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A B S T R A C T

Patients with chronic kidney disease are at increased risk of cardio-
vascular disease and this often manifests clinically like heart failure.
Conversely, patients with heart failure frequently have reduced
kidney function. The links between the kidneys and cardiovascular
system are being elucidated, with blood pressure being a key risk
factor. Patients with heart failure have benefitted from many trials
which have now established a strong evidence based on which to
base management. However, patients with advanced kidney dis-
ease have often been excluded from these trials. Nevertheless, there
is little evidence that the benefits of such treatments are modified
by the presence or absence of kidney disease, but more direct evi-
dence among patients with advanced kidney disease is required.
Neprilysin inhibition is the most recent treatment to be shown to
improve outcomes among patients with heart failure. The UK
HARP-III trial assessed whether neprilysin inhibition improved
kidney function in the short- to medium-term and its effects on
cardiovascular biomarkers. Although no effect (compared to irbe-
sartan control) was found on kidney function, allocation to nepri-
lysin inhibition (sacubitril/valsartan) did reduce cardiac bio-
markers more than irbesartan, suggesting that this treatment
might improve cardiovascular outcomes in this population. Larger
clinical outcomes trials are needed to test this hypothesis.
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renin-angiotensin system

C K D A N D S T R U C T U R A L H E A R T D I S E A S E A R E
C L O S E L Y A S S O C I A T E D

Chronic kidney disease (CKD) and heart failure (HF) fre-
quently coexist and both are associated with high morbidity
and mortality [1, 2]. Numerous studies have shown that there
is an inverse association between kidney function and cardio-
vascular risk [3, 4]. Structural heart disease, which may

manifest clinically as HF, is a leading cause of cardiovascular
disease in CKD patients and its prevalence increases with de-
clining kidney function [2, 5]. A cross-sectional echocardio-
graphic observational study reported an increasing prevalence
of left ventricular hypertrophy (LVH) with decreasing esti-
mated glomerular filtration rate (eGFR) (from 32% among
patients with eGFR �60 mL/min/1.73 m2 to 75% among
patients with eGFR <30 mL/min/1.73 m2) [6, 7]. Studies using
cardiac magnetic resonance imaging with gadolinium en-
hancement have found that diffuse late gadolinium enhance-
ment is associated with the degree of LVH [8] and indicates
myocyte disarray and interstitial fibrosis histologically [9].
Although overt systolic dysfunction is not common (affecting
only 8% of patients in the above cross-sectional echocardio-
graphic study) and not clearly associated with kidney function
[7], more subtle disturbances in ventricular function (such as
reduced left ventricular deformation, early myocardial relaxa-
tion velocity or reduction in global longitudinal strain that
may contribute to diastolic dysfunction) are more common
and are present even in the early stages of CKD [10, 11].
These abnormalities provide the anatomical substrate for the
excess risk of symptomatic HF, arrhythmia and sudden car-
diac death observed among patients with advanced CKD.
Conversely, in large HF registries, 20–68% of patients with HF
have moderate to severe kidney disease [1]. The presence of
CKD is associated with poor prognosis in HF and can be used
to stratify the risk of patients with HF [6, 12, 13].

P A T H O P H Y S I O L O G Y O F H F I N C K D

The pathophysiological relationship between the heart and the
kidneys involves many different pathways. CKD may disturb
homoeostasis in ways that may be directly damaging to the car-
diovascular system [i.e. ‘direct’ risk factors such as high blood
pressure (BP) or vascular calcification] or the kidneys and
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circulation may both be subject to ‘indirect’ risk factors (e.g. di-
abetes mellitus and smoking). In addition, HF may worsen
CKD by decreasing renal perfusion, causing renal venous con-
gestion and activation of the sympathetic nervous system and
renin–angiotensin–aldosterone system (RAS, which may in
turn cause inflammation and oxidative stress). Treatment for
HF in CKD can be divided into two broad types: (i) treatments
that intervene on pathophysiological links between CKD and
HF to prevent HF and (ii) treatments known to improve prog-
nosis in established HF among people without CKD.

