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Abstract
Background & Aims: Compositional changes of the faecal microbiome in cirrhosis are 
well described and have been associated with complications and prognosis. However, 
it is less well known, which disease or treatment-related factors affect microbiome 
composition most distinctively.
Methods: 16S rDNA sequencing data of 88 cirrhotic outpatients were investigated. 
Factors influencing microbiome composition were analysed by univariate and multi-
variate redundancy analysis. The association of the identified factors with changes 
in diversity and taxonomic composition was studied in depth using analysis of com-
position of microbiome, LDA-effect size and least absolute shrinkage and selection 
operator regularized regression.
Results: Disease severity and aetiology, proton pump inhibitor (PPI) use, nutritional 
status, age and C-reactive protein are significant explanatory variables for faecal mi-
crobiome composition in liver cirrhosis. Despite some taxonomic overlaps especially 
between disease severity and PPI use, we could show that the effects of disease 
severity, aetiology, PPI use and age are independent factors influencing microbiome 
composition also in subgroup analyses.
Conclusion: Our cross sectional system biology study identifies disease severity, ae-
tiology, PPI use and age as independent factors that influence microbiome composi-
tion in liver cirrhosis. In chronic diseases with high morbidity, such as liver cirrhosis, 
precise patient metadata documentation is of utmost importance in microbiome anal-
ysis. Further studies with a higher sample size are necessary to validate this finding.
Trial Registration Number: NCT01607528

K E Y W O R D S

aetiology, cirrhosis, disease severity, inflammation, malnutrition, proton pump inhibitor

www.wileyonlinelibrary.com/journal/liv
mailto:﻿
https://orcid.org/0000-0001-5508-8271
https://orcid.org/0000-0001-7279-0628
http://creativecommons.org/licenses/by/4.0/
mailto:vanessa.stadlbauer@medunigraz.at


     |  867STADLBAUER et al.

1  | INTRODUC TION

Liver cirrhosis is an increasingly common disease with high com-
plication rates. It leads to reduced quality of life and a high burden 
of disease for patients, their family and the healthcare system.1 
Cirrhosis is associated with changes in the structure and func-
tionality of the microbiome of the gut2-5 and other body sites, 
such as skin or the mouth.6 Compared to healthy individuals, a 
decrease in faecal microbial diversity and an imbalance between 
commensal and pathogenic taxa is seen in patients with cirrho-
sis. Furthermore, cirrhosis-associated dysbiosis goes hand in hand 
with increased gut permeability, intestinal bacterial translocation, 
intestinal and systemic inflammation leading to complications of 
cirrhosis and an increased mortality.3,7-11 Dysbiosis in general and 
especially in cirrhosis may be caused by host and environmental 
factors, which shape the microbiome. These factors include alco-
hol consumption, aetiology and severity of liver disease, diet com-
position and medication. 5,12-18 Drug intake has emerged as one 
of the most important drivers of dysbiosis. It has recently been 
shown in vitro that, apart from classic antimicrobials, many other 
drugs have an extensive impact on human gut bacteria.19 A pop-
ulation-based deep sequencing study of the faecal microbiome 
revealed that proton pump inhibitors (PPI) were associated with 
the most profound microbiome changes, followed by statins, anti-
biotics, laxatives and beta blockers.20 Nearly 50% of older adults 
take one or more medications that are not medically indicated and 
45% of patients over the age of 75 take five or more drugs per 
day.21 The known consequences of polypharmacy and over-medi-
cation are increased healthcare costs, adverse drug reactions, in-
creased rates of drug-drug interactions, decreased performance 
status of the patients, cognitive impairment, higher risk of falls and 
non-compliance. Interventions to reduce polypharmacy are diffi-
cult to implement.22,23

From the currently available data it is not known which of the 
above described factors may have the strongest impact on faecal mi-
crobiome composition in cirrhosis and would therefore be the most 
promising therapeutic goal.

We therefore conducted a systems biology analysis on a large 
dataset of cirrhotic patients of different aetiology and disease sever-
ity to analyse, which factors have the strongest influence on faecal 
microbiome composition and predicted metagenomics in patients 
with liver cirrhosis.

