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Abstract

It has been recently suggested that resveratrol can be effective in slowing down Alzheimer’s disease (AD) development. As
reported in many biochemical studies, resveratrol seems to exert its neuro-protective role through inhibition of b-amyloid
aggregation (Ab), by scavenging oxidants and exerting anti-inflammatory activities. In this paper, we demonstrate that
resveratrol is cytoprotective in human neuroblastoma cells exposed to Ab and or to Ab-metal complex. Our findings
suggest that resveratrol acts not through anti-aggregative pathways but mainly via its scavenging properties.
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Introduction

Alzheimer’s disease (AD) is one of the most common form of

dementia worldwide. Although the underlying causes of AD are

still debated, two pathological hallmarks have been identified:

senile plaques (SPs) and neurofibrillary tangles (NTFs). The latter

are formed by hyperphosphorilation and abnormal deposition of

tau (t) protein. SPs consist of deposits of b-amyloid protein (Ab)

mainly. Ab derives from proteolitical cleavage of the amyloid

precursor protein (APP) by three enzymes: a-, b- and c-secretase.

When APP is metabolized by b- and c-secretase, Ab1–40 and the

more toxic form Ab1–42 are produced; a phenomenon that is

known as the ‘‘amyloidogenic pathway’’ [1]. An imbalance

between production and clearance of these aggregative prone

peptides triggers the formation of SPs [2]. Even though SPs are the

most evident AD hallmark, recent reports highlight that Ab
oligomers, because of their potent synaptotoxicity, play a crucial

role in AD onset and development [3–5].

This scenario is further complicated by a huge amount of

variables that can influence Ab aggregation pathway and toxicity,

such as the dyshomeostasis of brain metal ions [6–8]. As a matter of

fact brain metal dismetabolism has been widely demonstrated in AD

patients and it has been proposed as a potential etiological co-factor

[9–11]. Accordingly to this idea, metals accumulation in the elderly

could be seen as a risk factor for AD onset and development. The

unbalanced presence of metal ions in the brain can easily exacerbate

the oxidative properties of Ab [12–14] and its toxicity [15,16].

A mechanism used by Ab, in the presence of metal ions, to exert

its toxicity is the production of reactive oxygen species (ROSs).

Several natural compounds have been proposed to date to

reduce the oxidative stress found in AD brains [17–19]. Among

these compounds, resveratrol provoked great interest. Resveratrol

is a natural polyphenol widely present in plants and in particular in

the skin of red grapes and in wine; resveratrol antioxidant

properties have been well demonstrated [20], with a wide range of

biological effects [21], and fortunately, the compound is free of

adverse effects [22]. In addition, recent papers underline its Ab
anti-aggregative properties [23–26]. Despite all these positive

effects, a major constraint holding back the use of resveratrol is its

poor bioavailability when taken as dietary supplement [27].

The aim of this study is to test whether resveratrol might have

anti-amyloidogenic and fibril-destabilizing properties, not only just

against Ab but also against Ab-metal complexes and to assess

whether the compound can act as a neuroprotectant. To that aim,

we employed neuroblastoma cell cultures treated with Ab
complexes in presence or absence of resveratrol.

Results

Congo Red assay
Congo Red (CR) is largely used in histochemical studies to detect

Ab fibril deposits. Accordingly to Nilsson (2004) [28], CR can be

also used to investigate amyloid fibrillization in vitro. As shown in

Fig. 1, with the exception of the Ab-Cu metal complex, resveratrol

had no effect on the fibrillization of other Ab metal complexes. On

the contrary, the presence of resveratrol seemed to enhance the

propensity of the Ab-Cu complex to form fibrils. Strikingly, Ab-Al

and Ab-Fe showed no or little propensity to aggregate compared

with Ab alone and its complexes with Cu and Zn. These results are

not surprising, as we have previously hypothesized, and recently

largely confirmed, that Al is able to ‘‘freeze’’ Ab in its oligomeric

state, stabilizing this assembly [29,30].

Turbidity measurements
To define a possible interaction between metal ions and

resveratrol, turbidity measurements of resveratrol in the presence
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of metal ions (Al, Fe, Cu and Zn) were performed. An increase in

absorbance value at 405 nm is indicative of the ability of

resveratrol to form aggregates. Absorbance values over time are

shown in Fig. 2. As reported in literature, resveratrol shows a

strong propensity to form complexes with Cu in vitro [20]; in

agreement with these data, solutions containing resveratrol and Cu

showed a significant increase in absorbance. Our data also confirm

the ability of resveratrol to form complexes with Fe and to a lesser

extent with Al and Zn.