T R E A T M E N T T O P R E V E N T H F I N C K D

CKD is commonly associated with high BP, due to salt and wa-
ter retention, activation of the sympathetic nervous and other
neurohormonal systems and accumulation of endogenous vas-
opressors [14]. Studies of living kidney donors suggest that re-
ducing GFR by 10 mL/min as a consequence of donor
nephrectomy leads to a 5 mmHg increase in systolic BP [15].
BP is positively associated with the risk of death from HF [16]
and randomized trials have demonstrated that this association
is causal [17]. Meta-analysis of all the major BP-lowering trials
has shown that a 10 mmHg reduction in systolic BP lowers the
risk of HF by 28% [95% confidence interval (CI) 22–33] [18].
Most classes of antihypertensive treatments have similar effects,
with the exception of calcium channel blockers (which may
have a smaller benefit) and diuretics (which may have a larger
benefit) [18]. A subgroup analysis within this meta-analysis
(which included 13 trials involving nearly 38 000 participants,
of whom 6000 had CKD) suggested that the effect of BP lower-
ing on HF was larger among patients without CKD [relative
risk (RR) 0.48 (95% CI 0.38–0.62)] than among patients with
CKD [RR 0.95 (95% CI 0.70–1.04); P for interaction <0.001]
[18]. Nevertheless, the benefits of lowering BP on other cardio-
vascular outcomes remain clear even among patients with
CKD.

Anaemia is a well-recognized complication of CKD and has
been proposed as a direct cause of HF in patients with CKD fol-
lowing observational and non-randomized interventional stud-
ies, suggesting that anaemia is associated with LVH and
correcting the anaemia reverses the LVH [19, 20]. However,
randomized trials have shown that full or partial correction of
anaemia with erythropoiesis-stimulating agents (ESAs) does
not reduce left ventricular mass nor the risk of HF and may
even increase the risk of other cardiovascular outcomes such as
stroke [21].

Reducing parathyroid hormone concentrations with calci-
mimetic therapy might reduce the risk of non-atherosclerotic
cardiovascular events (such as HF) among haemodialysis
patients [22, 23]. Such treatment also reduces fibroblast growth
factor 23 (FGF23; see below). Unfortunately, the randomized
data on other interventions that target CKD-specific mecha-
nisms of HF are much less robust. For example, although there
is evidence that hyperphosphataemia (i) can cause vascular
smooth muscle cells to adopt an osteoblastic phenotype and
cause vascular calcification (which in turn increases cardiac
afterload) [24] and (ii) is associated with LVH [25], no

sufficiently large trials of phosphate reduction have been con-
ducted to elucidate whether these associations are causal.
Although FGF23 has been found to induce LVH after direct in-
tracardiac injection in mice [26], the totality of the observa-
tional evidence does not suggest that FGF23 is a cause of
cardiovascular disease (and no trials of FGF23 reduction in
CKD exist) [27].

T R E A T M E N T T O I M P R O V E P R O G N O S I S I N
E S T A B L I S H E D H F I N T H E G E N E R A L
P O P U L A T I O N

The main objectives of HF therapy in CKD (as well as in non-
CKD) patients are to decrease the preload and afterload and to
reduce LVH, treat myocardial ischaemia and inhibit neurohu-
moral hyperactivity, especially the sympathetic nervous system
and RAS [28]. However, the optimum treatment of HF in
patients with CKD remains unclear, as there is little direct evi-
dence to support any recommendations. Most of the pivotal
randomized trials that guide the management of HF define
CKD as a baseline eGFR <60 mL/min/1.73 m2 but have ex-
cluded patients with more advanced stages of CKD (i.e. eGFR
<30 mL/min/1.73 m2).