2  | MATERIAL S AND METHODS

2.1 | Patients

We included faecal 16S microbiome sequencing data from 
cirrhotic patients recruited at the outpatient clinic of the 
Department of Gastroenterology and Hepatology, University 
Hospital of Graz, Austria who were screened for an intervention 
study10 between July 2012 and September 2013 in this post-hoc 

analysis. All patients gave written informed consent. Diagnosis 
of cirrhosis was based on liver histopathological examinations, 
or a combination of clinical, radiological and/or labouratory fea-
tures. Patients with a Child-Pugh score of 12 or higher, alcohol 
consumption within 2  weeks prior to inclusion, active infection 
at screening, gastrointestinal haemorrhage within 2 weeks prior 
to inclusion, immuno-modulating drugs, hepatic encephalopa-
thy stage two or higher, renal failure (creatinine over 1.7  mg/
dL), other severe diseases unrelated to cirrhosis, malignancy or 
pregnancy were excluded. Stool and blood samples analysed in 
this study were taken before patients received any study medica-
tion. The study protocol was approved by the institutional review 
board (ethics committee) in Graz (23-096 ex 10/11), registered 
at clinicaltrials.gov (NCT01607528) and performed according to 
the declaration of Helsinki. The following characteristics were as-
sessed as possible microbiome shaping factors: Age, sex, smok-
ing status, aetiology of cirrhosis (alcohol, hepatitis C and other 
aetiologies; other aetiologies contained cholestatic liver disease, 
non-alcoholic steatohepatitis, hepatitis B, hemochromatosis and 
Wilsons disease), severity of liver disease (Child-Pugh grade and 
Model for End-stage Liver Disease (MELD) score and the indi-
vidual labouratory parameters albumin, bilirubin, hemoglobin, 
uric acid, creatinine, prothrombin time (international normalized 
ratio) as well as complications (presence of ascites, hepatic en-
cephalopathy), nutritional status (Subjective Global Assessment 
(SGA)),24 comorbidities,25 drug intake (number of different drug 
classes and the following individual drug classes: proton pump 
inhibitors, beta blocker, other antihypertensives, diuretics, lactu-
lose, antidiabetics, antidepressants, silymarin), intestinal per-
meability (lactulose/mannitol ratio, sucrose recovery, zonulin in 
stool, diamino-oxidase (DAO) in serum), intestinal inflammation 
(calprotectin in stool) and systemic inflammation (C-reactive pro-
tein (CRP), interleukin-6, interleukin-8, interleukin-10, tumour 
necrosis factor (TNF)-alpha, soluble CD 163 (sCD163), soluble 
Mannose receptor (sMR), each in plasma); neutrophil resting, 
priming and full burst; biomarkers of bacterial translocation (li-
popolysaccharide [LPS], lipopolysaccharide binding protein [LBP], 
soluble CD14 (sCD14)).

2.2 | Total DNA isolation, 16S library preparation, 
sequencing and analysis

Total DNA was isolated from frozen stool samples using MagnaPure 
LC DNA Isolation Kit III (Bacteria, Fungi) (Roche, Mannheim, 
Germany) according to manufacturer's instructions including me-
chanic and enzymatic lysis as described in Klymiuk et al 2017.26 For 
16S rDNA sequencing hypervariable regions V1-V2 were amplified in 
a target-specific PCR (primers: 27F-AGAGTTTGATCCTGGCTCAG; 
R357-CTGCTGCCTYCCGTA) and amplification products were se-
quenced after indexing and purification on an Illumina MiSeq desk-
top sequencer (Illumina, Eindhoven, the Netherlands) according to 
published procedures.26,27
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2.3 | Statistical analysis