Cell viability assay
Before testing the effect of resveratrol on neuroblastoma cells

exposed to Ab and or its metal complexes, a toxicity profile of the

compound was performed and cell death evaluated by MTT

assay. The resveratrol concentration needed to inhibit 50% (IC50)

of cell viability was 100 mM (Fig. 3A). Resveratrol at 15 mM

proved to be largely non toxic and was thereby chosen for the

experiments in which neuroblastoma cells were exposed to Ab,

metal ions, or Ab-metal complexes.

As shown in Fig. 3B, resveratrol was not toxic when mixed with

metals (15 mM for resveratrol and 5 mM for metal ions).

As largely demonstrated by this laboratory [15,30], Ab-Al was

the most effective in reducing cell viability on neuroblastoma cells

when compared with Ab alone or other Ab-metal complexes. In

the presence of resveratrol there was a significant decline in cells

mortality. Treatment with resveratrol resulted in significant

neuroprotection against Ab and Ab-metal induced toxicity.

Resveratrol drastically reduced the toxicity triggered by Ab-Fe

and Ab-Zn (p,0.01), while seemed less effective on Ab, Ab-Al and

Ab-Cu-induced cell death (p,0.05; Fig. 3C). These results have

some limitations due to the use of a trasformed cell line

(neuroblastoma, SH-SY5Y). Despite this, data obtained could be

helpful to fix the basis for a follow up study.

TEM
With TEM investigated and compared the morphology of Ab

and the Ab metal aggregates with resveratrol after 24 hours of

incubation. The results are consistent with the CR assay. Ab
retained the ability to form mature protofibrils in the presence of

resveratrol (Fig. 4A), likewise Ab-Al retained its oligomeric

structure (Fig. 4B). It is worth noting that the CR assay confirmed

what we have previously shown with other biophysical techniques

(ThT fluorescence and TEM) [15,30]. Ab-Cu and Ab-Zn formed

unstructured aggregates both in the presence and absence of

resveratrol (Fig. 4D and 4E respectively). Unlike the results

Figure 1. Congo Red spectroscopic assay. Time-dependence of Congo Red (CR) absorption when CR is bound to Ab and to Ab-metal
complexes, in the presence and in the absence of resveratrol. The reaction mixtures containing 1,5 mM Ab or Ab-metal complexes, 0.1 M Tris/HCl,
0.15 M NaCl, pH 7,4 and 0 (solid line) or 45 mM (dash) resveratrol, were incubated at room temperature for the indicated times. The absorbance due
to CR was subtracted. Each point represents means 6 SD of three individual experiments.
doi:10.1371/journal.pone.0021565.g001
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obtained during the CR assay, Ab-Fe showed the propensity to

form unstructured fibrils similar to those found in the case of Ab-

Cu and Ab-Zn (Fig. 4C).

SOD assay
Finally, we tested the effect of Ab and Ab-metal complexes on

SOD activity in the presence or absence of resveratrol. 24 h

treatments with Ab-Fe, Ab-Cu and Ab-Zn caused a significant

increase in SOD activity (p,0.05), while Ab and Ab-Al showed

negligible effects, even though Ab-Al complex seemed to reduce

SOD activity but not in a statistically significant manner.

Resveratrol was able to revert this process as we observed a

decrease in SOD activity in samples containing Ab-Fe, Ab-Cu or

Ab-Zn, suggesting that the compound has anti-oxidant properties.

As for Ab and Ab-Al we did not observe significant changes in

SOD expression in the presence of resveratrol (Fig. 5B). SOD

activity was also tested after treating neuroblastoma cells with

metal ions alone (with or without resveratrol), to rule out that the

SOD increase was merely due to the presence of transition metals.

A large excess of Al, Fe, Cu and Zn ions was used (5 mM) in these

control experiments and we did not observed significant and

reproducible changes (data not shown).

Discussion

It has been reported that resveratrol can extend the lifespan in

several organisms [31–33] and therefore the compound has

gathered great interest as anti-aging molecule.

In our study, it is demonstrated how resveratrol can reduce the

toxicity in neuroblastoma cells exposed to either Ab or Ab-metal

complexes. We chose Ab-metal complexes because metal ions

(such as Al, Cu, Fe and Zn) greatly potentiate Ab aggregation as

well as its intrinsic toxicity [15,30].