Many pharmacological and device treatments are recom-
mended for HF with reduced ejection fraction (HFrEF) [29].
The mainstays of such treatment are angiotensin-converting
enzyme inhibitors (ACEis) and b-blockers. The largest trial of
ACEis in HFrEF was Studies of Left Ventricular Dysfunction
(SOLVD)-Treatment, which compared enalapril 10 mg twice
daily with placebo among 2569 patients with HFrEF and dem-
onstrated a 16% (95% CI 5–26) reduction in mortality (primary
outcome) [30]. This effect was similar in patients with and with-
out CKD [31]. Similarly, in the four large trials of b-blockers in
HFrEF, there was no good evidence that the benefits of b-
blocker therapy were modified by baseline kidney function. The
results of these trials (and their published effects by baseline
kidney function) are summarized in Table 1.

For patients with HFrEF [with a left ventricular ejection
fraction (LVEF) <35%] who remain symptomatic after opti-
mization of ACEi and b-blocker therapy, guidelines recom-
mend a mineralcorticoid receptor antagonist (MRA). This
recommendation follows two large trials (see Table 1). Again,
the effect of treatment on the primary outcome was not mod-
ified by baseline kidney function. However, these trials high-
light the importance of safety as a consideration in the
treatment of patients with CKD. Patients with CKD are at
higher risk of hyperkalaemia (due to the reduced ability of
their kidneys to excrete potassium), which is associated with
an increased risk of hospitalization and death [43]. The trials
had stringent monitoring of serum potassium and developed
criteria for reducing the dose or stopping the MRA, such that
there was no excess death due to hyperkalaemia in the trials.
The importance of such monitoring is highlighted by
population-based studies, which demonstrate increased rates
of hospitalization for hyperkalaemia since the publication of
these trials [44]. Device therapies [implantable cardioverter
defibrillators (ICDs) and cardiac resynchronization therapy

CKD, HF and neprilysin inhibition 559
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(CRT)] also improve prognosis in selected patients with
HFrEF). A meta-analysis of the trials of ICDs has raised
the hypothesis that worse kidney function might attenu-
ate the benefit of these devices [45], but this is not the
case for CRT devices. Intravenous iron has been shown
to improve functional capacity among patients with
HFrEF and results of clinical outcomes trials are needed
[46]. Indeed, the PIVOTAL trial among haemodialysis
patients suggests that intravenous iron may reduce car-
diovascular morbidity in this population [47]. This find-
ing may alter the interpretation of the placebo-controlled
ESA trials in which participants allocated to placebo re-
ceived more iron.

However, as noted above, few patients with CKD have
HFrEF, whereas structural substrates for diastolic dysfunction
are common among patients with CKD. In contrast with
HFrEF, no treatment has yet demonstrated convincing benefit
(in terms of morbidity and mortality) in patients with HF with
moderately reduced EF (HFmrEF: LVEF �40–<50%) or HF
with preserved EF (HFpEF: LVEF �50%). The Treatment of
Preserved Cardiac Function Heart Failure with an Aldosterone
Antagonist trial tested spironolactone (15–45 mg daily) versus
placebo in 3445 patients with LVEF�45% and observed a non-
significant 11% (95% CI �4–23) reduction in the primary out-
come of cardiovascular death, aborted cardiac arrest or hospi-
talization for HF [37]. There was again no modification of the
treatment effect by baseline kidney function. However, post hoc
analyses have suggested that patients recruited from certain
geographic regions had significantly worse adherence to

treatment (when measured biochemically), which may have
made the overall result a ‘false negative’ [48].