For microbiome analysis, demultipexed FASTQ files were pro-
cessed using Qiime2 tools implemented in Galaxy (https​://galaxy.
medun​igraz.at). Denoising (removing primers, quality filtering, 
correcting errors in marginal sequences, removing chimeric se-
quences, removing singletons, joining paired-end reads and 
dereplication) were done with DADA2.28 Taxonomy assignement 
was based on Silva 132 database release at 99% OTU level and 
trained using a Naïve Bayes classifier. After pre-processing, an 
average of 59 369 reads per sample could be reached. All analy-
ses, except diversity analysis, were done on an unrarefied fea-
ture table. For normalization Hellinger transformation was used. 
Rare taxa with a relative abundance of less than 0.01% across 
all samples were filtered. Chloroplast and cyanobacteria filtering 
was performed to remove contaminants. Alpha diversity analysis 
was performed using Chao1 on a rarefied feature table (sequenc-
ing depth 14 086). Beta diversity was analysed with Redundancy 
Analysis (RDA)29 based on Bray Curtis dissimilarity. Differentially 
abundant taxa were identified with Analysis of Composition of 
Microbiomes (ANCOM).30 As machine learning methods to se-
lect genera associated with the explanatory variables, LDA-
effect size (LEfSe)31 was used for categorical variables and Least 
Absolute Shrinkage and Selection Operator (LASSO) Regularized 
Regression32 for continuous variables. Network analysis was 
based on Spearman's rho associations between taxa and convert-
ing the pairwise correlations into dissimilarities to ordinate nodes 
in a two dimensional PCoA plot. Nearest Neighbour Propensity 
Score matching was performed without replacement based on 
logistic regression, using R 3.6.133 package “MatchIt.”34,35 The 
web-based software Calypso version 7.14 (http://cgeno​me.net/
calyp​so/) was used for analyses of microbiome data.36 For non-
microbiome analyses SPSS V25.0.0.1 (IBM, Armonk, NY, USA) was 
used (descriptive statistics, group comparisions, Spearman Rho 
correlation, Collinearity analysis) Visualization was performed in 
R 3.6.133 package “ggplot2”.37 Sequencing data have been made 
publically available at the NCBI Sequence Read Archive (acces-
sion number PRJNA390475). A formal samples size calculation 
was not performed.

2.4 | Labouratory measurements

Albumin, bilirubin, hemoglobin, uric acid, creatinine, prothrombin 
time and CRP were measured in the routine labouratory. LPS was 
detected in serum with an adapted protocol using HEK-Blue hTLR4 
reporter cells (Invivogen, Toulouse, France) as published previ-
ously.38 All other assays were handled according to manufacturers’ 
instructions. Enzyme linked immunosorbent assay were used to 
measure calprotectin, zonulin and serum DAO (Immundiagnostic 
AG, Bensheim, Germany), as well as LBP and sCD14 (Hycult 
biotechnology, Uden, the Netherlands). sCD163 and sMR in 
plasma samples were measured by an in-house sandwich ELISA 

using a BEP-2000 ELISA-analyser (Dade Behring) as previously 
described.10,39,40

Cytokines (interleukin-6, interleukin-8, interleukin-10, TNF-
alpha) were measured with ProcartaPlex (eBioscience, Vienna, 
Austria). Neutrophil oxidative burst was measured by flow cytom-
etry using a commercially available kit (Glycotope, Heidelberg, 
Germany).

3  | RESULTS

3.1 | Study cohort

Microbiome sequence data of 88 cirrhotic patients were analysed. 
Patient characteristics are presented in Table 1. We analysed the 
impact of age, sex, smoking status, aetiology of cirrhosis, severity 
of liver disease, comorbidities, nutritional status, drug intake, in-
testinal permeability, intestinal and systemic inflammation on fae-
cal microbiome composition. Drug classes that were taken by more 
than 15% of the study population were included with the excep-
tion of lactulose, which was used by only 11% of the study popula-
tion but was included into univariate analysis due to its supposed 
microbiome modulating properties. Antibiotics (chinolons) for 
prophylaxis of spontaneous bacterial peritonitis were only taken 
by 2 out of 88 patients and rifaximin was not taken by any patients. 
Moderate malnutrition was more frequent in hepatitis C cirrho-
sis (43.8%) compared to alcoholic cirrhosis (19.1%) or other aeti-
lologies (4%, P  =  .006). No other significant differences between 
categorical variables were found. Spearman correlation showed a 

TA B L E  1   Patient characteristics

  Cirrhosis (n = 88)

Age (years) 58 (56; 61)

Sex (m/f) 62/26 (70.5%/29.5%)

Aetiology (alcohol/hepatitis  
C/other)

47/16/25 (53.4%/18.2%/ 28.4%)

Child-Pugh Grade (A/B/C) 66/20/2 (75%/22.7%/2.3%)

MELD score 10 (9;12)

SGA Grade (adequate/
moderate malnutrition)

71/17 (80.7%/19.3%)

PPI (y/n) 48/40 (54.5%/45.5%)

