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Abstract: In this paper, we propose a method to enhance the performance of segmentation models
for medical images. The method is based on convolutional neural networks that learn the global
structure information, which corresponds to anatomical structures in medical images. Specifically,
the proposed method is designed to learn the global boundary structures via an autoencoder and
constrain a segmentation network through a loss function. In this manner, the segmentation model
performs the prediction in the learned anatomical feature space. Unlike previous studies that
considered anatomical priors by using a pre-trained autoencoder to train segmentation networks,
we propose a single-stage approach in which the segmentation network and autoencoder are jointly
learned. To verify the effectiveness of the proposed method, the segmentation performance is
evaluated in terms of both the overlap and distance metrics on the lung area and spinal cord
segmentation tasks. The experimental results demonstrate that the proposed method can enhance
not only the segmentation performance but also the robustness against domain shifts.

Keywords: deep convolutional neural networks; medical image segmentation; structure information;
domain robustness

1. Introduction

Medical image segmentation is aimed at distinguishing the boundaries of lesions or
organs in medical images acquired through X-ray, computed tomography (CT), magnetic
resonance imaging (MRI), and other techniques. Segmentation results have been used to
accomplish valuable clinical objectives in multiple practices, such as tumor detection to
enable precise diagnosis and volume analysis to enable treatment planning [1].

Early studies on medical image segmentation adopted the methods such as edge
detection, template matching, statistical shape models, and active contours [2]. The rapid
development of deep learning has facilitated active research on image segmentation per-
formed using convolutional neural networks (CNNs) [3]. A CNN is trained using images
to produce accurate segmentation results by automatically learning hierarchical represen-
tations based on multiple stacked layers. Typically, a CNN-based segmentation model
consists of an encoder that extracts features from an input image, and a decoder that
restores the extracted features to the original image size through upsampling. U-Net [4], as
a representative model having the encoder–decoder structure, effectively combines low-
and high-level image features with skip-connections. Currently, U-Net and its variants
have been widely used for many applications including medical image segmentation,
and have outperformed other CNN-based architectures in terms of the segmentation
performance [5–8].

Nevertheless, although CNN-based segmentation networks demonstrate a high pre-
diction performance, these networks produce anatomically abnormal segmentation results
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in medical images in certain cases [9]. Compared to natural images, medical images are
relatively well-standardized and contain anatomical structures that can be utilized as infor-
mative clues for segmentation. However, such information is not fully used in the learning
process of CNN-based segmentation models. Considering these limitations, researchers
have attempted to integrate the anatomical prior knowledge into the segmentation process
in the medical imaging domain [10]. For example, contour information [11] or a low-
dimensional representation of medical images from an autoencoder [12,13] has been used
to learn anatomical priors.

Considering these aspects, this study is aimed at establishing a method of learning
anatomical structures using an autoencoder such that the prediction of a segmentation
network is performed in the learned anatomical feature space. This framework can help
enhance the segmentation performance for the region of interest by reflecting the anatomical
information in the learning process of the segmentation network. The proposed method
differs from the existing approaches that use the anatomical features provided by pre-
trained autoencoders [12,13]. Specifically, a single-stage method, in which the autoencoder
is learned jointly with the segmentation network, is used to enhance the segmentation
performance and training efficiency.

The proposed method was evaluated using the overlap measures including the inter-
section over union (IOU) and dice similarity coefficient (DSC), and distance measures such
as the average contour distance (ACD) and average surface distance (ASD). To verify the
effectiveness of the proposed method, we evaluated the performance of lung segmentation
on chest X-rays in the widely used public benchmark datasets of the Japanese Society of Ra-
diation Technology (JSRT) and Montgomery County (MC) [14–16] and the performance of
the spinal cord segmentation on MRI pertaining to the ISMRM 2016 Spinal Cord Challenge
dataset [17]. Comparative experiments were performed with the existing approaches that
adopted pre-trained autoencoders, and the results demonstrated that the proposed method
outperformed the comparison targets in the considered medical image segmentation tasks.
Furthermore, the proposed method was noted to be robust to domain shifts, i.e., more
accurate segmentation results were obtained on images from different domains such as
gender, race, or imaging equipment manufacturers.

The remaining paper is organized as follows. The existing CNN-based segmentation
networks that incorporate anatomical information into the learning process are introduced
in Section 2. Section 3 describes the proposed method to effectively utilize the anatomical
structure information during training. Section 4 presents the experimental settings includ-
ing the medical image datasets and evaluation metrics as well as the experimental results.
The concluding remarks are presented in Section 5.

2. Related Work

Fully convolutional networks (FCN) represent one of the early deep learning net-
works for semantic segmentation [18]. In an FCN, the fully connected layers that have
been widely used in previous models for image classification such as VGG16 [19] and
GoogleNet [20], are replaced by fully convolutional layers, which can take variable-sized
images as inputs. The high-level features are combined with their low-level counterparts
to obtain more accurate segmentation results. To further enhance the segmentation per-
formance, an encoder–decoder structure that can learn how to upsample input features
was proposed, and this architecture is currently widely implemented in various segmen-
tation tasks [21–24]. In such an encoder–decoder architecture, each part provides certain
functionalities. The encoder compresses and extracts the feature information to process
the input data, and the decoder uses these compressed features (i.e., representations) to
produce the segmentation outputs whose size is the same as that of the input images. For
example, the deconvolution network [25] is composed of several decoder layers whose
structure resembles the encoder.