Several papers have highlighted that resveratrol can be a potent

anti-amyloidogenic and fibril-destabilizing polyphenol [23–26]. In

our opinion this neuroprotective mechanism of action is unsatisfac-

tory for two reasons: 1) in accordance with the observations reported

by Hudson et al. [34] resveratrol biases the Thioflavin T fluorescence

assay for amyloid fibril detection through nonspectral interferences. 2)

In the context of AD, anti-aggregative drugs might exert more harm

than as amyloid oligomers are more toxic than fibrils [35,36]. We

performed our CR assay to detect the presence of amyloid fibrils in

the presence of resveratrol and found (Fig. 1), that the compound

does not influence Ab-metal complexes aggregative pathway, except

for Ab-Cu where we observed an increase in fibrillization. One

possible explanation could be that resveratrol stabilizes Ab-Cu

complex in more ordered structures because of its Cu chelating

properties (Fig. 2). In agreement with the CR assay, TEM

micrographs do not show an anti-amyloidogenic effect of resveratrol.

After excluding an anti-amyloidogenic activity observed during

our experimental conditions (see different Ab procedure prepara-

tion in [26]), we set to investigate any potential antioxidant

Figure 2. Turbidity assay. Turbidity assay of resveratrol in the
presence of Al, Fe, Cu and Zn. Each well contained 200 mM resveratrol
and 400 mM metal ions. The experiment was carried out in Tris/HCl
buffer, as described in Materials and methods. The absorbance due to
metallic solutions was subtracted. Data represented are mean 6 SD of
three independent experiments. * P,0,05; ** P,0,01.
doi:10.1371/journal.pone.0021565.g002

Figure 3. Cytotoxicity assay in neuroblastoma cells. The
dependence of neurotoxicity (% cell death compared with the control)
on the concentration of resveratrol (A) is shown. To exclude
neurotoxicity due to the interaction between resveratrol and metal
ions, SH-SY5Y cells were incubated for 24 hours with Al, Fe, Cu and Zn
(5 mM) in the presence and in the absence of resveratrol (15 mM); in this
case no significant toxicity was observed (B). Fig. C shows cell viability
after treatment with Ab and Ab-metal complexes (0,5 mM) with or
without resveratrol (15 mM). Results were obtained in four individual
experiments. Error bar indicate the mean 6 SD. * P,0,05; ** P,0,01.
doi:10.1371/journal.pone.0021565.g003
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properties. It has been widely demonstrated that the AD brain

shows damages caused by ROS [37–39]. In AD, ROS are the

byproduct of several pathological events, including the production

of hydrogen peroxide by Ab [40–42] and the accumulation of

transition metals (such as Fe3+, Cu2+ and Zn2+) [43–45]. Ab-metals

complexes cause the coexistence of these two by-products,

exacerbating damages due to cellular oxidative stress. In

accordance with this hypothesis, we observed an increase in

super-oxide dismutase (SOD) activity in neuroblastoma cells

treated with Ab-Fe, Ab-Cu and Ab-Zn compared with non

treated cells (Fig. 5B). SOD (both as SOD1 and SOD2) act as an

antioxidant, protecting cells from being damaged by free radical

species [46]; however, their increased level is an indication of

cellular oxidative stress due to ROS overproduction. Neuroblas-

toma cells treated simultaneously with Ab-metal complexes and

resveratrol showed negligible differences in SOD activity when

compared with relevant controls. Altogether these data suggest

that Ab-Fe and Ab-Zn complexes exerted their toxicity mainly

through oxidative stress; while Ab-Cu seemed to exert its toxicity

through different pathways; in fact this complex was still toxic,

even in the presence of resveratrol.

Ab and especially Ab-Al resulted significantly toxic on neuroblas-

toma cells, a phenomenon that occurred without increasing SOD

activity, suggesting that Ab and Ab-Al were not directly involved in

free radical species production in our experimental conditions. In this

connection, Al3+ is neither a redox metal nor involved in oxidative

stress processes [47–49], meanwhile Ab, not complexed with metals,

is involved in of H2O2 production but it seems not involved in that of

free radical species [40]. Diversely, Ab and Al capacity to produce

free radicals is linked exclusively to the presence of transition metals

such as Fe and Cu [9,41,45,47,50,51]. Nevertheless, resveratrol

promoted neuroprotection also against Ab and Ab-Al-mediated

toxicity suggesting that it can act through alternative mechanisms that

do not require SOD activity. It is noteworthy to point out that

resveratrol plays its neuroprotective role through several activities

including: activation of protein kinase C, reduction of malondialde-

hyde levels, blocking of COX-2 expression, reduction of neuroin-

flammatory responses and scavenging [20,25,52–54].

