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Abstract: Candida parapsilosis is an emerging human pathogen whose incidence is rising worldwide,
while an increasing number of clinical isolates display resistance to first-line antifungals, demanding
alternative therapeutics. Genome-Scale Metabolic Models (GSMMs) have emerged as a powerful in
silico tool for understanding pathogenesis due to their systems view of metabolism, but also to their
drug target predictive capacity. This study presents the construction of the first validated GSMM
for C. parapsilosis—iDC1003—comprising 1003 genes, 1804 reactions, and 1278 metabolites across
four compartments and an intercompartment. In silico growth parameters, as well as predicted
utilisation of several metabolites as sole carbon or nitrogen sources, were experimentally validated.
Finally, iDC1003 was exploited as a platform for predicting 147 essential enzymes in mimicked host
conditions, in which 56 are also predicted to be essential in C. albicans and C. glabrata. These promising
drug targets include, besides those already used as targets for clinical antifungals, several others
that seem to be entirely new and worthy of further scrutiny. The obtained results strengthen the
notion that GSMMs are promising platforms for drug target discovery and guide the design of novel
antifungal therapies.

Keywords: C. parapsilosis; genome-scale metabolic model; drug target; drug discovery

1. Introduction

In a world of climate and social change, human susceptibility to microbial disease
is increased. In particular, fungal infections have seen a significant rise in incidence
worldwide since the 1980s, with Candida spp. accounting for the majority of cases [1].
Although Candida albicans is the most commonly isolated species from candidiasis patients,
the 1990s saw a shift in incidence within the genus towards non-Candida albicans Candida
species (NCAC) [2]. From these, Candida parapsilosis has seen one of the most significant
increases, often surging as the second most common etiological agent of Candida spp.
infections, subverting historical trends in species incidence and even outranking C. albicans
in some European countries [3]. Non-geographically restricted and with a broad range of
virulence factors, adding to C. parapsilosis’ already complex pathogenicity, are both the rise
in resistance to first-line antifungals and the intrinsically lower susceptibility to alternative
therapies, such as azoles [4] and echinocandins [1], respectively. Thus, there is a strong
need to develop new antifungal therapies and develop new research tools to understand
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the metabolism of pathogens and, if possible, to use metabolic impairment as an antifungal
strategy.

Genome-Scale Metabolic Models (GSMMs) have emerged as a systems biology ap-
proach to tackle this issue [5]. GSMMs correspond to the in silico reconstructed metabolic
network of a given organism [6] and, thus, enable a systems perspective of metabolism. In
the little more than 20 years since the publication of the first model [7], GSMMs have proven
their applicability and versatility, from guiding strain design in metabolic engineering to
elucidating novel drug target discovery in molecular medicine [8]. In the past, GSMMs
have been mostly associated with the metabolic engineering of microbial cell factories
due to their potential to simulate global metabolic behaviour and provide clues for the
optimisation of added-value compound production [9]. However, recent examples have
demonstrated the potential of these models in the search for new drug targets in pathogenic
organisms [8,10–14].

This work presents the first validated in silico genome-scale metabolic reconstruction
of the human pathogen C. parapsilosis, iDC1003. This model is provided in the well-
established SBML format and can easily be read in most metabolic engineering platforms,
such as OptFlux [15] and COBRA [16]. A set of predicted essential genes and reactions
common to other pathogenic Candida spp. was obtained from the validated model, and
their targetability as putative novel antifungal drug targets is discussed.

2. Materials and Methods
2.1. Model Construction

The herein described metabolic model reports on the yeast Candida parapsilosis with
the taxonomic ID 5480. Model reconstruction was performed using merlin 4.0.5 [17], and
further curation and validation were performed on OptFlux 3.0 [15] using the IBM CPLEX
solver. Throughout the curation process, reactions were edited, manually added to, or
removed from the model to correct gaps in the network using KEGG pathways, MetaCyc
Database, and literature data as standards.