Furthermore, U-Net is one of the most popular networks based on the encoder–
decoder structure for segmentation tasks in the field of medical imaging [4]. This network
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combines the feature information extracted from the encoder with the outputs of the
decoder layers to compensate for the information loss in the downsampling operations in
the encoder layers. V-Net [26] is based on the encoder–decoder structure designed to solve
the problem of prostate segmentation in 3D medical images. Specifically, residual-based
learning is applied to train the V-Net, and a dice loss function is implemented to address
the imbalance problem of the foreground and background in 3D medical images.

Many researchers have proposed novel architectures to enhance the segmentation
performance; however, such architectures do not consider the common structural informa-
tion of input images as the objective is usually to perform segmentation in natural images.
However, in the case of medical images, the degree of standardization is usually relatively
large. If a common structure exists in the full image, it is desirable to learn this structural
information to obtain more robust and high performance segmentation networks.

In the medical imaging field, a key factor to be considered to enhance the segmenta-
tion performance is that a segmentation model must learn the prior knowledge regard-
ing the anatomical structure, such as an organ’s shape or placement [12]. To this end,
Chen et al. [11] used the contour information to train the model by employing the loss
function with the contour label, and Dai et al. [27] performed adversarial training for a
segmentation model to learn the overall structural information for heart segmentation.
In this work, an auxiliary classification network was trained using class labels, and the
output of the segmentation network was provided as an input to the trained classifier to
update the model parameters in the segmentation network. Through this process, the
shared characteristics of the class label and output of the segmentation network could be
reflected in the segmentation network.

In addition, certain researchers used autoencoders to learn the low-dimensional
features for anatomical structures. Oktay et al. [12] extracted the feature information by
pre-training the autoencoder through segmentation labels. To apply the pre-trained feature
information to a segmentation network, the outputs of the segmentation network (i.e.,
predictions) and segmentation labels were used as the inputs to the encoder part of the
pre-trained autoencoder. The outputs of the encoder part (i.e., low-dimensional features)
from the two inputs were compared with a loss function to ensure that the distributions of
the output values were similar. Similar to [12], Tong et al. [13] adopted a strategy involving
a pre-trained autoencoder trained using the ground-truth labels. This work introduced
an additional loss function to minimize the difference between the two final outputs from
the pre-trained autoencoder, specifically, the reconstructed output from the segmentation
result and the ground-truth label.

Notably, the previous studies that reflected the anatomical structure information in
CNN-based segmentation networks focused only on enhancing the segmentation per-
formance and did not consider the robustness to domain shifts. In addition, although
the approaches involving the autoencoder could effectively enhance the segmentation
performance, two-stage methods were required to be used. Considering these aspects, this
paper proposes a single-stage method in which the autoencoder and segmentation network
are jointly trained to enhance not only the segmentation performance, but also the domain
generalization capability.

3. Proposed Method

This section describes the proposed method, which includes a denoising convolu-
tional autoencoder (DAE) and a segmentation network. The DAE is trained to learn the
anatomical information by using segmentation labels (i.e., the ground-truth labels), and
the segmentation network is trained to perform accurate segmentation. To reflect the
anatomical information obtained by training the DAE in the segmentation network, the
output of the last encoder layer of the segmentation network and corresponding output
of the DAE are constrained through a loss function. Unlike previous studies that relied
on a pre-training autoencoder, the proposed approach is a single-stage method in which
the segmentation network and autoencoder are simultaneously trained. First, the details
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regarding the DAE employed in the proposed method are introduced, and subsequently,
the overall framework of the proposed method is described.

3.1. Denoising Convolutional Autoencoder for Learning Anatomical Structures

The DAE is one of the dimensionality reduction methods based on deep neural
networks, which can be used to extract the anatomical information in the data. In contrast
to the conventional autoencoder, the DAE is trained to reconstruct the noise-added inputs to
the original input data [28]. Gaussian, masking, and salt-and-pepper noises are commonly
used to train the DAE. We considered the use of salt-and-pepper noise since the DAE is
trained using binarized segmentation labels in the proposed framework.

Figure 1 shows the schematic diagram of the adopted DAE. Let y be a segmentation
label (i.e., a ground-truth) used as an input to the DAE. The encoder fDAE(·) maps the cor-
rupted input ỹ to a lower dimension, and the decoder gDAE(·) uses these low-dimensional
representations to produce the reconstructed input ý. To generate the corrupted input ỹ,
randomly generated noise, e.g., salt-and-pepper noise, is added to the clean input y. The
loss function LDAE to train the DAE can be expressed as:

LDAE = L(ý, y) (1)

where the reconstructed input ý is computed as ý = gDAE(z; θgDAE) and the compressed
representation z is obtained as z = fDAE(ỹ; θ fDAE). Here, θ fDAE and θgDAE denote the
learnable parameters of the encoder fDAE and decoder gDAE, respectively. To train the
DAE in the proposed framework, we employ the binary cross-entropy as a loss function L.
As the training proceeds, the output z of the encoder contains the abstracted anatomical
structure information learned by the data. In other words, the encoder performs an
embedding that maps the input space to the anatomical structure space. Therefore, the
feature space modeled by the encoder can be used to constrain the embedding space of the
segmentation network.

