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Parkinson’s Disease patients suffer from gait impairments such as reduced gait speed,
shortened step length, and deterioration of the temporal organization of stride duration
variability (i.e., breakdown in Long-Range Autocorrelations). The aim of this study was
to compare the effects on Parkinson’s Disease patients’ gait of three Rhythmic Auditory
Stimulations (RAS), each structured with a different rhythm variability (isochronous,
random, and autocorrelated). Nine Parkinson’s Disease patients performed four walking
conditions of 10–15 min each: Control Condition (CC), Isochronous RAS (IRAS),
Random RAS (RRAS), and Autocorrelated RAS (ARAS). Accelerometers were used
to assess gait speed, cadence, step length, temporal organization (i.e., Long-Range
Autocorrelations computation), and magnitude (i.e., coefficient of variation) of stride
duration variability on 512 gait cycles. Long-Range Autocorrelations were assessed
using the evenly spaced averaged Detrended Fluctuation Analysis (α-DFA exponent).
Spatiotemporal gait parameters and coefficient of variation were not modified by the
RAS. Long-Range Autocorrelations were present in all patients during CC and ARAS
although all RAS conditions altered them. The α-DFA exponents were significantly lower
during IRAS and RRAS than during CC, exhibiting anti-correlations during IRAS in seven
patients. α-DFA during ARAS was the closest to the α-DFA during CC and within
normative data of healthy subjects. In conclusion, Isochronous RAS modify patients’
Long-Range Autocorrelations and the use of Autocorrelated RAS allows to maintain an
acceptable level of Long-Range Autocorrelations for Parkinson’s Disease patients’ gait.

Keywords: gait disorders, rhythmic auditory stimulations, cueing, gait variability, long range autocorrelations,
Parkinson’s disease, fractals
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INTRODUCTION

Several physiological signals, apparently randomly organized, are
in fact governed by dynamic phenomena organized between
order and disorder (Goldberger et al., 2002; Hu et al., 2004). This
complex self-organization is the result of multiple interactions
between different elements of the system (Delignieres and
Marmelat, 2012; Stergiou, 2016). Such complexity of organization
is visible in the study of the temporal organization of human
gait (Hausdorff et al., 2001; Ivanov et al., 2009; Stergiou
and Decker, 2011). Indeed, gait variability organization is the
result of multiple interactions between internal (nervous system,
biomechanical structure) and external (proprioceptive, visual,
auditory information) components (Hausdorff et al., 2000, 2001;
Ashkenazy et al., 2002; Gates et al., 2007; Dotov et al., 2017;
Lheureux et al., 2020). The study of the magnitude (using linear
mathematical methods) and of the temporal organization (using
nonlinear mathematical methods) constitute complementary
ways to assess gait variability, and stride duration variability in
particular (Delignieres et al., 2006; Stergiou and Decker, 2011).
Stride duration varies in the short and long term according to
a complex dynamic of temporal variations (Hausdorff, 2007).
These variations present Long-Range Autocorrelations (LRA)
(Stergiou et al., 2006; Hausdorff, 2007; Cavanaugh et al., 2017)
involving a long-memory process which means that every
stride duration depends on the duration of the previous strides
(Hausdorff et al., 2001; Hausdorff, 2007). Nevertheless, the origin
and control of LRA in human locomotion remain elusive.
While some attribute their origin to biomechanical structures
(Gates et al., 2007), the most common theory is that LRA
reflect a control from the central nervous system (Hausdorff
et al., 2000). Indeed, a degradation of LRA has been shown
in Parkinson’s and Huntington’s disease suggesting that the
phenomenon would come from supraspinal centers (Hausdorff
et al., 1997; Hausdorff, 2009; Warlop et al., 2016). Other theories
suggest the existence of Central Pattern Generators (CPGs) at
spine level to describe dynamics of human gait (Ashkenazy et al.,
2002). After years of research, some authors have suggested
that LRA are markers of healthy stable but still adaptive gait
and a breakdown of LRA would be a sign of gait disorders
and loss of adaptability as suggested in Parkinson’s Disease
(PD) (Goldberger et al., 2002; Stergiou and Decker, 2011;
Cavanaugh et al., 2017).