Lactulose (y/n) 9/79 (10.2%/89.8%)

Albumin (mg/dl) 4.2 (4.0; 4.3)

Bilirubin (mg/dl) 1.2 (1.0; 3.0)

CRP (mg/l) 2.5 (1.9; 3.0)

Creatinine (mg/dl) 0.84 (0.79;0.9)

INR 1.24 (1.19; 1.27)

Note: Data are given as absolute numbers and percentage, or median 
and 95% confidence interval (lower; upper).
Abbreviations: CRP, C-reactive protein; INR, international normalized 
ratio; MELD, model of end stage liver disease; PPI, proton pump 
inhibitor; SGA, subjective global assessment.

https://galaxy.medunigraz.at
https://galaxy.medunigraz.at
http://cgenome.net/calypso/
http://cgenome.net/calypso/
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weak, but significant correlation between CRP and disease sever-
ity (Spearman Rho r = 0.380, P <  .001). No significant correlation 
between other variables was found. Testing for collinearity showed 
that all combinations of explanatory variables had a VIF <1.5, ex-
cluding a strong codependence.

3.2 | Differences in microbiome composition 
between groups (beta diversity)

Univariate RDA revealed that severity of liver disease (assessed by 
Child-Pugh and MELD score), aetiology, PPI use, lactulose use, nu-
tritional status (assessed by SGA), age, lactulose/mannitol ratio, al-
bumin, bilirubin, CRP, hemoglobin, creatinine, INR, sCD163 and sMR 
were significant explanatory variables for microbiome composition 
(P  <  .1). These variables were included into a multivariate model, 
where severity of disease, aetiology, PPI use, nutritional status, 
age and CRP remained as significant explanatory variables (P < .05; 
Figure 1).

3.3 | Species diversity (alpha diversity) and 
taxonomic differences

We analysed differences in alpha diversity and taxonomic composi-
tion in relation to the six variables (severity of disease, aetiology, PPI 
use, nutritional status, age and CRP) that significantly affected beta 
diversity of the stool microbiome composition.

For alpha diversity analyses the feature table was rarefied to 14 086 
reads. There were no changes in alpha diversity in samples from patients 
with Child-Pugh A vs Child-Pugh B/C cirrhosis, with different aetiolo-
gies, between PPI use or non-use, or between patients with adequate 
nutritional status compared to moderate malnutrition. Furthermore, 
age and CRP did not correlate with alpha diversity (Chao1).

Analysis of Composition of Microbiome revelead that one un-
cultured bacterium of the phylum Firmicutes, the genus Veillonella, 
the families Lactobacillaceae and Veillonellaceae and the classes 
Campylobacteria and Fusobacteria were more abundant in Child-
Pugh B/C cirrhosis whereas the family Micrococcaceae, the order 
Micrococcales and the class Deltaproteobacteria were more 
abundant in patients with Child-Pugh A cirrhosis. (Figure 2) PPI 
user showed a higher abundance of the feature Streptococcus 
salivarius, the genera Lactobacillus and Veillonella, the families 
Lactobacillaceae, Micrococcaceae and Streptococcaceae, the orders 
Lactobacillales and Micrococcales and the classes Actinobacteria 
and Bacilli, whereas the order Gastranaerophilales was higher 
abundant in PPI non-users. (Figure 2) Patients with alcoholic cir-
rhosis had a higher abundance of the genus Erysipelatoclostridium. 
Patients with “other” aetiologies of liver cirrhosis had a higher abun-
dance of one uncultured bacterium of the family Lachnospiraceae 
and one uncultured bacterium of the genus Blautia on feature 
level. No differences at higher taxonomic levels were found for 
aetiology of cirrhosis. (Figure 3A-C) Patients with adequate nutri-
tion showed lower abundances of an uncultured bacterium of the 
phylum Firmicutes and the order Campylobacterales. In addition, 
a higher abundance of the order Verrucomicrobiales compared 

F I G U R E  1   Multivariate redundancy analysis (RDA+) based on Bray-Curtis dissimilarity. Disease severity was chosen as grouping variable 
due to the lowest P-value on univariate analysis. The effect of the other explanatory variables is also included in the model. The table shows 
the results of multivariate redundancy analysis for variables with significant effects on univariate analysis
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to moderate malnutrition was found (Figure 3D-F). The feature 
Collinsella aerofaciens and the genus Slackia showed a decreas-
ing abundance with increasing age whereas the feature Alistipes 
onderdonkii increases with age. On higher taxonomic levels no 
age-dependent differences were found (Figure 4A-C). The third 
and fourth quartile of CRP levels was associated with higher abun-
dance of the features Faecalibacterium sp., Veillonella dispar and of 
the genus Veillonella. Streptococcus species was lowest in the third 

quartile of CRP levels compared to the other quartiles. No differ-
ences on higher taxonomic levels were found. (Figure 4D-G).