2.1.1. Enzyme and Reaction Annotation

The initial draft model construction comprised enzyme and subsequent reaction
annotation. The genome sequence of the reference strain Candida parapsilosis CDC317
was obtained from NCBI’s Assembly database, accession number ASM18276v2 [18], and
the Taxonomy ID from NCBI [19], which is required by merlin to identify the organism
under study throughout the reconstruction process univocally. The genome-wide func-
tional annotation was processed by merlin based on taxonomy and frequency of similar
sequences through remote Basic Local Alignment Search Tool (BLAST) [20] similarity
searches to the UniProtKB/Swiss-Prot database [21]. Hit selection was performed as de-
scribed elsewhere [22], and phylogenetic proximity was implemented as described in
Tsui et al. 2008 [23]. Protein–reaction associations available in the Kyoto Encyclopedia of
Genes and Genomes (KEGG) [24] database were used to assemble the draft network.

2.1.2. Correcting Reaction Reversibility, Directionality, and Balance

The initial reversibility curation was automatically performed by merlin, which imple-
ments information from remote tools such as eQuilibrator [25], as described by Dias et al. [22].
Further curation was entirely manual and justified, resorting to information from Meta-
Cyc [26] and existing literature. Unbalanced reactions were identified automatically, and
balancing was performed manually and based on MetaCyc [26], ChEBI [27], Brenda [28],
and existing literature. All the reactions manually edited during the curation process can
be found in Supplementary file S1.

2.1.3. Compartmentalisation

Compartmentalisation was implemented using WoLF PSORT [29], a protein localisa-
tion predictor, on the already connected non-compartmentalised model to simplify issue
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solving. The constructed model includes four compartments: extracellular, cytoplasm,
mitochondrion, and peroxisome and one intercompartment: the cytoplasmic membrane.

A compartmentalised model calls for the implementation of transport reactions to
connect intercompartment pathways. Transport reactions were generated using genomic
information, together with the public database TCDB [30], using merlin’s integrated tool
TranSyT [31]. Transport reactions across internal and external membranes for currency
metabolites, such as H2O, CO2, and NH3, often carried by facilitated diffusion, were added
to the model with no gene association.

2.1.4. Defining the Biomass Equation

The biomass equation encompasses the cells’ major components and their relative
numerical contributions—DNA, RNA, carbohydrates, lipids, and proteins—and acted as
the objective function in the presented essentiality analysis. The content of each component
was determined based on the literature. All the calculations were performed as described
previously [32].

The reconstructed model also includes ATP requirements for both biomass production
and cell maintenance—growth-associated maintenance (GAM) and non-growth-associated
maintenance (NGAM), respectively. A GAM value of 25.65 mmol ATP/gDCW was consid-
ered for the biomass equation, calculated based on the ATP requirements for the biosyn-
thesis of cell polymers, as shown in Mishra et al. [33], then adjusted for the considered
biomass macromolecule composition.

Non-growth-associated ATP maintenance, the amount of ATP required by the cell
repair and similar processes, was implemented in this model as an autonomous equation,
thus forcing a basal ATP consumption—flux bounds inferred from Candida tropicalis [33].
The biomass equation’s components and their relative content are shown in Supplementary
file S1.

The theoretical ratio used in the S. cerevisiae iMM904 metabolic model for the phosphorus-
to-oxygen ratio was applied. Three generic reactions contributing to this ratio were au-
tomatically generated by merlin and were updated to replicate the same ratio as in the
iMM904 model:

Reaction R00081:

1.0 Oxygenmito + 4.0 Ferrocytochrome cmito + 6.0 H+
mito ↔ 2.0 H2Omito + 4.0 Ferricytochrome cmito + 6.0 H+

cyto, (1)

Reaction T02161:

1.0 Ubiquinolmito + 2.0 Ferricytochrome cmito + 1.5 H+
mito ↔ 1.0 Ubiquinonemito + 2.0 Ferrocytochrome cmito + 1.5 H+

cyto (2)

Reaction T00485:

1.0 Orthophosphatemito + 1.0 ADPmito + 3.0 H+
cyto ↔ 1.0 ATPmito + 1.0 H2Omito + 3.0 H+

mito (3)

The final balance reaction:

3.0 Orthophosphatemito + 1.0 Oxygenmito + 3.0 ADPmito + 2.0 Ubiquinoolmito ↔ 3.0 ATPmito + 5.0 H2Omito + 2.0 Ubiquinonemito (4)