Among motor symptoms, PD patients suffer from gait
disorders such as shorter step length, reduced gait speed,
and increased randomness in temporal organization of gait
(Hausdorff, 2007). Indeed, a breakdown of LRA (reduced fractal
scaling α exponent) in stride duration variability in PD gait and
strong correlations between LRA, disease severity and postural
instability were demonstrated (Ota et al., 2014; Warlop et al.,
2016). Diminished α exponent would be linked to basal ganglia
degeneration (Hausdorff et al., 1997; Goldberger et al., 2002;
Hausdorff, 2007; Sarbaz et al., 2012) involved in the regulation of
gait, posture and rhythm control (Hausdorff, 2009; Takakusaki,
2017). LRA measurement would therefore be a biomarker of
gait instability and risk of falling, which is of particular clinical
interest in PD (Hausdorff, 2009; Warlop et al., 2016). Given that

PD patients’ gait disorders are partially responsive to medication
(Nieuwboer et al., 2007; van der Kolk and King, 2013), there is a
need for rehabilitative approach (Tomlinson et al., 2014).

As previously mentioned, gait is organized according to the
interactions between internal and external components, such
as proprioceptive, visual or auditory information. Rhythmic
Auditory Stimulations (RAS) acting as an external cue by means
of a metronome, have been studied for years for their effects on
PD patients’ gait (Ghai et al., 2018). This cueing would act like
an external rhythm generator bypassing the basal ganglia that
can no longer properly act as an internal rhythm generator in
PD patients (Nieuwboer et al., 2007). It is then suggested that
a broader use of isochronous RAS should be beneficial in PD
patients’ gait rehabilitation (Spaulding et al., 2013). However, it
has been demonstrated that the use of isochronous RAS modify
LRA in young (Kaipust et al., 2013; Marmelat et al., 2014) and
older (Kaipust et al., 2013) healthy subjects and in PD patients
(Hove et al., 2012; Dotov et al., 2017).

Some authors tried to study the effects of autocorrelated RAS
(i.e., rhythm variability presenting with LRA) on healthy subjects’
(Kaipust et al., 2013; Marmelat et al., 2014) and PD patients’ LRA
computed from gait tasks (Dotov et al., 2017; Marmelat et al.,
2020). Although some studies showed that autocorrelated RAS
are beneficial for stride duration variability, these results should
be interpreted with caution given the short acquisition times used
(except for Marmelat et al., 2020). Indeed, a long acquisition time
(at least 512 gait cycles) is necessary to show the presence of LRA
with a high level of evidence (Crevecoeur et al., 2010; Warlop
et al., 2017; Marmelat et al., 2018; Marmelat and Meidinger, 2019;
Ravi et al., 2020). Series length has a clear effect on the statistical
precision and the sensitivity of scaling exponents (Warlop et al.,
2017). Shorter series lengths lead to loss of accuracy and are
too short to be statistically different from short-range correlated
processes (Warlop et al., 2017; Marmelat and Meidinger, 2019).
In this sense, there is a risk that LRA computations using short
series could not reflect the results on long series (Warlop et al.,
2017; Marmelat and Meidinger, 2019).

Dotov et al. (2017) and Marmelat et al. (2020) tested
autocorrelated RAS on PD patients. Dotov et al. (2017) showed
that autocorrelated RAS allow to maintain similar level of
LRA (similar α exponent) than during their control condition
without RAS and that isochronous RAS deeply modify LRA.
However, their findings require confirmation given their short
acquisition time (5 min per condition). It should also be noted
that their method to produce their autocorrelated RAS remains
unknown and that their RAS frequency was set 10% faster
than each participant’s preferred cadence, which will both differ
in this present study. Also, Dotov et al. (2017) used a 21.6
m track, probably imposing a constant strong steering while
our 42 m track should allow smoother steering. This could
be of importance since steering is known to influence LRA
(Dotov et al., 2016). Unlike Dotov et al. (2017), Marmelat et al.
(2020) found significantly higher α exponent values during their
autocorrelated RAS condition (the 1:1 step-to-beat ratio version)
compared to their control condition. In their study, music was
used to deliver RAS when a simple beat will be used in this
study. This is not negligible since music is composed of multiple

Frontiers in Physiology | www.frontiersin.org 2 December 2020 | Volume 11 | Article 601721

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/physiology#articles


fphys-11-601721 December 17, 2020 Time: 18:17 # 3

Lheureux et al. Autocorrelated RAS for PD Gait

“layers” including the rhythmic beat itself, melody and harmony.
Furthermore, Marmelat et al. (2020) used an α exponent = 1.02
as a reference while an α exponent similar to normative data of
healthy subjects will be used in this study.