3.4 | Machine learning and network analysis

To further understand the association of microbiome composition 
with the factors that were identified to significantly influence beta 

F I G U R E  2   Differentially abundant 
taxa for disease severity groups and PPI 
use/non-use based on ANCOM analysis. 
ANCOM analysis does not report P-
values. All features/genera/families/
orders/classes shown in this graph are 
significantly different between the groups

F I G U R E  3   Differentially abundant taxa 
for aetiology (A-C) and nutritional status 
(D-F) based on ANCOM analysis. ANCOM 
analysis does not report P-values. All 
features/genera/families/orders/classes 
shown in this graph are significantly 
different between the groups
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diversity, we used supervised machine learning algorithms as a fea-
ture selection method on genus level. LEfSe identified 21 genera to be 
associated with Child-Pugh A cirrhosis and 10 genera to be associated 
with Child-Pugh B/C cirrhosis. (Figure 5A) Among the genera associ-
ated with Child-Pugh B/C cirrhosis, oral bacteria such as Veillonella, 
Lactobacillus and Rothia and potential pathogens such as Klebsiella 
were found. Hepatitis C was associated with Lachnospiraceae FCS020 
group, alcoholic cirrhosis with Enterococcus and Erysipelatoclostridium, 
and other aetiologies with two Prevotella genera and Butyricicoccus. 
(Figure 5B) PPI use was associated with six genera, all of which are ei-
ther oral commensal bacteria (Veillonella, Streptococcus, Lactobacillus, 
Rothia) or potential pathogens (Actinomyces, Haemophilus). PPI 
non-use was associated with Ruminococcus, Erysipelotrichaceae, 
Catenibacterium, Faecalitalea, Coprococcus and one unclassified uncul-
tured bacterium. (Figure 5C) Moderate malnutrition was associated 
with Lachnospiraceae ND3007 group, whereas adequate nutritional 
status was associated with Dialister, Parasutterella, Lachnospiraceae 
NK4A136 group, Faecalitalea and Bilophila. (Figure 5D) No genera were 
identified with LASSO to be associated with age or CRP levels.

To visualize the relation of these significant influencing fac-
tors we performed a network analysis. Network analysis including 

severity, PPI use and aetiology as explanatory variables showed 
some overlaps but also some distinct genera that were only asso-
ciated with one of the explanatory variables. (Figure 6) Although 
PPI use is statistically equally frequent in Child-Pugh B/C cirrhosis 
(Fisher exact P  =  .085) compared to Child-Pugh A cirrhosis and 
collinearity analysis shows no collinearity (VIF = 1.250), the larg-
est overlap is found for genera associated with Child-Pugh B/C 
cirrhosis and PPI use (orange colour). About 71% of Child-Pugh 
B/C patients use PPI compared to 49% in the Child-Pugh A group. 
PPI user have a significantly higher MELD score compared to PPI 
non-users (12 vs 10, P = .011), making it challenging to distinguish 
between PPI induced and severity induced microbiome changes in 
cirrhosis in this dataset.

To distinguish the effect of severity and PPI use better, we per-
formed the following analyses on subgroups of the initial dataset. To 
balance the confounding influence of aetiology, PPI use, nutritional 
status, age and CRP when comparing disease severity stages (Child A 
vs ChildB/C) we performed nearest neighbour propensity score match-
ing without replacement based on logistic regression. This resulted in a 
dataset of 21 Child B/C patients and 21 matched Child A patients with 
a median matching distance of 0.29 (95% CI interval 0.24; 0.35). After 

F I G U R E  4   Differentially abundant taxa for age (A-C) and CRP (D-G) based on ANCOM analysis. ANCOM analysis does not report P-
values. All features/genera/families/orders/classes shown in this graph are significantly different between the groups