2.2. Model Simulations and Enzyme Essentiality Prediction

The model simulations were performed using the flux balance analysis (FBA) [34]
formulation on OptFlux 3.0 [15] using the IBM CPLEX solver. The determination of critical
essential genes or reactions was performed with the following rationale: a gene/reaction is
considered essential if, when removed from the model, this leads to a value of biomass flux
of less than 5% of the reference value calculated for the wild-type strain. The essentiality
of a gene/reaction was assessed by setting the flux of the reactions corresponding to a
particular gene to zero and simulating the optimal growth rate with FBA. If deletion of
one gene/reaction leads to non-growth, that gene/reaction is defined as essential. The
simulations for gene/reaction essentiality were performed in environmental conditions
simulating the RPMI medium, which mimics human serum.
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2.3. Model Validation
2.3.1. Strains and Growth Media

C. parapsilosis type strain CDC317 was batch cultured at 30 ºC in orbital agitation
(250 rpm) in yeast extract–peptone–dextrose (YPD) for inoculating cultivation and in syn-
thetic minimal media (SMM) for growth parameter determination. Media compositions
were as follows: YPD: 20 g/L glucose (Merck, Darmstadt, Germany), 20 g/L peptone
(Merck, Darmstadt, Germany), and 10 g/L yeast extract (Merck, Darmstadt, Germany);
SMM: 20g/L glucose (Merck, Darmstadt, Germany), 2.7 g/L ammonium sulphate (Merck,
Darmstadt, Germany), 0.05 g/L magnesium sulphate (Riddle-de-Haen), 2 g/L potassium
dihydrogen phosphate (Panreac, Barcelona, Spain), 0.5 g/L calcium chloride (Merck, Darm-
stadt, Germany), and 100 µg/L biotin (Sigma).

2.3.2. Aerobic Batch Cultivation

Precultures (100 mL) for aerobic batch experiments were grown in SMM in 500mL
flasks at 30 ºC in orbital agitation (250 rpm). Cells were grown until the exponential phase
and used to inoculate fresh media at an initial optical density at 600nm (OD600nm) of 0.3.
Aerobic batch cultivations were incubated in SMM at 30 ºC with orbital agitation (250 rpm)
for 10 h.

2.3.3. Cell Density, Dry Weight, and Metabolite Concentration Assessment

During C. parapsilosis cell cultivation in SMM medium, 4 mL samples were harvested
from the cell culture every two h, aiming for the quantification of biomass and extracellular
metabolites. Cell density was monitored by measuring the OD600nm. For dry weight
determination, culture samples were centrifuged at 13,000 rpm for 3 min and the pellets
were lyophilised for 72 h at −80 ◦C and weighted. The supernatants were centrifuged once
more for clarification and the concentrations of glucose, ethanol, glycerol, and acetic acid
in the supernatants were determined by HPLC on an Aminex HPX-87 H Ion Exchange
chromatography column, eluted with 0.0005 M H2SO4 at a flow rate of 0.6 mL/min at
room temperature. Concentrations were determined through the corresponding calibration
curves. Samples from any batch cultivation were analysed in triplicate. The specific
growth rate, specific glucose consumption rate, and the specific production rates of ethanol,
glycerol and acetic acid were calculated during the exponential growth phase as indicated
elsewhere [35].

3. Results and Discussion
3.1. Model Characteristics, Highlighting C. Parapsilosis Unique Metabolic Features

The herein described C. parapsilosis metabolic model, iDC1003, comprises 1003 genes
associated with 1804 reactions—of which 358 are drains (exchange constraints set to mimic
the environmental conditions) and 536 are transport reactions—and 1278 metabolites across
four compartments (extracellular, cytoplasm, mitochondria, and peroxisome) and within
an intercompartment, the plasma membrane. The model can be found in an SBML format
in Supplementary file S2.

Manual curation assessed a total of 847 reactions, from which 83 were mass balanced,
162 were corrected regarding reversibility or directionality, and 625 were added or re-
moved from the model or had their annotation corrected or completed, as detailed in
Supplementary file S1.