Noise

Original
image

Noisy
input

Reconstructed
input

Input image Latent space
representation

DecoderEncoder

Z

Figure 1. Architecture of the denoising convolutional autoencoder (DAE).

3.2. Segmentation Network to Learn the Anatomical Structures

The goal of the segmentation network is to learn how to produce segmentation results
from the anatomical structure space modeled by the DAE. To accomplish this goal, the
output features from the segmentation encoder and DAE encoder should be tightly coupled.
The proposed strategy is to apply the constraint by using a loss function to transfer the
anatomical information being learned using the DAE to the segmentation network. In the
proposed method, the U-Net architecture is used as a segmentation network.

The overall training scheme of the proposed method is illustrated in Figure 2. First, the
segmentation network receives an image x as an input, and outputs a segmentation result
x́ whose spatial resolution is exactly the same with that of the input image. Specifically,
the input image is embedded by the encoder fSEG, resulting in the representation h, and
then the decoder gSEG upsamples h through consecutive convolutional layers to produce
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a segmentation result. This network is trained using a loss function LSEG to perform
pixel-level classification, which can be selected from various alternatives such as the binary
cross-entropy, dice coefficient, etc. In this work, the binary cross-entropy loss for LSEG is
adapted, which can be computed as:

LSEG = L(x́, y) (2)

where x́ = gSEG(h; θgSEG ) and h = fSEG(x; θ fSEG ). θ fSEG and θgSEG denote the learnable
parameters of the encoder fSEG and decoder gSEG, respectively. The second component is
the DAE. As explained in Section 3.1, the inputs of the DAE are the ground-truth labels to
learn compact representations of the anatomical structures.

h

De
co
de
r

Figure 2. Training scheme of the proposed method. The green, blue, and red arrows show the gradient flow from LSEG, LE,
and LDAE, respectively. Note that the gradient from LE flows only through the encoder of the segmentation network.

The key concept of the proposed method is to impose a constraint on the feature spaces
constructed using the segmentation encoder fSEG and DAE encoder fDAE to ensure that the
features for a specific data are similar. This constraint can be implemented by introducing
an embedding loss function for h and z denoted as LE(h, z). Several loss functions can be
used for LE, e.g., mean squared error (MSE), mean absolute error (MAE), Kullback–Leibler
divergence (KL), cosine loss, etc. We experimentally validated certain candidates for LE
and finally selected the MSE.

In general, both the model parameters of fDAE and fSEG can be simultaneously trained
using the embedding loss LE. However, if the gradient update due to LE occurs in the
segmentation network and DAE concurrently, the learning of the DAE may be affected,
and the quality of the anatomical structure space constructed using the DAE may be
degraded. Therefore, we intentionally design the gradient considering LE to update only
the segmentation encoder fSEG. In this framework, the segmentation encoder learns the
mapping from the input space to the anatomical structure space, and the segmentation
decoder is trained to perform segmentation with the features on the structure space. The
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proposed strategy for the gradient flow was empirically validated through experiments
(refer to Section 4.3).

The total loss function LTotal for the proposed method can be expressed as

LTotal = LSEG + LDAE + λLE (3)

where λ is a parameter that controls the weight of the embedding loss LE. The optimal
value is determined through the validation process. Note that the DAE in our proposed
method is used as an auxiliary component during training, which helps the segmentation
encoder learn better anatomical representations. Therefore, the DAE is discarded at an
inference phase.

4. Experiments

This section describes the datasets and performance metrics considered to evaluate
the proposed method. In addition, the results of experiments conducted on two segmen-
tation tasks, lung segmentation in chest X-rays (CXR) and spinal cord segmentation in
MRI, are presented, which demonstrate that the segmentation network trained using the
proposed method exhibits a high performance and domain robustness. In addition, we
present the results of an ablation study performed to validate the design choices in our
proposed method.

4.1. Dataset

For lung segmentation, we used two public CXR datasets: JSRT [14] and MC [15].
JSRT is a dataset jointly created by the Japanese Society of Radiological Technology and the
Japanese Radiological Society, and contains 247 the posterior-anterior (PA) CXR images.
Among these images, 154 images have a pulmonary nodule, and the other 93 images
are normal. All the images are sized 2048× 2048 pixels and associated with the labeled
annotations of other anatomical structures, including the lungs. The MC dataset is jointly
populated by the National Library of Medicine and the Department of Health and Human
Services in the U.S. This dataset consists of 138 PA CXR images; among these images,
80 images are normal and 58 correspond to tuberculosis patients. The images are sized
4020× 4892 or 4892× 4020 pixels.

For the spinal cord segmentation task with the MRI images, we used the dataset
employed in the spinal cord gray matter challenge [17]. The dataset involves images
collected from the following four sites: University College London (site1), Polytechnique
Montreal (site2), University of Zurich (site3), and Vanderbilt University (site4). Specifically,
the dataset consists of 80 MRI images corresponding to 20 cases from each site. The
data from these sites exhibit individual visual characteristics mainly due to the imaging
equipment from different vendors being used. Therefore, in the evaluation of the domain
robustness of the segmentation networks, the images from each site were considered to
correspond to a single domain.