872  |     STADLBAUER et al.

propensity score matching, disease severity, aetiology, PPI use and age 
were still significant explanatory variables of microbiome composition 
on multivariate RDA whereas CRP and nutritional status did not influ-
ence microbiome composition significantly any more (see Figure S1). 
Feature selection by LEfSe in the propensity score matched cohort 
showed comparable results as obtained from the original, non-matched 
dataset, indicating that the microbiome effects are true effects and not 
caused by other confounders (see Figure S2). To confirm the influence 
of PPI use independent of severity of liver disease, we additionally per-
formed a subgroup analysis for Child A cirrhosis and Child B/C cirrhosis 
separately. When performing multivariate RDA analysis separately for 
severity groups, we observed that PPI use (P = .035) in Child A cirrho-
sis and aetiology (P = .015), PPI use (P = .038) and age (P = .014) in the 
Child B/C group were still predictive for microbiome composition. Due 

to low sample size in the subgroups the results have to be interpreted 
with caution.

4  | DISCUSSION

Faecal microbiome composition has been associated with various 
diseases, but not only disease severity and comorbidities, but also 
other factors such as medication, diet or lifestyle habits may in-
fluence its composition. It is therefore important to discern the 
effect of different influencing variables as a first step from asso-
ciation to causality. We performed a system biology analysis of a 
well-characterized cohort of patients with liver cirrhosis and were 
able to show by multivariate RDA that severity and aetiology of 

F I G U R E  5   Most differentially abundant taxa selected by Linear discriminant analysis Effect Size (LEfSe) for (A) Disease severity, (B) 
aetiology, (C) PPI use/non-use, (D) nutritional status
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liver disease, PPI use, nutritional status, age and CRP levels were 
significant explanatory variables for faecal microbiome composi-
tion. Although we find some taxonomic overlaps especially be-
tween severity and PPI use on network analysis, we could show 
that the effects of disease severity, aetiology, PPI use and age are 

independent factors influencing microbiome composition also in 
subgroup analyses.

Changes in faecal microbiome composition have been associ-
ated with liver disease since more than 35 years, long before se-
quencing techniques became available.41 When 16S sequencing 

F I G U R E  6   Network analysis to identify associations between bacteria and selected host variables. Taxa and explanatory variables are 
represented as nodes, taxa abundance as node size, and edges represent positive and negative associations. Nodes (genera) are coloured 
based on their association with selected host variables (disease severity, PPI use/non-use and aetiology). A, Whole cohort (n = 88). B, Child A 
cirrhosis (n = 67) and © Child B/C cirrhosis (n = 21)
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techniques emerged, stool microbiome composition in liver disease 
was studied showing compositional alterations throughout all lev-
els of taxonomy in liver cirrhosis.3,42 However both of these studies 
did not associate compositional changes with potentially important 
influencing factors such as aetiology of cirrhosis or drug intake in 
a systematic way. The strength of our cohort is the detailed char-
acterization of the participants, that allows to fill this knowledge 
gap on the association of different factors with faecal microbiome 
composition in cirrhosis and the use of ANCOM and LEfSE as spe-
cialized bioinformatics methods to study microbiome composition.

Severity of liver disease was shown to impact microbiome 
composition. A positive correlation between Child-Pugh score 
and Streptococcaceae as well as a negative correlation with 
Lachnospiraceae was described in the study by Chen et al Several 
positive and negative correlations between liver function and spe-
cies abundance were reported in the study by Qin et al without de-
scribing more details on these associations.3,42 Data on concomidant 
drug intake is missing in both studies, leading to scientific discussions 
and the need for further reserach43,44 In subsequent studies strong 
associations of microbiome changes with hepatic encephalopathy 
were shown.8,45 Our analysis demonstrates that disease severity, 
measured by composite scores (Child-Pugh and MELD) as well as 
some of the individual parameters of both scores (albumin, bilirubin, 
creatinine, INR) are significant explanatory variables for microbiome 
composition in univariate analysis. Child-Pugh score also remained 
significant in multivariate RDA. Higher Child-Pugh classes (B and 
C) were associated with distinct changes in microbiome composi-
tion related to an increase in oral bacteria and potential pathogens. 
On family level we found a higher abundance of Lactobacillaceae 
and Veillonellaceae and a lower abundance of Micrococcaceae in 
Child-Pugh B/C patients which is in line with previously published 
data.3,8,42,45 However, it is still not fully elucidated, whether these 
changes are driven by disease severity itself or by other influencing 
factors.