The biomass equation (Table 1) encompasses the cell’s major components, along with
their respective and relative contributions—DNA, RNA, carbohydrate, protein, lipid, and
cofactor content. The equation’s composition in carbohydrate [36], lipid [33,37]—sterol [33],
phospholipid [33], and fatty acid [38]—and protein [33] was inferred from literature data.
On the other hand, for the composition of DNA, the whole genome sequence was used to
estimate the amount of each deoxyribonucleotide, as described in [39], while mRNA, rRNA,
and tRNA were used to estimate the total RNA in the cell, as described in [9]. Essential
metabolites were included in the biomass composition to account for the essentiality of
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their synthesis pathways 39 qualitatively. The growth and non-growth ATP requirements
were inferred from Candida tropicalis [33].

Table 1. Biomass composition used in the model iDC1003. The full individual validated contributions
of each of these metabolites are shown in Supplementary file S1.

Metabolite g/gDCW Metabolite g/gDCW

Lipids Proteins

Lanosterol 0.00063 L-Valine 0.03536
Squalene 0.00017 L-Tyrosine 0.02771

Ergosterol 0.00455 L-Tryptophan 0.01356
Phosphatidylserine 0.00237 L-Threonine 0.02230

1-Phosphatidyl-D-myo-inositol 0.00173 L-Serine 0.02478
Phosphatidylcholine 0.00288 L-Proline 0.01902

Phosphatidylethanolamine 0.00194 L-Phenylalanine 0.02845
Phosphatidic acid 0.00052 L-Methionine 0.04275

Phosphatidylglycerol 0.00186 L-Lysine 0.06440
Tetradecanoic acid 0.00001 L-Leucine 0.03933
Hexadecanoic acid 0.00074 L-Isoleucine 0.02115

(9Z)-Hexadecenoic acid 0.00010 L-Histidine 0.01887
Octadecanoic acid 0.00032 L-Glutamate 0.03987

(9Z)-Octadecenoic acid 0.00278 L-Cysteine 0.00487
(9Z,12Z)-Octadecadienoic acid 0.00071 L-Aspartate 0.00346

(9Z,12Z,15Z)-Octadecatrienoic acid 0.00016 L-Asparagine 0.00362
Triacylglycerol 0.00467 L-Arginine 0.00008

Monoacylglycerol 0.00401 L-Alanine 0.03551
Diacylglycerol 0.00316 Glycine 0.02150

Sterol esters 0.00445 L-Glutamine 0.03987
Soluble Pool Carbohydrates

Thiamine 0.00096 Chitin 0.01170
Ubiquinone-6 0.00096 Mannan 0.23437

NADP+ 0.00096 β (1,3)-Glucan 0.13621
NAD+ 0.00096 Deoxyribonucleotides
FMN 0.00096 UTP 0.01599
FAD 0.00096 GTP 0.01378
CoA 0.00096 CTP 0.01313

Biotin 0.00096 ATP 0.01730
Pyridoxal phosphate 0.00096 Ribonucleotides

Tetrahydrofolate 0.00096 dTTP 0.00111
dGTP 0.00074
dCTP 0.00086
dATP 0.00111

The iDC1003 model was compared to the well-characterised genome-scale metabolic
models of C. glabrata [40], S. cerevisiae [41], and C. albicans [14] to highlight unique metabolic
features of C. parapsilosis. Although iDC1003 uses standard identifiers for reactions (KEGG
ID), it is not possible to assess how the reactions differ among the four models, as the re-
maining models do not use the same identifiers (except for C. albicans). Thus, a comparison
across the existing models was carried out based on the proteins associated with an EC
number. After intersecting the EC numbers present in each of the three models, 85% of
the proteins with an associated EC number in the C. parapsilosis model were found to also
be present in at least one of the other three models (Figure 1). However, the remaining
15% (89/528) are exclusive to this model and may represent unique metabolic features of C.
parapsilosis. It is also interesting to observe that 41 EC numbers are shared exclusively by
Candida species and not by S. cerevisiae. These 41 enzymatic activities may be related to
unique features of this genus, eventually linked to its pathogenicity. The complete list of
unique EC numbers can be found in Supplementary file S1.
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Multiple List Comparator (www.molbiotools.com (accessed on 1 December 2021)).

Occasionally, unique EC numbers might be related to outdated EC numbers or as-
sociated with other enzymes responsible for the same reactions in the different models.
Nevertheless, specific cases stand out as potentially unique features of C. parapsilosis:

- 1.1.1.138: mannitol 2-dehydrogenase enables C. parapsilosis to use mannitol as a
carbon source.

