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ABSTRACT 
 

Quorum sensing controls the luminescence of Vibrio fischeri through the 

transcriptional activator LuxR and the specific autoinducer signal produced by luxI. 

Amino acid sequences of these two genes were analyzed using bioinformatics tools. 

LuxI consists of 193 amino acids and appears to contain five α-helices and six ß-sheets 

when analyzed by SSpro8. LuxI belongs to the autoinducer synthetase family and 

contains an acetyltransferase domain extending from residues 24 to 110 as MOTIF 

predicted.  LuxR, on the other hand, contains 250 amino acids and has ten α-helices and 

four ß-sheets. MOTIF predicted LuxR to possess functional motifs; the inducer binding 

site extending from amino acid residues 23 to 147 and the LuxR activator site extending 

between amino acids 182 and 236. The InterProScan5 server identified a winged helix-

turn-helix DNA binding motif. 
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INTRODUCTION 

 
Environmental changes lead to morphological and physiological responses in 

bacteria through signal transduction pathways that send signals for transcription, 

causing gene expression to adapt the organism to the new environment. The signals 

originate from diffusible molecules synthesized by the cells themselves and serve to 

provide means for cell-to-cell communication and function as a mechanism for 

coordinating gene expression in response to cell population density in a phenomenon 

known as quorum sensing [1]. 

Signal molecules regulating quorum sensing are synthesized from cellular precursors 

by a synthase protein I and interact with a transcriptional activating R protein to 

provoke the expression of different target genes [2]. These signal molecules only act 
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after bacterial population reaches a certain level so that the concentration of the 

signaling molecules reaches a threshold value [3].  

Quorum sensing was first found to control the luminescence of Vibrio fischeri, a 

bacterium that forms symbiosis with certain marine animals to produce light [4, 5]. V. 

fischeri has been shown to regulate the expression of the lux operon through the 

transcriptional activator LuxR and the specific autoinducer produced by luxI [6]. This 

system exists in both Gram-negative and Gram-positive bacteria to control functions 

such as bioluminescence, virulence, biofilm formation and antibiotic production [7-9].   

 In V. fischeri, quorum sensing is regulated by two proteins; LuxI and LuxR (Fig. 1) 

[10]. The LuxI protein is an autoinducer synthase responsible for the production of the 

autoinducer signal molecule, an acylated-homoserine lactone (AHL) which diffuses 

through the cell membrane [11]. The second protein, LuxR, is a regulatory protein 

which binds to the autoinducer and DNA [12]. Engebrecht and Silverman discovered 

both regulatory components (luxI and luxR) and the luciferase structural genes 

(luxCDABE) [10, 13]. In low concentrations, V. fischeri produces almost no light; 

however, when the cell density increases, the autoinducer accumulates so that a critical 

concentration of the inducer is reached, activating the expression of the lux-ICDABE 

operon. An exponential increase in autoinducer production occurs from the increase of 

luxI transcriptions, and due to the fact that the luciferase structural genes luxCDABE are 

located downstream to the luxI, an exponential increase in light production takes place 

[14]. The aim of the present study is to characterize the components of this system 

structurally and functionally. 

 

 

 
 

Figure 1: Quorum sensing involves two regulatory components: the transcriptional activator 

protein (R protein) and the inducer produced by the autoinducer synthase. Accumulation of the 

inducer takes place in a cell-density-dependent manner until a threshold level is achieved. At this 

time the inducer binds to and activates the R protein, which in turn causes gene expression (15). 
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MATERIALS AND METHODS 
 

Amino acid sequences, LuxI (Accesssion No. sp|P35328) and LuxR (Accession No. 

sp|P35327), were obtained from the uniprot database (available at 

http://www.uniprot.org) and formatted as FASTA files to be analyzed using the 

following online programs: 

1- Compute pI/Mw, a tool which computes theoretical isoelectric points (pI) and 

molecular weights (Mw), available at http://web.expasy.org/compute_pi, 

2- SSpro8 of SCRATCH, a program for predicting secondary and disordered 

regions, available at http://scratch.proteomics.ics.uci.edu/ [16]. The output of this 

program, according to Kabsch and Sander [17] is H: alpha-helix, G: 3-10-helix, E: 

extended strand, T: turn, S: bend, C: the rest, 

3- PHYRE
2
, or Protein Homology/analog Y Recognition Engine, which determines 

protein tertiary structures, [18] available at http://www.sbg. bio.ic.ac.uk/phyre 2/html/ 

page.cgi?id= index, 

4- MOTIF, a program to identify motifs from GenomeNet, Japan, using Pfam and 

Prosite databases, available at http:// www.genome. jp/tools/motif. This program 

depends on Pfam, a database of protein domain alignments derived from the protein 

sequence secondary database of the Swiss Institute of Bioinformatics (SWISS-Prot), 

and translates nucleic acid secondary databases stored in the European Molecular 

Biology Laboratory Database (TrEMBL) [19].  