The purpose of this pilot study is to analyze the effects of
three different RAS (isochronous, random and autocorrelated
RAS) on PD patients’ spatiotemporal gait parameters and stride
duration variability (magnitude and temporal organization)
using suitable acquisition times to compute LRA. Our main
hypothesis is that the autocorrelated RAS will be more
efficient than the isochronous RAS and the random RAS to
maintain LRA in the temporal organization of stride duration
variability of PD patients.

METHODS

Ethics, Consent, and Permissions
This study obtained ethical approval from the local ethical board
(B403201318916/clinicaltrials.gov registration: NCT03716674).
Participants gave written informed consent prior to data
collection and this study adhered to the Declaration of Helsinki.

Participants
Nine PD patients were included in this pilot study. Inclusion
criteria were: PD diagnosis made according to United Kingdom
Brain Bank criteria (Hughes et al., 1992), stages I–III on the
modified Hoehn and Yahr scale (Goetz et al., 2004), ability
to walk for a minimum of 512 gait cycles (±15 min) in a
row without walking aids, stable dopaminergic medication for
a minimum of 4 weeks before assessments, no other pathology
that could interact with motor capacities and gait performance,
a minimum of 24/30 on the Mini-Mental State Examination
(MMSE) (Dick et al., 1984).

Patients’ anthropometric and clinical characteristics are
summarized in Table 1.

TABLE 1 | Characteristics of the study population.

PD patients (n = 9)

Age (years) 66.6 (±8.17)

Height (cm) 170.1 (±11.96)

Weight (kg) 69.7 (±19.43)

Gender (male/female) 4/5

Hoehn and Yahr (modified) 2 [1–2.5]

Mini Mental State Examination (/30) 28.9 (±0.92)

10 Meter Walk Test (m.s−1) 1.3 (±0.22)

ABC Scale (%) 77.3 (±13.94)

BESTest (%) 78.7 (±10.62)

MDS-UPDRS (/260) 45.7 (±25.72)

PIGD (/20) 3.7 (±2.69)

Number of falls (#/6 months) 0.6 (±1.33)

Mean (±SD), Median (interquartile range); ABC-Scale, Activities-Specific Balance
Confidence Scale; BESTest, Balance Evaluation Systems Test; MDS-UPDRS,
Movement Disorder Society sponsored Unified Parkinson’s Disease Rating Scale
Revision; PIGD, Postural Instability and Gait Disorder.

Stimulus
In addition to a control walking condition without cueing [i.e.,
Control Condition (CC)], three conditions involved walking
with three different RAS: Isochronous RAS (IRAS), Random
RAS (RRAS), and Autocorrelated RAS (ARAS). Each of them
was composed with an internally developed software (Matlab
2014R, Mathworks, United States) and adapted to each patient
according to their spontaneous cadence determined before
the experiment with 10 Meters Walking Tests. For each
patient, these three RAS had the same mean interbeat duration
[Mean (s) = 0.54 ± 0.05] but different magnitude (i.e.,
coefficient of variation, CV) and temporal organization of rhythm
variability. During IRAS, the RAS presented no variation of
the interbeat intervals [CV (%) = 0.00 ± 0.00]. During ARAS,
autocorrelated interbeat intervals were used with α exponent
similar to healthy subjects’ data of α exponent measured during
gait in a previous study using the evenly spaced averaged
Detrended Fluctuation Analysis [α-DFA = 0.78 ± 0.00; CV
(%) = 0.92 ± 0.00] (Warlop et al., 2018). During RRAS,
a random variability of the interbeat intervals was used
and obtained by shuffling the interbeat intervals used for
each patient during the ARAS [α-DFA = 0.46 ± 0.00; CV
(%)= 0.92± 0.00].