- 1.3.1.38: trans-2-enoyl-CoA reductase is involved in fatty acid elongation, likely
affecting membrane properties.

- 3.1.4.12: sphingomyelin phosphodiesterase participates in sphingolipid metabolism,
responsible for sphingomyelin hydrolysis.

- 3.5.1.75: urethane amidohydrolase enables C. parapsilosis to use urethane as a
nitrogen source.

- 1.16.1.7: ferric-chelate reductase, which is involved in iron starvation, catalyses the
reduction of bound ferric iron in a variety of iron chelators (siderophores), resulting in the
release of ferrous iron.

- 1.16.3.1: ferroxidase, involved in iron homeostasis, oxidises Fe(II) to Fe(III), which
allows the subsequent incorporation of the latter into proteins such as apotransferrin
and lactoferrin.

3.2. Model Validation
3.2.1. Assessing the Model’s Ability to Predict Carbon and Nitrogen Source Usage

Simulations were performed in SMM and compared to phenotypic growth data from
existing literature to assess iDC1003’s reliability in predicting biomass production from
different sole carbon or nitrogen sources. Data related to C. parapsilosis strains, other than
the reference CDC317 strain, were also considered in the analysis to increase the number of
carbon and nitrogen sources accounted for. A total of 47 sole carbon sources and 17 sole
nitrogen sources were evaluated. The C. parapsilosis model correctly predicted growth in
94% of the carbon sources tested and in 100% of the nitrogen sources (Table 2). The model
only failed for three carbon sources, 2-Keto-D-gluconic acid, L-arabinose, and ribitol, which
the literature indicates that C. parapsilosis can use for growth. Interestingly, as far as it could
be assessed, there is no experimental evidence of any enzymes behind these pathways
existing in yeasts. It would be interesting to look deeper into these organisms’ eventually
unique 2-Keto-D-gluconic acid, L-arabinose, and ribitol assimilation pathways.

www.molbiotools.com
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Table 2. In silico predictions versus in vivo described data regarding C. parapsilosis’ ability to grow in
the presence of sole carbon and nitrogen sources. From the 62 different tested compounds, iDC1003
correctly predicted positive or null biomass production on 95%. A plus represents biomass production
(+), a minus (−) no biomass production, and prediction disparities are highlighted in bold. Referenced
data from Westerdijk fungal collection refer to strains CBS 1954 and CBS 604.

In Vivo In Silico Reference In Vivo In Silico Reference

Carbon Source
Glucose + + [42–47] L-Sorbose + + [47]
Maltose + + [43,47] D-arabinose − − [43,47]
Sucrose + + [42,44–47] L-arabinose + − [43,47]
Lactose − − [43,45–47] i-Erythritol − − [43,47]

Galactose + + [43,47] Fucose − − [43]
Melibiose − − [43,44,46,47] Salicin − − [43,47]
Cellobiose − − [43,47] Arbutin − − [43,47]

Inusitol − − [43,46,47] D-ribose + + [43,47]
Xylose + + [43,45–47] D-Gluconate + + [47]

Raffinose − − [43,47] 2-Keto-D-gluconic acid + − [47]
Trehalose + + [43,47] Inulin − − [47]
Galactitol − − [43,45–47] D-Glucosamine − − [47]

Rahmnnose − − [43,47] D-Galacturonate − − [47]
Glycerol + + [43,47] Quinate − − [47]
Ribitol + − [43,47] D-Glucono-1,5-lactone + + [47]

Mannitol + + [43,47] Propane-1,2-diol − − [47]
Sorbitol + + [43,47] D-Glucarate − − [47]
Ethanol + + [43,47] L-Arabinitol − − [47]

Methanol − − [47] D-Glucuronate − − [47]
Succinate + + [47] Butane 2,3 diol − − [47]

Lactate − − [47] D-Galactonate − − [47]
Citrate + + [47] D-Tagaturonate − − [47]
Starch − − [47] Fructose + + [42]
Xylitol + + [47]

Nitrogen Source
Ammonium + + [47,48] Urethane + + [49]

Citrate − − [47] Creatine − − [47]
L-Lysine + + [47] Imidazole − − [47]