Figure 3 shows sample images of each dataset. From this figure, it can be observed
that there exists a certain degree of distributional shift (i.e., domain difference) among the
datasets. For example, the MC and JSRT datasets have considerably different visual features
as can be observed through the annotations on the sample images in Figure 3. The JSRT
dataset contains images from patients having lung nodules, which can be characterized
as a small spot. In contrast, the MC dataset includes images from tuberculosis patients
whose lesions are widely spread over the lung area. Such a domain shift is difficult to be
resolved via image preprocessing (e.g., histogram equalization) or data augmentation (e.g.,
brightness and contrast adjustment) as observed in the following experiments.
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Figure 3. Examples of each dataset: (a) samples from JSRT (top) and MC (bottom) for lung segmentation with lesion
annotations; (b) samples from four sites for spinal cord segmentation.

4.2. Evaluation Metrics

To evaluate the segmentation performance, multiple performance metrics including
overlap and distance measures were adopted.

• Intersection over union (IOU): the IOU is a measure of the degree of overlap between
the region of the ground-truth and region predicted by the segmentation network. In
Equation (4), S is the predicted region, and G is the ground-truth. The IOU can be
defined as the ratio of the intersection and union between G and S:

IOU =

∣∣∣∣G ∩ S
G ∪ S

∣∣∣∣ = TP
TP + FP + FN

(4)

• Dice similarity coefficient (DSC): the DSC can be used to evaluate the overlap perfor-
mance, similar to the IOU. This indicator also measures the degree of overlap between
S and G, as indicated in Equation (5). Note that the DSC value is always greater than
or equal to the IOU.

DSC =
2| G ∩ S |
| G |+ | S | =

2TP
2TP + FP + FN

(5)

• Average contour distance (ACD) and average surface distance (ASD): the ACD
and ASD indicate the extent of separation of the ground-truth and predicted re-
gion. Notably, the overlap measures such as the IOU and DSC do not consider
whether the false positive pixels are near or far from the ground-truth. Let si,
i = 1, ..., nS and gi, i = 1, ..., nG represent the boundary pixels in S and G, respec-
tively. d(si, G) = minj‖si − gj‖ indicates the minimum distance from si on S to G. The
ACD and ASD can be computed as follows:

ACD(S, G) =
1
2
(

∑i d(si, G)

nS
+

∑j d(gj, S)
nG

) (6)
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ASD(S, G) =
1

nS + nG
(∑

i
d(si, G) + ∑

j
d(gj, S)) (7)

4.3. Lung Segmentation Result

U-net [4] was utilized as a base segmentation network to perform comparative experi-
ments involving existing frameworks such as the ACNN [12] and SRM [13] which consider
the anatomical structures during training. Tables 1 and 2 summarize the detailed archi-
tectures of the segmentation network and autoencoder for this experiment, respectively.
As an activation function, the rectified linear unit (ReLU) was employed. Note that the
feature maps h and z should be the same size to compute the embedding loss LE(h, z). The
comparison targets, ACNN and SRM, were trained with the same architectures to enable a
fair comparison.

In general, to apply the pre-trained anatomical information to the segmentation
network, the ACNN performs lower-dimensional projections of both the segmentation
predictions and ground-truths based on the pre-trained autoencoder, and computes the
shape regularization loss between these projections. In this experiment, we adopted the
binary cross-entropy and mean squared error as the segmentation loss and shape regular-
ization loss, respectively, as in the original study. The weight of the shape regularization
loss was set as 0.01 according to the validation process. The SRM [13] is a variant of the
ACNN, which introduces an auxiliary loss function, specifically, the reconstruction loss, to
ensure that the outputs from the projections obtained using the pre-trained autoencoder
are similar. Therefore, the objective function in the SRM consists of three loss functions,
specifically, the segmentation, shape regularization, and reconstruction losses. As in the
original study, we used the dice loss as the segmentation and reconstruction loss, and the
binary cross-entropy as the shape regularization loss. Through the validation process, the
weights for the shape regularization and reconstruction loss were set as 0.01 and 0.001,
respectively. For the proposed method, we set λ in Equation (3) as 1.0.

All the methods were trained using the Adam optimizer [29] with a learning rate of
0.0001 for 120 epochs. Histogram equalization was performed as a preprocessing step.
For data augmentation, we performed brightness and contrast adjustment by setting the
range from 0.8 to 1.2. The dataset was randomly split into a training, validation, and test
dataset at a ratio of 65%, 15%, and 20%, respectively. To enable a rigorous evaluation, all
the experiments were repeated five times, and the mean and standard deviation of the
performance values were reported.

Table 3 presents the average and standard deviation of the performance values over
five runs, corresponding to the proposed method and comparison targets. ↓ and ↑ indicate
that lower and higher values are better, respectively. For each experiment, the best result
is expressed in boldface. As baselines, the performances corresponding to the training of
only a segmentation network with (U-Net) or without data augmentation (U-Net w/o aug)
are reported in the table. The results on both the datasets indicate that data augmentation
enhances the segmentation performance.

In addition, we observed that the methods in which the anatomical information was
reflected during training, ACNN and SRM, outperformed the baselines, U-Net and U-Net
w/o aug. Specifically, the ACNN and SRM exhibited an enhanced performance in terms of
the distance metrics and all metrics in the case of the JSRT and MC datasets, respectively.
Nevertheless, the proposed method outperformed all the methods in terms of all overlap
and distance metrics on both the datasets. The comparison results indicated that in terms
of the ASD, the proposed method exhibited an enhancement of 5.6% and 5.4% over the
JSRT and MC datasets, respectively, against the second-best performing model SRM. This
result demonstrated that the proposed method can help the segmentation network learn
the global anatomical structure to be segmented by producing segmentation outputs from
the anatomical feature space modeled by the autoencoder.
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Table 1. Detailed architecture of the segmentation network for lung segmentation, representing a
kernel size, stride, the number of kernels, and size of output feature map of each layer.