Procedure
Prior to data collection, patients listened to the RAS and were
asked to mark the rhythm with a finger tapping task to ensure
that the rhythm of the RAS was detected. Then, each patient
walked in the four conditions in a randomized order. During RAS
conditions, patients were listening to the RAS through earphones
by the mean of a MP3 player. Standardized instructions to “walk
accordingly to the proposed rhythm,” the foot contact of each
step corresponding to each beat of the metronome, were given to
each participant. During each condition, patients walked around
on an oval indoor track of 42 m during ±15 min. The heading
direction (clockwise or counterclockwise) was randomized but
each patient kept the same heading direction for all conditions.
A maximum of two conditions were tested during 1 day with
a minimum break of 5 min between each of the conditions
to avoid a fatigue effect and to limit a potential order effect.
Patients came back a second day (2–14 days apart from the first
session) to perform the other two conditions. The experiment
was always performed at the same time of the day for the
same patient during ON phase of dopaminergic treatment to
avoid drug effect.

Data Acquisition
Two unidimensional accelerometers were taped on patients’ both
lateral malleoli in the antero-posterior direction and connected
to a recording device (Vitaport 3 – Temec Instruments B.V.,
Kerkrade, The Netherlands) attached to the patients’ waist.
Ankle accelerations were recorded while walking at a sample of
512 Hz and were then transferred onto a computer. Each peak of
acceleration, corresponding to each foot contact, was detected by
an homemade software to determine stride durations (i.e., peak
detection method; Terrier and Dériaz, 2011).
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Functional Assessment
Functional assessment was performed before the beginning of
the first walking condition. A 10 Meters Walk Test was used to
calculate the patients’ spontaneous cadence used to individually
adapt the RAS. Patients also completed the Activities-Specific
Balance Confidence Scale (ABC scale) (Powell and Myers,
1995) to assess their balance-confidence, the Balance Evaluation
Systems Test (BESTest) (Maia et al., 2013) to test their balance,
the Movement Disorder Society sponsored Unified Parkinson’s
Disease Rating Scale Revision (MDS-UPDRS) (Goetz et al., 2008)
to globally assess the severity of motor and non-motor symptoms,
the Postural Instability and Gait Disorder (PIGD) (Parashos
et al., 2015) which groups five items (#13–15 and #29–30) of the
UPDRS and the number of falls during the last 6 months before
the experiment (see Table 2).

Gait Assessment
Gait was assessed through the measurement of the
spatiotemporal gait variables, the magnitude and the temporal
organization of the stride duration variability.

The data was extracted from 512 consecutive gait cycles which
is recommended to assess temporal organization of the stride
duration variability (Crevecoeur et al., 2010; Warlop et al., 2017;
Ravi et al., 2020).

Spatiotemporal gait parameters were assessed as follow:

Gait speed
(
m.s−1)

=
Total walking distance (m)

Total acquisition time (s)
;

Cadence (#steps.min−1) =
Total number of steps (#)

Total acquisition time (min)
;

Step length (m) =
Gait speed (m.s−1)

Cadence (Hz)
;

TABLE 2 | Absolute mean values of the spatiotemporal gait parameters and stride
duration variability assessed during Control Condition (CC), Isochronous Rhythmic
Auditory Stimulations condition (IRAS), Random Rhythmic Auditory Stimulations
condition (RRAS), and Autocorrelated Rhythmic Auditory Stimulations condition
(ARAS) and comparison between these walking conditions.

CC IRAS RRAS ARAS

Gait speed
(m.s−1)

1.30 (±0.26) 1.29 (±0.25) 1.27 (±0.24) 1.27 (±0.26)

Step length (m) 0.69 (±0.10) 0.69 (±0.10) 0.68 (±0.10) 0.68 (±0.11)

Cadence
(#steps.min−1)

113.01 (±8.01) 112.03 (±9.22) 111.89 (±9.06) 111.86 (±9.07)

Mean stride
duration (s)

1.07 (±0.07) 1.08 (±0.09) 1.08 (±0.09) 1.08 (±0.09)

Coefficient of
variation (%)

1.87 (±0.71) 1.53 (±0.34) 1.66 (±0.25) 1.78 (±0.40)

α-DFA 0.76 (±0.09)† 0.44 (±0.09)*† 0.54 (±0.18)*† 0.66 (±0.09)*

Z-score α-DFA −0.33 (±0.63) −2.64 (±0.66) −1.91 (±1.30) −1.05 (±0.64)

Absolute value is expressed as mean (±SD).
α-DFA, α exponent calculated using the evenly spaced averaged version of the
Detrended Fluctuation Analysis.
*Significant difference with CC (p < 0.05).
†Significant difference with ARAS (p < 0.05).