Creatinine − − [47] L-Glutamate + + [48]
D-Tryptophan − − [47] L-Proline + + [48]

Nitrite − − [47] L-Isoleucine + + [48]
Cadaverine + + [47] Allantoin + + [48]

Glucosamine − − [47] 4-Aminobutanoate + + [48]
Ethylamine + + [47]

3.2.2. Assessing the Model’s Ability to Quantitatively Predict Growth Parameters

Specific growth rate, glucose consumption rate, and metabolite production rates
were experimentally determined to validate the model quantitatively due to the lack of
literature data for C. parapsilosis. C. parapsilosis CDC 317 cells were cultivated in SMM
medium, and growth was followed by regular measurements of the OD600nm and the cell
dry weight. Samples were harvested to assess glucose concentration as a function of time
during the exponential growth phase. In these conditions, a glucose consumption rate
of 2.098 +/− 0.404 mmol·gDCW−1·h−1 was determined, while no ethanol, glycerol, or
acetate production could be detected.

A simulation of the system’s behaviour in environmental conditions of SMM medium
with a fixed glucose uptake flux of 2.098 mmol·g−1 dry weight·h−1 was performed to eval-
uate the model’s ability to predict the specific growth rate. The remaining nutrient fluxes
were left unconstrained, as the system in these conditions is glucose-limited. Considering
the experimentally determined glucose consumption rate of 2.098 mmol·gDCW−1·h−1,
the model predicted a specific growth rate of 0.172 h−1. Compared to the experimentally
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determined rate of 0.159 +/− 0.027 h−1, the predicted growth rate is within the uncertainty
interval of the experimentally determined parameter. Thus, there is no significant differ-
ence between both, which suggests iDC1003 can predict C. parapsilosis growth parameters
(Table 3) quantitatively. Additionally, the formation of glycerol, acetic acid, and ethanol as
byproducts was not predicted to occur, which agrees with the experimental data and the
notion that C. parapsilosis is a Crabtree-negative yeast. Altogether, iDC1003 was proved to
predict the main metabolic features of C. parapsilosis quantitatively.

Table 3. Growth parameters of iDC1003 and comparison with experimentally determined values.

Specific Growth
Rate (h−1)

q (mmol g−1 dry weight h−1)

Glucose Ethanol Glycerol Acetic acid

In silico 0.172 2.098 0 0 0
In vivo 0.159 ± 0.027 2.098 ± 0.404 0 0 0

3.3. Enzyme Essentiality Assessment: Looking for New Drug Targets

Identification of essential enzymes of a given pathogen should, in principle, lead to
the identification of good drug targets since, if one enzyme is essential for its growth or
survival, a compound capable of inhibiting it could potentially be used as a drug with
pharmacological activity against that pathogen. The drug target will be ideal if it is essential,
or at least essential under conditions that mimic the human host environment, while having
no human homolog. Based on these principles, iDC1003 was used to identify potential new
drug targets by determining enzyme essentiality. For that, a list of essential reactions was
obtained through simulation of the system’s behaviour in RPMI medium, which mimics
the environmental conditions of human serum. A total of 147 enzymes were predicted as
essential in iDC1003, excluding drains, transport reactions and those without an associated
or incomplete EC number. The complete list of predicted essential enzymes can be found
in Supplementary file S1.

Finally, we decided to intersect the potential drug targets obtained through the
C. parapsilosis model with those resulting from the two existing models for pathogenic
Candida species, C. albicans [14] and C. glabrata [40], to focus on essential enzymes that
can be used as targets in the treatment of infections caused by all Candida species. After
the intersection, 56 essential enzymes common to the three models were found (Table 4,
Figure 2).
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medium environmental conditions in the genome-scale metabolic models iDC1003, iRV781, and
iNX804, respectively. Diagrams were obtained using Multiple List Comparator (www.molbiotools.
com (accessed on 1 December 2021)).
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Table 4. Enzymes predicted to be essential in RPMI medium based on the screening of the genome-
scale metabolic models of C. parapsilosis, iDC1003, C. albicans, iRV781, and C. glabrata, iNX804.