Cirrhosis is a complex disease requiring long-term drug treat-
ment with several drug classes. Many medically approved drugs 
influence microbiome composition.19 In liver cirrhosis, PPI use has 
been described to alter microbiome composition, increase the rate 
of complications and negatively impact prognosis.5,46-49 We re-
cently expanded this knowledge by describing the consequences 
of PPI-induced dysbiosis and oralization of the faecal microbiome 
on inflammation, intestinal permeability and outcome in cirrho-
sis.11 In the present study PPI use also had a strong impact on the 
faecal microbiome, being associated with an increased abundance 
of oral bacteria and potential pathogens, such as Streptococcus 
species and Veillonella. Although PPI use and disease severity 
were partially linked in our cohort, both were still independent 
factors influencing microbiome composition in subgroup analyses, 
however low sample size in this analysis weakens the explanatory 
power.

Also other drugs commonly administered in cirrhosis, may im-
pact the faecal microbiome. However, in our cohort, other drugs 
influenced microbiome composition to a lesser extent. We were 

interested in the effect of lactulose on the cirrhotic microbiome, 
since available data are conflicting, showing no major alterations 
of the faecal microbiome between lactulose user and non-user, 
but withdrawal of lactulose leads to the loss of beneficial spe-
cies.16,50,51 In our cohort only 11% of the cirrhotic patients used 
lactulose. On univariate analysis we found that lactulose had a 
weak, but significant, effect on microbiome composition, which 
did not remain significant in multivariate analysis. Therefore our 
data support the notion that lactulose has no major effect on the 
taxonomic composition of the faecal microbiome in cirrhosis and 
may therefore exert its function through functional microbiome 
changes. Other drug classes did not have a major impact on micro-
biome composition.

Liver cirrhosis is also a heterogeneous disease from an aetio-
logical perspective. Aetiology of liver disease as a factor to explain 
differences in microbiome composition has already been stud-
ied. Bajaj et al describe alcohol and non-alcoholic steatohepatitis 
driven changes in microbiome composition.45 Hepatitis C alters 
faecal microbiome which has been implicated in the pathogen-
esis of HCV-induced chronic liver disease. However, Hepatitis 
C induced dysbiosis seems to be stable over different disease 
stages.52 Chronic cholestatic diseases such as primary biliary and 
primary sclerosing cholangitis are also associated with distinct 
changes in microbiome composition.53 Although aetiology of liver 
disease was identified as a significant factor by multivariate RDA 
in our data set, the taxonomic differences of the microbiomes 
from different aetiologies were surprisingly small in our cohort. 
Patients with alcoholic cirrhosis had a higher abundance of the 
genus Erysipelatoclostridium and the group of patients with “other” 
aetiologies of liver cirrhosis had a higher abundance of two yet 
uncultured bacteria of the family Lachnospiraceae and of the genus 
Blautia. Since liver cirrhosis aetiology is varying in different geo-
graphical regions54 and geographical region itself is a factor that 
impacts diversity and composition of the microbiome,55 also the 
origin of the study population has to be taken into account. Our 
patient cohort consists only of Caucasians living in the same re-
gion, which is a likely explanation for the relatively similar micro-
biome composition in different aetiologies. Bajaj et al have shown 
that cirrhotic patients from Turkey, compared to patients from 
the USA, differ in aetiology and dietary habits, which resulted in 
a higher microbial diversity in Turkish cirrhotic patients.14 We also 
analysed dietary habits in our patient cohort and only found one 
significant difference of questionable relevance. Patients with 
hepatitis C virus infection were more likely to consume muesli on 
a regular basis compared to alcoholic cirrhotic patients (62% vs 
32%, P < .01) 56