Mean stride duration (s) =
Total acquisition time (s)
Total number of strides (#)

.

To assess magnitude of stride duration variability, CV was
calculated using the mean stride duration and standard deviation
(SD) : CV (%) =

[ SD
mean

]
.100.

Temporal organization of stride duration variability was
assessed by LRA computation using the evenly spaced averaged
DFA (Almurad and Delignières, 2016) to obtain α-DFA exponent.
This method was chosen among others given its robustness
regarding stationary and non-stationary processes (Phinyomark
et al., 2020; Ravi et al., 2020).

The original time series size was N≥ 512. Then, the series was
divided in subsets of size t, from t = 10 to t = N/2. The number
of points used to calculate the slope in evenly spaced averaged
DFA was based on Almurad and Delignières (2016). This method
consists in selecting the data used for the regressions as follows:{

n1 = nmin

ni =
[
ni−110 log10(nmax)−log10(nmin)

k−1

]
Where k represents the number of points to include in the
diffusion plot, the k interval lengths are noted [ni (i = 1,
2,. . .k)] and nmax and nmin correspond to the maximum and the
minimum interval lengths. We used nmin = 10, nmax = N/2 and
k = 18 to follow the study by Almurad and Delignières (2016).
After selecting evenly spaced data points, the linear regressions
can be performed on these selected points (evenly spaced), or on
the average data across the data points that are between selected
points (evenly spaced averaged).

LRA are present when α-DFA is between 0.5 and 1 which
implies persistence in the variations meaning that large stride
duration fluctuations tend to be followed by other large
fluctuations, and vice-versa. α-DFA <0.5 is the sign of anti-
persistence and α-DFA = 0.5 corresponds to randomness (i.e.,
white noise). An α-DFA = 1 (i.e., 1/f noise) is the boundary
between stationarity and non-stationarity (Hausdorff et al., 1996).
In this context, 1/f noise is interpreted as “a ‘compromise’ between
the complete unpredictability of white noise (α= 0.5) (very rough
‘landscape’) and the very smooth ‘landscape’ of Brownian noise
(α = 1.5)” (Peng et al., 1995). Then, α-DFA = 1 is considered
as the optimal state of variability characterizing healthy gait
according to the theoretical framework of optimal movement
variability (Harrison and Stergiou, 2015; Ravi et al., 2020).

Statistical Analysis
A power analysis was made based on a previous study of Dotov
et al. (2017) using PASS software, in the idea of performing
a one-way repeated measures ANOVA. Total sample of nine
participants achieved 80% power to detect differences among the
means vs. the alternative of equal means using an F-test with a
0.05 significance level.

Statistical analyses were conducted using Sigmaplot 13.0.
After verification with a Shapiro-Wilk normality test, a one-
way repeated measures ANOVA was applied to determine the
effect of each RAS type on all the gait parameters. When
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a significant difference between groups was detected, a post-
hoc Tukey Test was performed. Effect size between conditions
regarding α exponents was assessed using Cohen’s d. For the
linear measures of stride duration variability, the results of the
coefficient of variation (CV) did not pass the normality test
(p< 0.05). A Friedman Repeated Measures ANOVA on ranks was
then applied. The results were considered statistically different for
p < 0.05. Results of α-DFA were also normalized using Z-scores.
The mean α-DFA of the healthy population used to compute
Z-scores was taken from the meta-analysis of Ravi et al. (2020)
(α-DFA = 0.81 ± 0.14). They studied the effect of PD on α-DFA
by compiling the results of 7 studies including a total of 177 PD
patients and 135 healthy subjects.

RESULTS

Spatiotemporal Gait Variables
No significant difference was found between each condition for
gait speed [F(3, 8): 1.427; p= 0.260], gait cadence [F(3, 8): 0.709;
p= 0.556], step length [F(3, 8): 1.224; p= 0.323], and mean stride
duration [F(3, 8): 0.674; p= 0.577] (Table 2).

Stride Duration Variability
Regarding the magnitude of the stride duration variability,
CV [F(3, 8): 1.787; p = 0.177] was similar in all four
conditions (Table 2).