Gene Name

EC Number

Gene Name

EC Number
C. Parapsilosis

S. Cerevisiae Human
C. Parapsilosis

S. Cerevisiae Human

Homolog Homolog Homolog Homolog

CPAR2_302110 ERG26 NSDHL 1.1.1.170 CPAR2_805350 PEL1 PGS1 2.7.8.5
CPAR2_104580 IMD4 IMPDH 1.1.1.205 CPAR2_804250 PHO8 ALPL 3.1.3.1
CPAR2_801560 ERG27 DHRS11 1.1.1.270 CPAR2_602700 GEP4 PTPMT1 3.1.3.27
CPAR2_110330 HMG1 HMGCR 1.1.1.34 CPAR2_100500 URA4 CAD 3.5.2.3
CPAR2_405900 ERG24 TM7SF2 1.3.1.70 CPAR2_806200 IPP1 PPA2 3.6.1.1

ERG4 ERG4 - 1.3.1.71 CPAR2_805940 ADE2 PAICS 4.1.1.21
CPAR2_206550 TMP1 TYMS 2.1.1.45 URA3 URA3 UMPS 4.1.1.23
CPAR2_202250 ADE17 ATIC 2.1.2.3 CPAR2_109530 MVD1 MVD 4.1.1.33
CPAR2_203160 URA2 CAD 2.1.3.2 CPAR2_800750 CAB3 PPCDC 4.1.1.36
CPAR2_203160 URA2 CAD 6.3.5.5 CPAR2_303390 FOL1 - 4.1.2.25
CPAR2_106400 FKS1 - 2.4.1.34 CPAR2_303390 FOL1 - 2.5.1.15
CPAR2_802790 URA5 UMPS 2.4.2.10 CPAR2_212310 ABZ2 - 4.1.3.38
CPAR2_208260 ADE4 PPAT 2.4.2.14 CPAR2_204960 ADE13 ADSL 4.3.2.2
CPAR2_302840 BTS1 GGPS1 2.5.1.1 CPAR2_401630 IDI1 IDI1 5.3.3.2
CPAR2_103950 ERG20 FDPS 2.5.1.10 CPAR2_301800 ERG7 LSS 5.4.99.7
CPAR2_403110 ABZ1 - 2.6.1.85 CPAR2_212740 MET7 FPGS 6.3.2.17
CPAR2_502760 CAB5 COASY 2.7.1.24 CPAR2_500190 ADE1 PAICS 6.3.2.6
CPAR2_202590 FMN1 RFK 2.7.1.26 CPAR2_208400 ADE5,7 GART 6.3.3.1
CPAR2_602050 CAB1 PANK 2.7.1.33 CPAR2_208400 ADE5,7 GART 6.3.4.13
CPAR2_105320 URA6 CMPK2 2.7.4.14 CPAR2_803640 ADE12 ADSS 6.3.4.4
CPAR2_400710 ERG8 PMVK 2.7.4.2 CPAR2_204070 ADE6 PFAS 6.3.5.3
CPAR2_304260 PRS1 PRPS1 2.7.6.1 CPAR2_804060 ACC1 ACACA 6.4.1.2
CPAR2_500260 PIS1 CDIPT 2.7.8.11 CPAR2_803530 ERG12 MVK 2.7.1.36
CPAR2_211620 ADE8 GART 2.1.2.2 CPAR2_701400 ERG13 HMGCS 2.3.3.10
CPAR2_602300 COQ3 COQ3 2.1.1.114 FAS1 FAS1 - 2.3.1.86
CPAR2_209250 COQ5 COQ5 2.1.1.201 CPAR2_803560 GUA1 GMPS 6.3.5.2

ERG11 ERG11 CYP51A1 1.14.14.154 CPAR2_100620 URA7 CTPS1 6.3.4.2
CPAR2_303080 GUK1 GUK1 2.7.4.8 CPAR2_804900 URA1 - 1.3.98.1

Blue: enzymes without any human homolog or drug association. Red: enzymes targeted by drugs currently
used to treat Candida infections. Green: enzymes with homologs that are currently targeted in the treatment of
infections caused by other pathogens.

