wettability during

wet autoclaving, which have widely been proved to affect cell

behaviors [58].

Overall, the complex and incomplete data from the biomaterials

field are probably difficult to be used for machine learning study for

specific quantitative predictions. However, given we could barely

obtain identical results from cell-related experiments, the machine

learning algorithms have excellent performance in predicting cell

proliferation trends on TNTs with various dimensions.

On the other hand, it is well known that a single change in mate-

rial properties will induce the difference in cell responses; however,

the role played by cell density is often ignored. When cell density is

low, cells could not form an essential connection, which is pivotal

for cell growth. In contrast, when cell density is too high, the surface

might be too crowded with cells that the difference among different

biomaterials will be covered. Within an appropriate cell density

range, we can tune other features (e.g. sterilization method, surface

morphology, surface chemistry, etc.) to obtain different results. So it

is crucial to balance cell density when exploring the structure–prop-

erty effect of biomaterials.

Conclusion

In summary, we utilize machine learning algorithms to unravel the

controversial results of cell proliferation patterns on varied TNTs.

We compare several algorithms, and the GBDT model reveals the

Figure 5. Experimental verification of model inference and design. Fluorescence images of Calcein-AM stained MC3T3-E1 cells on annealed TNTs after 1 day (a)

and 3 days (b) culture. (c) quantitative statistics of fluorescent adherent cells on various samples. Unmodified titanium foils are used as a control group. *P<0.05

indicates a significant difference comparing to titanium, and #P< 0.05 indicates a significant difference between UV irradiated and wet autoclaved samples.
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best performance that we employ the model for further studies.

Model validation shows the low quantitative prediction accuracy of

GBDT model, however, the model performs well enough for predict-

ing proliferation trend. Through model training, model prediction,

and analysis, we acquire two sets of features that can induce the op-

posite cell proliferation trends further verified by experiments.

GBDT model analysis suggests that cell density has higher feature

importance over other features, which is further proved by experi-

ments. More importantly, experimental verification proves that two

different cell proliferation patterns could be obtained on annealed

TNTs, demonstrating the efficacious of GBDT model in predicting

proliferation trends. We envision that machine learning algorithms

can serve as an effective tool to interpret controversial results and

provide prospective insights for biomedical researches.

On the other hand, it is worth noting that the validity of machine

learning algorithms relies on the dataset’s size and accuracy. The

biomaterials’ surface interface involves too many factors, and most

of them are missing in the vast literature. Hence, it remains challeng-

ing to utilize machine learning methodologies to analyze the struc-

ture–property relationships of biomaterials. Moreover, data

collection from the literature should be improved by data mining

approaches to improve data collecting efficiency.

Supplementary data

Supplementary data are available at REGBIO online.
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