Concerning temporal organization of stride duration
variability, α-DFA during ARAS was higher than during RRAS
and IRAS and was the highest during CC. Indeed, a significant
difference was found [F(3, 8): 21.487; p < 0.001] (Table 2
and Figure 1). LRA were present for all patients during CC
(Figure 2). The mean α-DFA was the highest during this
condition (0.76 ± 0.09) and within normative data of healthy
population according to Z-scores (Table 2 and Figures 1, 2).
Also, Cohen’s d was always >1 between CC and the three other
RAS conditions, indicating large effect sizes (Figure 1).

During ARAS, LRA were present for all patients (Figure 2)
and mean α-DFA (0.66 ± 0.09) was lower than α-DFA
during CC but remained above −1.96 Z-scores, indicating
LRA within the normative data (Table 2 and Figures 1, 2).
Furthermore, α-DFA during ARAS was significantly higher than
during IRAS and RRAS.

During IRAS, LRA were lowered (α-DFA = 0.44 ± 0.09)
compared to CC and Z-scores were below −1.96 which means
below normative data (Table 2 and Figure 1). During this
condition, α-DFA was <0.5 for seven patients, meaning anti-
persistence. Similarly, α-DFA was close to 0.5 for the last two
patients suggesting that stride duration variability was getting
closer to complete randomness during IRAS (Figure 2).

During RRAS, α-DFA (0.54 ± 0.18) was significantly lower
than during CC, close to 0.5 and not significantly higher than
during IRAS for α-DFA (Table 2 and Figures 1, 2). Z-scores were
very close to −1.96 Z-scores during this condition suggesting
that α-DFA during RRAS was almost out of the normative
data (Table 2).

FIGURE 1 | Error bars comparing mean values ± standard deviation of α-DFA
obtained during each condition. X-axis represents the walking conditions.
Y-axis represents mean α exponent value during each condition and
calculated using the evenly spaced averaged version of the Detrended
Fluctuation Analysis (α-DFA). Horizontal lines represent significant differences
between conditions. Each p-value is indicated on the left of each line and
Cohen’s d represents the effect size between conditions on the right (d). The
black dashed line placed at 0.5 on the Y-axis delimit the area above which
there are LRA.

DISCUSSION

This study investigated the extent to which auditory stimuli with
different temporal organizations could influence PD gait. First,
this study did not show difference concerning spatiotemporal gait
parameters and magnitude of stride duration variability between
all conditions. On the contrary, this study highlighted that the
three RAS influence the temporal organization of stride duration
variability differently. Indeed, LRA were markedly modified
during IRAS and RRAS, whereas α-DFA was maintained within
normative data and less modified during ARAS.

The spatiotemporal gait parameters were similar between all
conditions. These results are reassuring since these parameters
have not been degraded during the RAS conditions, whatever
the rhythm used. In other studies, PD patients presenting with
spatiotemporal gait disorders have improved these parameters
using isochronous RAS over several weeks (Arias and Cudeiro,
2008; Dalla Bella et al., 2015). Likewise, improvements were
obtained when the RAS had a frequency 10% higher than patients’
spontaneous gait cadence (Dalla Bella et al., 2015).

The analysis of stride duration variability using linear
mathematical methods (mean, CV) revealed that the magnitude
of the fluctuations was not influenced by the conditions (Table 2).
These results are in agreement with those of Uchitomi et al.
(2013) but contrary to those of Dotov et al. (2017) and Marmelat
et al. (2020) who had shown an increase in the CV.

On contrary, all RAS influenced PD patients’ temporal
organization of stride duration variability differently highlighting
further the importance of supraspinal centers in the regulation
of gait variability given the influence of these interacting external
stimulations. LRA were present in all patients during CC with
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FIGURE 2 | Scatter plots comparing α exponent of each of the nine patients
during Control Condition (CC) to α exponents obtained during each walking
condition: (A) Isochronous Rhythmic Auditory Stimulations condition (IRAS),
(B) Random Rhythmic Auditory Stimulations condition (RRAS), and
(C) Autocorrelated Rhythmic Auditory Stimulations condition (ARAS). X-axis
represents the subject number and the Y-axis represents α exponent value
during each condition and calculated using the evenly spaced averaged
version of the Detrended Fluctuation Analysis (α-DFA). The black dashed line
placed at 0.5 on the Y-axis delimit the area above which there are LRA. Each
graph is divided into three parts representing a stage of the modified Hoehn
and Yahr scale (mH&Y) from smallest (left) to largest (right).