Consistently, well-established antifungal drug targets were identified, including the
well-known targets of azoles and echinocandins, Erg11 and Fks1, respectively. Additionally,
some of the identified predicted drug targets are homologs of enzymes used as drug targets
against other pathogenic organisms, including Imh3, which is targeted by inosinic acid in
Streptococcus pyogenes, Fol1, a target of sulfonamides, and Fas1, a target of ethionamide, used
in the treatment against Mycobacterium tuberculosis. These confirmatory results illustrate
the potential of the used approach in the quest for new drug targets. More interesting,
however, is the identification of numerous potential targets, as identified herein, that are not
currently targeted by any drug used in clinical practice. There are some new targets with
tremendous potential, as these do not have an orthologous enzyme in humans. Although
not an excluding factor, the absence of a human ortholog is a preferable attribute, as this
translates into lower chances of host drug toxicity and may allow for greater freedom of
drug design.

Among the identified potential new drug targets, Abz1/2, Erg4, and Ura1 emerge as
enzymes without any human homolog or drug association.

Fungi rely on folate de novo biosynthesis given their inability to uptake folate from
the environment [50]. FOL1, ABZ1, and ABZ2 encode key enzymes in the folate biosyn-
thesis pathway (Figure 3). Furthermore, these enzymes have no human orthologs, as
humans rely on diet-derived folate [50]. The dihydropteroate synthase encoded by FOL1
has been shown to be successfully inhibited by antifolates, such as sulfonamides, in a
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series of microorganisms [50,51]. However, antifolate therapy for Candida infections is not
particularly effective considering current antifolate compounds [52]. In fact, for C. albicans,
only sulfanilamide is used clinically, and it is restricted to topical use [53]. Given the
efficacy of antifolates in treating infections by other etiologic agents, this might present the
opportunity to design new effective antifungal compounds against Candida Fol1. On the
other hand, no inhibitors of the para-aminobenzoate synthetase encoded by ABZ1 or of the
4-amino-4-deoxychorismate lyase encoded by ABZ2 are currently known, making these
two enzymes fully novel putative drug targets worth further exploitation.
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The Ura1 and Erg4 proteins may also be interesting drug targets. Ura1 has no human
ortholog and, although this protein is not the target of any known drug, Aro9, from the same
pathway, is a known target of atovaquone used to treat Plasmodium falciparum infections. In
turn, Erg4, also with no human ortholog, is involved in ergosterol biosynthesis, a pathway
currently targeted by azole drugs.

4. Conclusions

The first validated global metabolic model for the human pathogen C. parapsilosis is
presented in this study. The model was manually curated and validated experimentally
and proved to be able to predict the main metabolic features of C. parapsilosis quantitatively.
Furthermore, iDC1003 is robust in predicting the use of several carbon and nitrogen sources.
The model shares 85% of the proteins with an associated EC number in other published
yeast models. However, 15% of them are exclusive to this model and may represent
some unique metabolic features of C. parapsilosis. Using iDC1003, several enzymes were
predicted to be essential in RPMI medium, including some already known targets of
antifungal agents and other antimicrobial agents used in clinical practice, illustrating the
potential of the used approach in the quest for new drug targets. Several of the identified
potential drug targets are not currently targeted by any drug used in clinical practice, and
deserve further study. Among the identified potential new drug targets, Abz1/2, Erg4, and
Ura1 stand out as enzymes without any human homolog or drug association. However,
all other targets are worthy of scrutiny as, in fact, many of the drugs currently used in
clinical practice have human orthologs. In these cases, the strategy may involve taking
advantage of the structural differences between the proteins in the two organisms to design
efficient compounds.
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Despite the clear usefulness of these types of models, it is important to highlight
that these reconstructions have limitations. Firstly, the basis of GSMMs is the genome’s
functional annotation. Depending on the stringency of the criteria imposed on hit selection,
such a procedure may lead either to compromising rates of false positive or negative
annotations. Furthermore, such models do not encompass regulatory processes due to the
high complexity of such an integration. Note how enzymatic activity can be regulated at
different levels—from gene expression to post-translational modifications—and may result
in given pathways being preferential in certain environmental conditions. The exclusion of
such mechanisms, particularly regarding essentiality prediction, may result in predicted
essential ECs that would otherwise not be metabolically relevant in the conditions of
interest. Lastly, these simulations do not consider supra-metabolic factors, such as stress
factors. Even so, and considering all these limitations, GSMMs allow for increasingly
guided and reliable drug target discovery—as illustrated in this paper.
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