Kernel Size Stride Kernels Feature Map

f1
conv 3 × 3 1 × 1 16 256 × 256 × 16
conv 3 × 3 1 × 1 16 256 × 256 × 16

maxpool 2 × 2 2 × 2 128 × 128 × 16

f2
conv 3 × 3 1 × 1 32 128 × 128 × 32
conv 3 × 3 1 × 1 32 128 × 128 × 32

maxpool 2 × 2 2 × 2 64 × 64 × 32

f3
conv 3 × 3 1 × 1 64 64 × 64 × 64
conv 3 × 3 1 × 1 64 64 × 64 × 64

maxpool 2 × 2 2 × 2 32 × 32 × 64

f4
conv 3 × 3 1 × 1 128 32 × 32 × 128
conv 3 × 3 1 × 1 128 32 × 32 × 128

maxpool 2 × 2 2 × 2 16 × 16 × 128

h conv 3 × 3 1 × 1 256 16 × 16 × 256
conv 3 × 3 1 × 1 256 16 × 16 × 256

g4
deconv 2 × 2 2 × 2 128 32 × 32 × 128

conv 3 × 3 1 × 1 128 32 × 32 × 128
conv 3 × 3 1 × 1 128 32 × 32 × 128

g3
deconv 2 × 2 2 × 2 64 64 × 64 × 64

conv 3 × 3 1 × 1 64 64 × 64 × 64
conv 3 × 3 1 × 1 64 64 × 64 × 64

g2
deconv 2 × 2 2 × 2 32 128 × 128 × 32

conv 3 × 3 1 × 1 32 128 × 128 × 32
conv 3 × 3 1 × 1 32 128 × 128 × 32

g1
deconv 2 × 2 2 × 2 16 256 × 256 × 16

conv 3 × 3 1 × 1 16 256 × 256 × 16
conv 3 × 3 1 × 1 16 256 × 256 × 16

output conv 1 × 1 1 × 1 1 256 × 256 × 1

Table 2. Detailed architecture of the autoencoder network for lung segmentation, representing a
kernel size, stride, the number of kernels, and size of output feature map of each layer.

Kernel Size Stride Kernels Feature Map

f1
conv 3 × 3 1 × 1 16 256 × 256 × 16

maxpool 2 × 2 2 × 2 128 × 128 × 16

f2
conv 3 × 3 1 × 1 32 128 × 128 × 32

maxpool 2 × 2 2 × 2 64 × 64 × 32

f3
conv 3 × 3 1 × 1 64 64 × 64 × 64

maxpool 2 × 2 2 × 2 32 × 32 × 64

f4
conv 3 × 3 1 × 1 128 32 × 32 × 128

maxpool 2 × 2 2 × 2 16×16×128
z conv 3 × 3 1 × 1 256 16×16×256

g4
deconv 2 × 2 2 × 2 256 32 × 32 × 256

conv 3 × 3 1 × 1 128 32 × 32×128

g3
deconv 2 × 2 2 × 2 128 64 × 64 × 128

conv 3 × 3 1 × 1 64 64 × 64 × 64

g2
deconv 2 × 2 2 × 2 64 128 × 128 × 64

conv 3 × 3 1 × 1 32 128 × 128 × 32

g1
deconv 2 × 2 2 × 2 32 256 × 256 × 32

conv 3 × 3 1 × 1 16 256 × 256 × 16
output conv 1 × 1 1 × 1 1 256 × 256 × 1
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Table 3. Comparison of lung segmentation test performance. The means and standard deviations
over five runs are reported. For each dataset, the best result is shown in boldface.

Dataset Method IOU(↑) DSC(↑) ACD(↓) ASD(↓)

JSRT

U-Net w/o aug 0.950 ± 0.003 0.974 ± 0.002 1.376 ± 0.120 0.810 ± 0.023
U-Net 0.955 ± 0.002 0.977 ± 0.001 1.116 ± 0.083 0.745 ± 0.017
ACNN 0.955 ± 0.001 0.977 ± 0.000 1.036 ± 0.025 0.745 ± 0.007

SRM 0.956 ± 0.001 0.977 ± 0.001 1.074 ± 0.023 0.732 ± 0.010
Proposed 0.959 ± 0.002 0.979 ± 0.001 0.936 ± 0.052 0.691 ± 0.013

MC

U-Net w/o aug 0.940 ± 0.006 0.968 ± 0.004 1.547 ± 0.156 0.848 ± 0.039
U-Net 0.950 ± 0.005 0.974 ± 0.003 1.212 ± 0.148 0.749 ± 0.032
ACNN 0.953 ± 0.005 0.976 ± 0.003 1.069 ± 0.154 0.727 ± 0.044

SRM 0.952 ± 0.003 0.975 ± 0.002 1.159 ± 0.139 0.726 ± 0.031
Proposed 0.956 ± 0.003 0.978 ± 0.002 1.032 ± 0.144 0.687 ± 0.026

The visualization results are presented in Figure 4. The first and second rows show
the segmentation results on the JSRT and MC dataset, respectively. The red solid line
represents the ground-truth label, and the green area corresponds to the predicted result
from the segmentation network. The left part shows the segmentation results of each
method. The base U-Net tends to inaccurately predict the lung regions, and the reflection
of the anatomical information in the network helps achieve better segmentation of the lung
regions. Notably, the approach to use the anatomical information through the proposed
strategy helped achieve the most accurate segmentation result.