Furthermore age impacts on microbiome composition, how-
ever, the specific changes of the ageing microbiome are unknown 
and inconsistent. Data on microbial diversity are conflicting and 
seem to depend on confounding factors and analysis techniques. 
A loss of Bifidobacteria, Lactobacilli, Clostridium Cluster XIVa, 
Akkermansia muciniphila and Faecalibacterium prausnitzii and an in-
crease of Escherichia coli species has been observed.57 Collinsella 
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aerofaciens, Alistipes onderdonkii and the genus Slackia were dif-
ferentially abundant between age groups in our cirrhosis cohort. 
However, none of these have been previously described to be 
associated with age related changes in microbiome composition. 
Collinsella aerofaciens has been associated with diet and intesti-
nal inflammatory diseases,58-60 Slackia with equol production,61 
whereas Alistipes onderdonkii has not been associated with any 
human condition yet.62

Nutritional status is an important prognostic factor in liver 
cirrhosis. Especially sarcopenia is a frequent complication of mal-
nutrition in cirrhosis and is associated with adverse outcome.63,64 
Assessing nutritional status in cirrhosis can be challenging. We 
used the well-established SGA, that is also recommended by the 
European Association for the Study of the Liver65 to differentiate 
between well nourished and moderately malnourished patients. In 
our cohort of mostly compensated cirrhotic patients we did not have 
any severely malnourished patients. We found a higher abundance 
of the order Campylobacterales in moderately malnourished cir-
rhotics. Campylobacterales have been associated with malnutrition 
in children.66,67 The order Verrucomicrobiales was enriched in ade-
quately nourished cirrhotic patients. So far only one species of this 
order has been described in human faeces: Akkermansia muciniphila. 
A loss of Akkermansia muciniphila has been associated with meta-
bolic diseases and the abundance may be influenced by diet.68

Changes in microbiome composition in cirrhosis impact in-
testinal barrier function and lead to intestinal and systemic in-
flammation due to translocation of bacterial products to the liver 
and also to the systemic circulation. This concept of a crosstalk 
between gut, liver and immune system – the so called gut-liver 
axis—is widely implicated in the pathogenesis of liver disease and 
a promising therapeutic target.69,70 We assessed a panel of bio-
markers of the gut–liver axis in our cohort and CRP as a marker of 
inflammation was found to be a significantly explanatory variable 
in the multivariate analysis, however the consistency of the effect 
remains unclear in our dataset. CRP is a well-known biomarker in 
liver cirrhosis and is predictive for complications and outcome.71,72 
Increased abundance of Veillonella and Streptococcus species but 
also Faecalibacterium species were associated with higher CRP lev-
els. While the former support the link between microbiome compo-
sition and inflammation in liver cirrhosis, Faecalibacterium species 
are usually associated with anti-inflammatory properties, making a 
firm conclusion difficult.

Interestingly, gender did not impact on microbiome composition 
in our study. In studies in obese individuals, gender seems to cause 
taxonomic differences, whereas data on changes on alpha and beta 
diversity are still conflicting.73,74 In liver cirrhosis, gender differences 
have not been associated with changes in beta diversity so far. The 
male predominance in liver cirrhosis may be a reason for difficulties 
to detect consistent gender differences.

In summary our cross sectional system biology study shows that 
disease severity and PPI use are the main factors explaining varia-
tion of the faecal microbiome in cirrhosis. Aetiology of liver disease, 
age, nutritional status and inflammation (CRP levels) are further 

explanatory variables. The limitation of our study is the single-center 
design that does not allow to account for geographical differences 
in the microbiome composition, the cross sectional design that does 
not allow to draw any conclusions on causality as well as the low 
sample size in the subgroup analyses. The strength of our study is the 
thorough characterization of our study patients, that allows detailed 
analysis of influencing variables. For future studies, we strongly sug-
gest to increase sample size and expand the minimal set of metadata 
as suggested by the IHMS consortium75 to include detailed informa-
tion on disease aetiology, disease severity, drug intake and also in-
formation on further essential biomarkers, depending on the disease 
studied. This will open up new paths to understand the crosstalk be-
tween the faecal microbiome and the human body in disease states.

4.1 | Lay summary

The composition of gut bacteria—the gut microbiome—is altered in 
many diseases. In chronic liver diseases, such as liver cirrhosis, the 
gut microbiome is severely disturbed. We were able to show in this 
study which factors explain this disturbed microbiome composition. 
These factors were: The cause of liver disease, the severity of liver 
disease, intake of acid-blockers (proton pump inhibitors), age and in-
flammation. Our study also shows the importance of collecting suf-
ficient data on the disease and drug intake to be able to assess the 
effects of different factors on the gut microbiome.
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