Despite these chemopreventive properties, Ab-Al and Ab-Cu

retained toxic activity on neuroblastoma cells even after treatment

with resveratrol; this suggests that these two Ab-metal complexes

exert their toxicity through mechanisms that cannot be prevented

by resveratrol. These findings are in agreement with previous data

from our lab indicating that Ab-Al can damage cell membranes

because of its high superficial hydrophobicity [16]. Similarly, Ab-

Cu exerts its toxicity through mechanisms that are not only

oxidative stress dependent [55,56].

Collectively, our findings indicate that : 1) in our experimental

conditions we did not observe any anti-amyloidogenic and fibril-

destibilizing effect played by resveratrol, as proposed by other

groups [23–26,54,57]; 2) resveratrol exerts its neuroprotective

activity not only against Ab but also against Ab-metal complexes;

3) resveratrol acts as a ROS scavenger against those generated by

Ab-Fe, Ab-Cu and Ab-Zn, thereby reducing their toxicity; and 4)

eventually, resveratrol is not sufficient to fully block Ab-Al and Ab-

Cu toxicity.

Figure 4. TEM micrographs. TEM micrographs of Ab and Ab-metal
complexes in the presence of resveratrol after 24 hours of incubation at
room temperature. The final protein concentration was 10 mM, while
resveratrol concentration was 300 mM (molar ratio 1:30). A) Ab+resver-
atrol; B) Ab-Al+resveratrol; C) Ab-Fe+resveratrol; D) Ab-Cu+resveratrol;
E) Ab-Zn+resveratrol.
doi:10.1371/journal.pone.0021565.g004
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Materials and Methods

Materials
Human b-amyloid 1–42 was purchased from Invitrogen. L-

lactic acid aluminum salt, FeCl3, CuCl2, ZnCl2, 3-(4,5-di-

methylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and

resveratrol were purchased from Sigma-Aldrich (St. Louis, Mo.).

Congo Red was purchased from Merck & Co., Inc (Whitehouse

Station, N.J.). All in vitro experiments were carried out in 0.1 M

Tris/HCl pH 7.4 buffer plus 0.15 M NaCl (standard medium).

Preparation of Ab-metal complexes
Human Ab was solved in hexafluorisopropanol (HFIP) for

40 min at room temperature. HFIP was removed under vacuum

in a Speed Vac (Sc110 Savant Instruments). This treatment was

repeated three times (modified protocol from [58]). The Ab metal

complexes were prepared by 24-h dialysis against metal solutions

10 mM ([CH3CH(OH)COO]3Al, FeCl3, CuCl2, ZnCl2) at

T = 4uC using Spectra/PorH Float-A-LyserH tubes (Spectrum

Labs) with 100 Molecular Weight Cut Offs (MWCO). Then, Ab
metal complexes were dialyzed against bidistilled water (three

water changes, pH = 7) for 24 h to remove the excess of metals.

The same treatment was also performed with Ab alone. Aliquotes

of Ab, Ab-metal complexes were stored at 220uC until used.

Congo Red spectroscopy assay
Congo Red (CR) spectroscopic assay was performed in agreement

with Nilsson’s protocol (2004) using a 300 mL 96-well plate with U-

bottom [28]. Kinetic was followed for 24 h by monitoring the changes

in absorbance at 487 nm using a Microplate SPECTRAmaxH reader.

The increase in absorbance at this wavelength is indicative of amyloid

fibrils formation. The final protein concentration in each well was

1,5 mM, while resveratrol concentration was 45 mM (concentration

ratio protein-resveratrol was 1:30). Resveratrol was dissolved in

absolute ethanol (final concentration 100 mM) and further diluited

as needed. The final ethanol concentration in wells was 2% (v/v). This

concentration of ethanol in solution did not change Ab and Ab-metal

complexes aggregation kinetics (data not shown). The signals due to the

buffer alone was subtracted.

The absorbance of a solution containing resveratrol, metal ions

(Al, Fe, Cu and Zn) and CR dye was measured at two

wavelengths: 405 nm and 487 nm, to exclude potential artifactual

cross-interactions. The first wavelength to exclude the formation of

precipitates (turbidity assay), the second to exclude the capability

of resveratrol and metal ions to coordinate CR. Concentrations in

each well were: as for CR and resveratrol the same used in Ab
fibrils detection (70 mg/ml and 15 mM respectively), while for

metal ions 3 mM. Results obtained allow us to state that resveratrol

and metal ions did not seem to bias CR spectroscopic activity (data

not shown).