To gain further insight into the proposed method, the reconstruction results from
the trained DAE (i.e., fDAE → gDAE) and segmentation results from the combination of
segmentation encoder and DAE decoder (i.e., fSEG → gDAE) are also depicted (see the right
part of Figure 4). Here, we examined the reconstruction capability of DAE although it is
not used during inference. The DAE reconstructs the input labels as well as expected since
the reconstruction of binary lung masks is an easy task. The results from fSEG → gDAE are
noteworthy: the features from fSEG can be successfully decoded by gDAE. It implies that
fSEG can embed an input image into the anatomical feature space modeled by the DAE,
and thereby, gDAE can produce good segmentation results based on those features.

Figure 4. Visualization of the lung segmentation results on test samples from JSRT (top) and MC (bottom). The left part
shows the results of each method, and the right part presents the results from fDAE → gDAE and fSEG → gDAE of the
proposed method. The green color represents the segmentation results of each method, and the ground-truth is in red.
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As described in Section 3.2, the proposed method is designed to control the gradient
flows through the embedding loss function LE in Equation (3). The gradients from LE
do not contribute to the DAE encoder, and thus, the DAE encoder is not affected when
learning to build the anatomical structure features. Table 4 illustrates the effect of the
proposed strategy on the JSRT dataset. Proposed-BI represents a method in which the
gradient update from LE occurs in the segmentation and DAE encoder simultaneously,
and Proposed-UN indicates the proposed strategy that only updates the segmentation
encoder. From this experiment, we observed that Proposed-BI outperforms the baseline
U-Net, which shows that constraining the feature space of the segmentation network by the
autoencoder is effective to improve the segmentation performance. Moreover, the results
of Proposed-UN demonstrate that preventing the gradient from LE from being propagated
to the DAE further enhances the segmentation performance by encouraging the DAE to
effectively learn the structural information.

Table 4. Ablation study pertaining to the effect of controlling gradient flows. The best result is shown
in boldface.

Method IOU(↑) DSC(↑) ACD(↓) ASD(↓)

U-Net 0.955 ± 0.002 0.977 ± 0.001 1.116 ± 0.083 0.745 ± 0.017
Proposed-BI 0.958 ± 0.002 0.978 ± 0.001 0.976 ± 0.054 0.705 ± 0.010

Proposed-UN 0.959 ± 0.002 0.979 ± 0.001 0.936 ± 0.052 0.691 ± 0.013

4.4. Spinal Cord Segmentation Result

The spinal cord gray matter challenge dataset [17] was considered to evaluate the
spinal cord segmentation performance of the proposed method. This dataset, which is
composed of 3D MRI images, was cut cross-sectionally to allow the use of two-dimensional
images in the experiment. Images without the ground-truth label were not used. Eventually,
we considered 30, 113, 177, and 134 images from site1, site2, site3, and site4, respectively.
Images from site1 were not used for training due to the small number of images. The dataset
corresponding to each site was split as follows: 65% for training, 15% for validation, and
20% for testing. All the images were center cropped at 128× 128 pixels. The architectures
of the segmentation network and autoencoder are similar to those in the lung segmentation
experiment except for the number of layers and kernels: we used four times more kernels
and removed one block in each encoder and decoder (i.e., f4 and g4 in Tables 1 and 2) to
build a better baseline.

The hyperparameters involved in each method were determined through a validation
process: For the ACNN, the weight for the shape regularization loss was set as 0.001, and
for the SRM, the weights for the shape regularization loss and reconstruction loss were
set as 0.01 and 0.001, respectively. The weight λ for the proposed method was 1.0. All
the methods were trained using the AdamP optimizer [30] for 120 epochs owing to the
more stable training progress. The learning rate and weight decay parameter were set
as 0.01 and 0.0001, respectively. To compare with stronger baselines, data augmentation
strategies were adopted, including random adjustment of the brightness and contrast in
the range of 0.6 to 1.4. The other experimental settings were the same as those in the lung
segmentation experiment. To compare the performance, the mean and standard deviation
of the performance metrics over five runs are reported in Table 5.
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Table 5. Comparison of spinal cord segmentation test performance. The means and standard
deviations over five runs are reported. For each dataset, the best result is shown in boldface.