N E P R I L Y S I N I N H I B I T I O N

Neprilysin [also known as neutral endopeptidase (NEP)]
degrades natriuretic and other vasoactive peptides (including
bradykinin, substance P, endothelin and angiotensin II) and
therefore neprilysin inhibition (NEPi) enhances the activity of
the natriuretic peptide system leading to natriuresis, diuresis,
BP reduction and inhibition of RAS and the sympathetic ner-
vous system [49]. Isolated NEPi causes reflex activation of the
RAS, so development of NEPi has always been combined with
ACEi or ARB. The potential of NEPi in HFrEF was suggested in
the Omapatrilat versus Enalapril Randomized Trial of Utility in
Reducing Events trial, which compared omapatrilat (a com-
bined ACEi and NEPi) to enalapril in 5770 patients with HF
and found a non-significant 6% (95% CI �3–14) reduction in
the primary outcome of all-cause mortality or hospitalization
for HF [50]. However, development of omapatrilat was stopped
when the Omapatrilat Cardiovascular Treatment Assessment
Versus Enalapril trial (in 25 302 patients with hypertension)
found an excess risk of angioedema compared with enalapril
(2.17 versus 0.68%; P< 0.005) [51]. This was thought to be due
to excessive bradykinin concentrations (as both ACE and NEP
degrade bradykinin) and led to the development of a new class
of drug called an angiotensin receptor neprilysin inhibitor
(ARNI), which combines NEPi with an ARB.

Heart failure

Natriuretic
peptide system

Renin angiotensin –
aldosterone system

ProBNP

NT-proBNP BNP

Natriuresis/diuresis
Vasodilation

Anti-proliferative
↓ sympathetic tone
Anti-hypertrophic

Breakdown
products

Sacubitril/valsartan
ENHANCES these actions

Action NeprilysinDegradation

Sacubitril/valsartan

Sacubitril Valsartan

Sacubitrilat
(neprilysin inhibitor)

Angiotensinogen

Angiotensin I

Angiotensin II

Action

Angiotensin
type 1 receptor

Na and water retention
Vasoconstriction

Cellular proliferation
↑ sympathetic tone

Sacubitril/valsartan
INHIBITS these actions

FIGURE 1: Effects of sacubitril/valsartan on vasoactive peptides.
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Sacubitril/valsartan is a first-in-class ARNI that is rapidly
metabolized after ingestion to the NEPi pro-drug sacubitril and
the ARB valsartan. Sacubitril/valsartan reduces BP more than
equivalent doses of valsartan alone [52]. The Prospective
Comparison of ARNI with ACEi to Determine Impact on
Global Mortality and Morbidity in Heart Failure
(PARADIGM-HF) trial randomized 8442 participants with
HFrEF to treatment with sacubitril/valsartan or enalapril and
was terminated earlier than planned based on the recommen-
dation by the Data Monitoring Committee after interim effi-
cacy analysis showed overwhelming evidence of benefit at a
median follow-up duration of 27 months. Compared with
those assigned to enalapril, participants assigned to sacubitril/
valsartan in PARADIGM-HF experienced a 20% (95% CI 13–
27) reduction in the primary composite endpoint of cardiovas-
cular death or HF hospitalization. This effect was again similar
among participants with and without CKD. Sacubitril/valsar-
tan is now recommended in the European Society of
Cardiology guidelines as a replacement for ACEi (or ARB) in
patients who have symptomatic HF with a reduced LVEF
�35% and who remain symptomatic despite maximum-
tolerated evidence-based treatment [29, 40].

Sacubitril/valsartan has also been tested among patients with
HFpEF. The PARAMOUNT trial compared sacubitril/valsartan
with valsartan in 301 patients with change in NT-proBNP as
the primary outcome [53]. At 12 weeks, among participants
assigned sacubitril/valsartan, NT-proBNP was 23% (95% CI 8–
36) lower compared with participants assigned valsartan. The
PARAGON-HF trial has recruited 4822 participants with
HFpEF to compare sacubitril/valsartan with valsartan and is
scheduled to be completed in mid-2019 [54]. The primary out-
come is the composite of cardiovascular death and total (first
and recurrent) hospitalizations for HF.

In addition to its known benefits in HFrEF (and potential for
benefit in HFpEF), NEPi might also have beneficial effects on the
kidney. Experiments using 5/6 nephrectomy models suggested that
NEPi reduces proteinuria and histological markers of kidney dam-
age more than ACE inhibition alone [55, 56]. In addition, sacubi-
tril/valsartan appeared to slow the deterioration of kidney function
in the PARADIGM-HF [57] and PARAMOUNT trials [58].
However, it also modestly increased albuminuria in both trials (al-
though baseline levels were very low in these HF populations) [59].