Turbidity measurements
Turbidity assay was performed using a 300 mL 96-well plate

with flat bottom. Absorbance at 405 nm was read using a

Microplate SPECTRAmaxH reader. The concentrations in the

wells were the following: resveratrol 200 mM, metals (Al, Fe, Cu,

Zn) 400 mM, ethanol 2%. The absorbance due only to metallic

solutions was subtracted. Resveratrol only kinetics is reported to

exclude possible hydrophobic interaction between the molecules in

solution causing precipitation; resveratrol is sparingly soluble in

water (solubility 0.03 g/L). Data reported are not biased by

spectroscopic interferences due to resveratrol, its UV spectrum

Figure 5. SOD activity assay. SOD activity was measured on cells treated with Ab and Ab-metal ions, with or without resveratrol. Concentrations
were the same used for MTT assay. Results were obtained in four individual experiments. Error bar indicate the mean 6 SD. * P,0,05; ** P,0,01.
doi:10.1371/journal.pone.0021565.g005
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(not shown) shows a maximum at 308 nm [20], while all turbidity

measurements were carried out at 405 nm.

Transmission Electron Microscopy (TEM)
All samples at 10 mM protein concentration, after an incubation

period of 24 h, were absorbed onto glow-discharged carbon-

coated butwar films on 400-mesh copper grids. The grids were

negatively stained with 1% uranyl acetate and observed at

40,0006 by transmission electron microscopy (TEM) (Tecnai

G2, FEI). The samples observed contained Ab and its metal

complexes with resveratrol 300 mM in 2% v/v of absolute ethanol.

Neuroblastoma Cells
SH-SY5Y human neuroblastoma cells were purchased from

ECACC (European Collection of Cell Culture, Salisbury, UK).

The medium in which they were cultured contained DMEM/F12

(Gibco, Carlsbad,CA USA) with 15% (v/v) fetal bovine serum

(FBS, Sigma-Aldrich, St. Loius, MO), 100 units/ml penicillin and

100 mg/ml streptomycin (Gibco, Carlsbad, CA USA) and 1% (v/

v) MEM non essential amino acid (NEAA) (Sigma-Aldrich, St.

Loius, MO). Cells were stored at 37uC with 5% CO2 in a

humidified atmosphere (90% humidity). Cells were used until

passage 25 for both the MTT assay and the SOD assay. The

culture medium was replaced every two days.

Cell Viability Assay
Cell viability was determined through MTT reduction assay.

SH-SY5Y cells were seeded into 24-well plates at a density of

156104 cells per well in 1 ml culture medium. 15% FBS-culture

medium containing: Ab, Ab-metal complexes (0.5 mM) with or

without resveratrol (15 mM) was added to the cells for 24 hours.

Resveratrol was dissolved in absolute ethanol, the final ethanol

concentration in the medium was 0,2% (v/v). This ethanol

concentration resulted largely non-toxic (data not shown). 100 mL

of 5 mg/ml MTT was added to each well and incubated in the

dark at 37uC for 3 hours. Then cells were lysed with 1 ml of acidic

isopropanol (0.04 M HCl in absolute isopropanol) [59]. Color

intensity was measured with a 96-well ELISA plate reader at

550 nm (Microplate SPECTRAmaxH). Toxicity due to metals

alone (5 mM) in the presence and in the absence of resveratrol

(15 mM) was also tested. All MTT essays were performed three

times, in triplicate. Viability was defined as the relative absorbance

of treated vs. untreated, expressed as a percentage.

SOD assay
Total cellular superoxide dismutase (SOD) activity was

determined with a SOD assay kit (Sigma-Aldrich) by following

manufacturer’s protocol. 1.06106 neuroblastoma cells were

seeded into 25 cm2 flasks. Cells were grown at 80% confluency,

then cells were treated with Ab and Ab-metal complexes (0.5 mM

in the medium) in the presence and in the absence of resveratrol

(15 mM in the medium). After 24 h cells were scraped, washed

three times in cold PBS buffer and then disrupted using Cell

Extraction Buffer (Invitrogen) containing 1 mM PMSF and 16
protease inhibitor cocktail (Sigma-Aldrich). Whole cell lysates of

SH-SY5Y was centrifuged at 10,000 rpm (4uC, 10 minutes).

Supernatant was transferred into 0.5 mL Eppendorf tube.

Obtained solutions were used to determine protein concentration

and SOD activity.

Statistical Analysis
Congo Red spectroscopy, MTT, turbidity and SOD assays were

statistically analyzed by Student’s t test and one-way analysis of

variance. Results were reported as highly statistically significant if

P,0,01 and statistically significant if P,0,05. Results are

presented as mean 6 standard deviation (SD).
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