Dataset Method IOU (↑) DSC (↑) ACD (↓) ASD (↓)

site2

U-Net 0.793 ± 0.006 0.884 ± 0.004 0.585 ± 0.031 0.542 ± 0.015
ACNN 0.792 ± 0.004 0.883 ± 0.003 0.592 ± 0.028 0.546 ± 0.013

SRM 0.801 ± 0.006 0.889 ± 0.004 0.560 ± 0.036 0.518 ± 0.017
Proposed 0.805 ± 0.004 0.892 ± 0.002 0.536 ± 0.010 0.508 ± 0.009

site3

U-Net 0.822 ± 0.007 0.900 ± 0.005 0.440 ± 0.033 0.401 ± 0.013
ACNN 0.831 ± 0.004 0.905 ± 0.003 0.402 ± 0.009 0.382 ± 0.007

SRM 0.828 ± 0.008 0.904 ± 0.004 0.398 ± 0.020 0.384 ± 0.018
Proposed 0.837 ± 0.01 0.909 ± 0.007 0.389 ± 0.034 0.372 ± 0.020

site4

U-Net 0.853 ± 0.004 0.92 ± 0.002 0.423 ± 0.015 0.406 ± 0.009
ACNN 0.856 ± 0.002 0.922 ± 0.001 0.413 ± 0.008 0.401 ± 0.005

SRM 0.857 ± 0.003 0.923 ± 0.002 0.424 ± 0.030 0.398 ± 0.008
Proposed 0.858 ± 0.006 0.923 ± 0.004 0.408 ± 0.020 0.394 ± 0.015

Similar to the results of the lung segmentation task, the ACNN and SRM outperformed
the baseline U-Net, and the proposed method outperformed the comparison methods in
terms of all metrics across the datasets from site2, site3, and site4. Notably, the distance
metrics, ACD and ASD, were greatly improved, as in the previous experiment. For example,
the ASD value of the proposed method on site2 was 0.372, 7.2% lower than the baseline
and 2.6% lower than the second-best model ACNN.

The rows in Figure 5 show the predicted images from the segmentation methods
for site2, site3, and site4, in order. The red solid line is the ground-truth label, and the
green area represents the predicted result from the segmentation network. From the left
part showing the comparison results, we can observe that the predictions from U-Net
contain false positives located far from the ground-truth in several cases, although the
other methods provide better segmentation results. Among these methods, the proposed
method can realize more precise segmentation, especially in the case shown in the second
row. These results demonstrate that the proposed method can more effectively learn
the anatomical structure information than the comparison methods, resulting in better
segmentation results. Similar to the lung segmentation task, the reconstruction results
from fDAE → gDAE and segmentation results from fSEG → gDAE are presented (see the
right part of Figure 5). From these visualization results, it is confirmed again that fSEG
extracts anatomically informative features that can be easily decoded by gDAE trained to
reconstruct the ground-truth labels.

4.5. Domain Robustness

Learning the anatomical structures in medical images can enhance several aspects
of segmentation models, for instance, in the form of domain robustness. To demonstrate
the domain robustness of the proposed method, we trained a segmentation network by
using images from a single source (i.e., domain) and tested the trained model by using
images from other sources. For example, the JSRT dataset was used for training, and the
trained model’s performance was evaluated using the MC dataset in the case of the lung
segmentation task. In general, if a network exhibits a high performance on datasets from
unseen domains, the network is considered to be robust to domain shifts. We conducted
similar experiments using the spinal cord dataset: images from each site, site2, site3, and
site4, were used as the training images, and the segmentation performance was examined
on images corresponding to other domains. Images from site1 were utilized only for testing
because the dataset for site1 contains excessively few images to be used for training. The
trained models in the previous experiments were used to examine their robustness to
domain shifts.
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Figure 5. Visualization of the spinal cord segmentation results on test samples from site2 (top), site3 (middle), and
site4 (bottom). The left part shows the results of each method, and the right part presents the results from fDAE → gDAE

and fSEG → gDAE of the proposed method. The green color represents the segmentation results of each method, and the
ground-truth is in red.

The domain robustness (i.e., domain generalization) performance of the segmentation
models in the lung segmentation task is summarized in Table 6. Two experimental settings
were considered, JSRT→MC and MC→JSRT. In particular, JSRT→MC corresponds to the
segmentation performances on the MC dataset for a model trained on the JSRT dataset.
The last row presents the average performance over the two settings. The models trained
using the proposed strategy exhibit superior performances in terms of both the overlap
and distance measures, which indicates that the proposed method not only enhances the
segmentation performance on the source domains, but also renders a segmentation model
more robust to domain shifts. As can be seen in Figure 3, although the visual characteristics
of the two datasets are considerably different, the experimental result highlights that the
domain generalization performance of CNN-based segmentation models can be enhanced
if we carefully design a training framework for the model to learn the anatomical structure
information related to the given tasks.

Table 6. Comparison of the domain robustness on lung segmentation. The best result on averaging
over two settings is shown in boldface.

Setting Method IOU (↑) DSC (↑) ACD (↓) ASD (↓)

JSRT→MC

U-Net 0.897 ± 0.008 0.943 ± 0.004 4.088 ± 1.053 1.377 ± 0.171
ACNN 0.904 ± 0.006 0.947 ± 0.003 2.528 ± 0.500 1.112 ± 0.080

SRM 0.902 ± 0.005 0.946 ± 0.002 3.481 ± 0.753 1.272 ± 0.111
Proposed 0.924 ± 0.004 0.960 ± 0.002 2.101 ± 0.639 1.032 ± 0.095

MC→JSRT

U-Net 0.934 ± 0.001 0.966 ± 0.001 1.684 ± 0.055 0.987 ± 0.010
ACNN 0.936 ± 0.001 0.967 ± 0.001 1.451 ± 0.049 0.945 ± 0.016

SRM 0.935 ± 0.001 0.967 ± 0.001 1.580 ± 0.037 0.965 ± 0.011
Proposed 0.938 ± 0.002 0.968 ± 0.001 1.388 ± 0.038 0.924 ± 0.012

Average

U-Net 0.916 0.955 2.886 1.182
ACNN 0.920 0.957 1.990 1.029

SRM 0.919 0.957 2.531 1.119
Proposed 0.931 0.964 1.745 0.978

The visualizations of several segmentation results are presented in Figure 6. The red
solid line and blue shaded area represent the ground-truth and segmentation outputs,
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respectively. The existing approaches including the baseline U-Net are sensitive to even a
small degree of domain shift, and this phenomenon cannot be simply resolved by applying
data augmentation techniques such as random adjustments of the brightness and contrast.
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Figure 6. Segmentation results on the lung segmentation task obtained from the models trained
using the (a) JSRT and (b) MC datasets, respectively. The blue color represents the segmentation
results, and the ground-truth is in red.