The UK Heart and Renal Protection (HARP)-III trial was
designed to investigate the short- to medium-term effects of
sacubitril/valsartan 97/103 mg twice daily versus irbesartan
300 mg once daily on kidney function among patients with
established CKD [60]. Patients were eligible for the UK HARP-
III trial if either their eGFR was �20–<45 mL/min/1.73 m2 or
their eGFR was �45–<60 mL/min/1.73 m2 and the urine albu-
min:creatinine ratio was >20 mg/mmol. Other pre-specified
outcomes included albuminuria, BP and cardiac biomarkers. A
total of 414 participants were randomized and the average
eGFR was 35 mL/min/1.73 m2 and median urine albumin:crea-
tinine ratio was 54 mg/mmol. Only 4 and 13% reported HF and
coronary heart disease, respectively, at baseline.

The primary outcome of measured GFR at 12 months did
not differ between the two groups: the difference in means was

�0.1 (standard error 0.7) mL/min/1.73 m2 [61]. Albuminuria
was not significantly reduced [9% (95% CI �1–18) among
those assigned sacubitril/valsartan] despite an additional 5.4/2.1
(both P< 0.001) mmHg reduction in BP. Despite the apparent
lack of an effect on short to medium-term kidney function, allo-
cation to sacubitril/valsartan did reduce both NT-proBNP and
troponin I compared with allocation to irbesartan. Study aver-
age concentations of NT-proBNP and troponin I were 18%
(95% CI 11–25) and 16% (95% CI 8–23) lower, respectively.

Although the effects on kidney function are not encouraging,
they do not exclude a benefit on long-term progression of CKD
(although any effect would not be large). However, the effects
on BP and cardiac biomarkers support the hypothesis that sacu-
bitril/valsartan might reduce the risk of cardiovascular events
(and in particular those related to HF) among patients with
CKD, irrespective of whether they have known cardiac disease.
The neutral effects on tolerability and safety outcomes in the
UK HARP-III trial would also support further investigation of
this hypothesis.

C O N C L U S I O N

The burden of HF among patients with CKD is considerable
and contributes significantly to the excess of cardiovascular
morbidity and mortality observed in this growing population.
The anatomical substrates of HF develop early in the progres-
sion of CKD and strategies to prevent it have not been rigor-
ously tested in the CKD population. Furthermore, trials among
patients with known HF have usually excluded patients with
moderate or advanced CKD, so the efficacy and—
importantly—the safety of these treatments in the CKD popula-
tion are uncertain. NEPi looks promising as a treatment that
could reduce the risk of HF safely among patients with CKD,
but clinical outcome trials are required. Newer treatments for
HF, such as sodium glucose co-transporter-2 inhibitors, are be-
ing tested in large trials in both HF and CKD populations [62–
64] and may be the first treatments that have proven efficacy
for HF among patients with a wide-spectrum of kidney disease.
Nevertheless, further trials of established and future interven-
tions are required that allow doctors to confidently reduce ex-
cess risk of cardiovascular disease in CKD.
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A B S T R A C T

Crescentic glomerulonephritis (cGN) comprises three main
types according to the pathogenesis and immunofluorescence
patterns: anti-glomerular basement membrane antibody cGN,
vasculitis-associated cGN and post-infectious immune complex
cGN. In this brief review of the immune-pathogenesis of cGN,
the focus is mainly on the role of CD8þ T cells in the progres-
sion of cGN. Under control conditions, Bowman’s capsule (BC)

provides a protected immunological niche by preventing access
of cytotoxic CD8þ T cells to Bowman’s space and thereby podo-
cytes. Even in experimental nephrotoxic nephritis, leukocytes
accumulate around the glomeruli, but remain outside of BC, as
long as the latter remains intact. However, when and where
breaches in BC occur, the inflammatory cells can gain access to
and destroy podocytes, thus converting cGN into rapidly pro-
gressive glomerulonephritis (RPGN). These conclusions also
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