normal α-DFA according to the normative data of healthy
population (Warlop et al., 2017; Ravi et al., 2020). This study
showed that the use of IRAS led to anti-persistence among seven
out of the nine patients. For the others, during IRAS, α-DFA

was close to 0.5 indicating a temporal organization close to
randomness. As stated in the introduction, it has been shown
LRA were positively correlated with balance status (BESTest and
ABC scale) (Warlop et al., 2016). In this hypothesis, PD patients’
postural stability could be impaired when α-DFA is lowered.
As a corollary, the use of an isochronous metronome would
potentially induce greater postural instability for these patients
(Hausdorff, 2007). This should be confirmed with longitudinal
clinical studies. Unlike during IRAS and RRAS, LRA were present
for all patients during ARAS. Although a significant decrease in
α-DFA could be demonstrated during this condition compared
to CC, the results remained within the normative data oh healthy
population (Warlop et al., 2017; Ravi et al., 2020).

Recently, it has been suggested that the presence of LRA in
biological systems would represent its healthy status marked by
abilities to flexibly adapt to the daily stresses imposed on the
body (Goldberger et al., 2002; Stergiou et al., 2006; Hausdorff,
2007). While the metronome is widely used in PD patients’ gait
rehabilitation, this study confirmed that it could lead to less
persistence in the temporal organization of gait, whatever the
rhythm used. According to Stergiou et al. (2006), among other
biological signals, healthy gait would present with an “optimal
movement variability.” Deviation from this optimal level in either
the direction of randomness or over-regularity would represent a
loss of adaptative capabilities of the locomotor system (Stergiou
et al., 2006; Stergiou and Decker, 2011). The next line of reasoning
will follow this theoretical model. Each RAS imposed a rhythm
on the patients, a limiting constraint that reduced degrees of
freedom during gait. Indeed, patients were asked to synchronize
steps with the RAS and had to readjust the timing of each
step in relation to the next in accordance with the imposed
rhythms. This could therefore explain why α-DFA during each
condition is close to that of the different RAS. In this context,
the absence of variation of the isochronous metronome would be
contrary to the natural fluctuations present in healthy subjects’
gait and compels the patient to synchronize to stereotyped and
less complex RAS (Hausdorff, 2007; Kaipust et al., 2013). In the
same way, the use of a random metronome would make the
temporal organization of gait noisier and more unstable because
of a complete lack of structure in the RAS. Both situations are
marked by an absence or decrease in persistence. Whether it
is an excess of order or complete disorder, this could induce a
loss of adaptability in patients’ gait (Stergiou et al., 2006). Then,
the compromise between excessive order and disorder would be
the use of an autocorrelated metronome. Autocorrelated RAS
would allow PD patients to have a necessary structure during
walking while giving them a certain freedom in carrying out
gait, a repertoire of adaptative motor behaviors for the same
situation. This is illustrated by an α-DFA within the normative
data of healthy subjects during ARAS and therefore closer to
1. According to this theoretical framework (Peng et al., 1995;
Harrison and Stergiou, 2015; Ravi et al., 2020), α-DFA close
to 1 (i.e., 1/f noise) would be considered as an optimal state
of variability and a sign of a strong coordination between the
sub-elements composing the system generating and organizing
gait. Therefore, getting closer to 1 could be a rehabilitation goal
for these patients. Previous studies supported this assumption
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since it would be possible to discriminate elderly fallers from
non-fallers using LRA computation (Hausdorff, 2007) and as
mentioned above, correlations were found between a low α-
DFA and poor balance test scores in PD patients (Ota et al.,
2014; Warlop et al., 2016). Further longitudinal studies should be
conducted to confirm this hypothesis.