For the spinal cord segmentation task, three experimental settings were considered:
site2→others, site3→others, and site4→others. For models trained with each source domain,
we evaluated the segmentation performance on the images from all other domains. The
proposed method exhibited a higher generalization capability on unseen domains, as
presented in Table 7. Except for the setting in which the source domain was site3, the
proposed method achieved better segmentation results on other domains, especially in
terms of the distance metrics. For example, when the source domain was site4, the ACD
value averaged over other domains including site1, site2, and site3 was improved by
14.8% compared to the second-best model SRM. According to the averaged performance
over three experimental settings, the baseline U-Net, ACNN, and the proposed method
showed a similar segmentation performance in terms of the overlap measures, although the
distance performances of the proposed method were significantly improved. Specifically,
the average ACD value for the proposed method was 0.667, corresponding to a 9.7%
improvement over the baseline U-Net.
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Table 7. Comparison of the domain robustness in the spinal cord segmentation task. The best result
on averaging over three settings is shown in boldface.

Setting Method IOU (↑) DSC (↑) ACD (↓) ASD (↓)

site2→others

U-Net 0.766 ± 0.005 0.863 ± 0.004 0.747 ± 0.033 0.579 ± 0.013
ACNN 0.763 ± 0.006 0.861 ± 0.004 0.773 ± 0.054 0.591 ± 0.018

SRM 0.758 ± 0.014 0.856 ± 0.012 0.655 ± 0.038 0.567 ± 0.017
Proposed 0.768 ± 0.004 0.864 ± 0.003 0.654 ± 0.002 0.558 ± 0.006

site3→others

U-Net 0.747 ± 0.010 0.853 ± 0.007 0.685 ± 0.028 0.610 ± 0.016
ACNN 0.741 ± 0.010 0.849 ± 0.007 0.697 ± 0.024 0.626 ± 0.018

SRM 0.709 ± 0.020 0.824 ± 0.015 0.765 ± 0.059 0.667 ± 0.035
Proposed 0.740 ± 0.012 0.847 ± 0.009 0.686 ± 0.029 0.615 ± 0.018

site4→others

U-Net 0.766 ± 0.004 0.864 ± 0.003 0.784 ± 0.050 0.583 ± 0.016
ACNN 0.766 ± 0.002 0.864 ± 0.001 0.780 ± 0.033 0.585 ± 0.012

SRM 0.767 ± 0.003 0.864 ± 0.001 0.775 ± 0.034 0.582 ± 0.010
Proposed 0.767 ± 0.006 0.864 ± 0.006 0.660 ± 0.037 0.556 ± 0.012

Average

U-Net 0.760 0.860 0.739 0.591
ACNN 0.757 0.858 0.750 0.601

SRM 0.745 0.848 0.732 0.605
Proposed 0.758 0.858 0.667 0.576

Figure 7 shows the segmentation results obtained using each model from the test
images in other domains not used for training. Figure 7a–c show the results from the models
trained with site2, site3, and site4 as the source domains, respectively. Similar conclusions as
in the previous experiment could be derived. The comparison methods produced several
false positive predictions, whereas the proposed method could accurately predict the target
area. The quantitative and qualitative results indicated that valuable structural information
such as a global shape or location in common across multiple domains can be learned using
the proposed method.
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Figure 7. Segmentation results on the spinal cord segmentation task obtained from the models trained using the (a) site2,
(b) site3, and (c) site4 datasets, respectively. The blue color represents the segmentation results, and the ground-truth
is in red.
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5. Conclusions

In this paper, we propose a method to learn global anatomical structures in medical
images by using a denoising convolutional autoencoder and constraining a segmentation
network through a loss function such that the prediction of the segmentation model is
performed in the learned anatomical feature space. Unlike previous studies in which
anatomical priors are considered using a pre-trained autoencoder, we propose a single-
stage approach in which the segmentation network and autoencoder are jointly learned.
To demonstrate the advantages of the proposed method, extensive experiments were con-
ducted on two medical image segmentation tasks: lung segmentation in CXRs and spinal
cord segmentation in MRI images. The experimental results indicate that learning anatom-
ical priors using the proposed method can help enhance the segmentation performance.
In addition, to demonstrate the additional benefits of learning the anatomical structures,
we investigated the domain robustness of the proposed method. The results indicate that
the proposed method can enhance the robustness of segmentation networks against do-
main shifts. This domain robustness property will be particularly useful for other medical
applications such as cranial implant design [31] or precise tooth segmentation [32] where
understanding of anatomical structure is crucial to have reliable segmentation models. The
findings highlight that the segmentation networks trained using the proposed method can
effectively learn global anatomical structures commonly existing in medical images from
various sources.
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