Several authors also studied the effects of different RAS on gait
variability among healthy young (Kaipust et al., 2013; Marmelat
et al., 2014) and old (Kaipust et al., 2013) subjects’ and on
PD patients’ LRA (Dotov et al., 2017; Marmelat et al., 2020).
On one hand, their results clearly showed that the use of an
isochronous metronome lead to less persistence in gait (Kaipust
et al., 2013; Marmelat et al., 2014; Dotov et al., 2017). On the
other hand, the use of autocorrelated RAS allowed either to
maintain α exponent at the level of non-cued gait, or even
to have a more persistent stride-to-stride variability. However,
these results cannot be compared perfectly with those of the
present study since some of these studies (Kaipust et al., 2013;
Marmelat et al., 2014) only included healthy subjects and since
the acquisition times used were all short to compute LRA in a
robust manner (5–6 min).

Dotov et al. (2017) and Marmelat et al. (2020) also tested
ARAS on PD patients. As already discussed in the Introduction
section, this study differs methodologically from theirs. Indeed,
this study differs with the one of Dotov et al. (2017): longer
acquisition time, RAS frequency set according to participants’
comfort cadence, known α-DFA used to create ARAS and longer
track with less steering. Lastly, Dotov et al. (2017) did not asked
patients to synchronize their step to the beats while this was
the case for this present study. On the other hand, despite
these differences, our results were similar. Unlike our results
and those of Dotov et al. (2017), Marmelat et al. (2020) found
significantly higher α-DFA values during ARAS (the 1:1 step-to-
beat ratio version) compared to their CC. In their study, music
was used to deliver ARAS when a simple beat was used in this
study. As notified in the Introduction, music is composed of
multiple “layers” giving music multiple frequency ranges making
it a more complex auditory cue. This greater complexity could
offer more degrees of freedom to patients compared to an
usual metronome that could constitute a more rigid framework,
even with an autocorrelated rhythm organization (Cavanaugh
et al., 2017). This could partly explain why Marmelat et al.
(2020) noticed an increase in the α-DFA during their ARAS.
Also, music evokes emotions (Zatorre et al., 2007), improves
motivation (Terry et al., 2012) and it is not currently possible
to rule out potential effects of these features on the LRA. The
second difference lies in the α-DFA used to produce the ARAS.
Indeed, Marmelat et al. (2020) used an α-DFA ∼ 1 which is
believed to be an optimal state of variability (Peng et al., 1995;
Harrison and Stergiou, 2015; Ravi et al., 2020). The present study
opted for an α-DFA = 0.78 representing the natural temporal
organization of healthy gait as seen in previous studies (Warlop
et al., 2017, 2018) and confirmed by the meta-analysis of Ravi
et al. (2020). Based on the results of this study, that of Dotov et al.
(2017) and Marmelat et al. (2020), the question that remains is
which α-DFA to choose to get the optimal temporal organization
of the autocorrelated RAS to be used with PD patients. This

should be answered with future transversal and longitudinal
studies evaluating the long-term effects of RAS using different α

exponents as references.
This pilot study included nine mildly impaired patients with

α-DFA within normative data of healthy patients (Warlop et al.,
2017; Ravi et al., 2020). It would then be interesting to analyze the
influence of the different RAS on a greater number of PD patients
and at more advanced stages of the disease. Also, the long-term
effect of RAS should be analyzed following a training program to
determine whether short-term results are maintained or changed
over the long term. Third, no analysis of synchronization between
steps and RAS has been performed. This should be done in future
similar studies. Lastly, even though the PD patients served as
their own control group with CC, no control group composed
with healthy subjects was included in this study. One of the
prospects for the future is the use of new technologies, such as
the smartphone, to produce RAS. These technologies would be
able to assess patient’s gait continuously and to deliver ARAS
structured with α-DFA adapted in real-time to the patient’s needs
and situations as suggested by Hove et al. (2012) and Hristovski
and Balagué (2012). Such a system should be tested with PD
patients in future studies.

In conclusion, the temporal organization of the RAS has
a marked impact on temporal organization of stride duration
variability among PD patients. IRAS and RRAS lead to less
persistence, whereas ARAS allowed to maintain gait variability
closer to baseline. Given the results of this study and those
of previous ones, the use of an autocorrelated metronome
could therefore be an alternative when proposing auditory
cueing to patients. However, future transversal and longitudinal
studies must be conducted in order to determine the optimal α

exponent used to produce autocorrelated RAS and to investigate
the clinical utility of this type of metronome in comparison
with each other RAS.
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