  The e-value provides information about the likelihood of a given sequence match 

obtained by chance. This value is calculated by the program to indicate the probability 

of the motif in the sequenc significantly. If the e-value is small, the match is significant 

because it is less likely to be a result of random chance. If e < 1 × 10
−50

, the database 

match is most likely to be a result of a homologous relationships. If e is between 0.01 

and 1×10
−50

, the match can be considered as homology. If e is between 0.01 and 10, the 

match is considered insignificant, but may point to a tentative remote homology 

relationship [20]. 

5-InterProScan5, a program from the European Bioinformatics Institute, United 

Kingdom, available at http://www.ebi.ac.uk/interpro. InterProScan 5 uses several 

databases such as PROSITE, Pfam, PRINTS, ProDom and SMART to identify 

signature protein motifs [21].   

 

 

RESULTS AND DISCUSSION 

 
LuxI consists of 193 amino acids and has Mw of 22014.15 Dalton and pI of 5.70 as 

estimated by the Compute pI/Mw software online. Using the SSpro8
 
program that 

predicts secondary structure (Fig. 2B), it appears that the molecule consists of five 

distinct α helices: α1 15→32, α2 79→82, α3 120→137, α4 149→157 and α5 187→195 

and six ß sheets: ß1 2→7, ß2 54→61, ß3 64→73, ß4 102→109, ß5 142→147, ß6 

176→184. Phyre
2 

was used to predict the tertiary structure (Fig. 3).                       

http://www.uniprot.org/
http://web.expasy.org/compute_pi,
http://scratch.proteomics.ics.uci.edu/
http://www.sbg.bio.ic.ac.uk/phyre2/html/page.cgi?id=index
http://www.genome.jp/tools/motif/
http://www.ebi.ac.uk/interpro/
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To predict functional motifs and domains in LuxI, MOTIF software was used. 

Results show that LuxI had an autoinducer synthetase family signature domain (e-

value=3.1×10
-34

) and contained an acetyltransferase domain extending from residues 24 

to 110 (e-value = 9.9×10
-9

) (Fig. 2A). 

 

 
 

Figure 2: (A) The amino acid sequence of LuxI in V. fischeri ES114 showing acetyltransferase 

domain in red (B) predicted secondary structure by SSpro8 where H: alpha-helix, G: 3-10-helix, E: 

extended strand, T: turn, S: bend, C: the rest. 

 

 

 

Figure 3: LuxI tertiary structure is composed of five α-helices ( ) and six β-strands (

) connected by loops as predicted by Phyr
2
. 

 

Members of the LuxI family of proteins are synthases that catalyze the production of 

acylated homoserine lactones (acyl-HSLs). The acyl portion of the acyl-HSL is derived 

from fatty-acid precursors conjugated to the Acyl carrier protein (acyl-ACP), and the 

HSL moiety is derived from S-adenosylmethionine (SAM) [22, 23]. The LuxI enzyme 

promotes the formation of an amide bond joining the acyl side chain from the acyl-ACP 
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to SAM. Lactonization of the ligated intermediate together with the subsequent release 

of methylthioadenosine (MTA) results in the formation of acyl-HSLs [22]. 

Many different LuxI type proteins which were 190–230 amino acids long and shared 

30–35% similarity were identified in Proteobacteria. Ten residues were conserved 

within most LuxI proteins in the amino terminal 110 amino acids, but no correlation 

was found between the synthesized acyl-HSL and the level of sequence similarity 

among the proteins. Nevertheless, it has been previously noted that many of the LuxI 

proteins that direct the synthesis of 3-oxoacyl-HSLs have a conserved threonine residue 

at the 143 position [24]. 

Recent structural and mutational analyses of the acyl-HSL synthase from Pantoea 

stewartii indicates that this threonine residue might be involved in stabilizing 

interactions with fatty-acyl biosynthetic precursors carrying a carbonyl group at the 

third position in the acyl chain [25]. Crystal structures have shown that acyl-HSL 

synthases have structural similarities with N-acetyltransferases of eukaryotes [24]. 

LuxR, on the other hand, contains 250 amino acids (Fig. 4A), and has an estimated 

Mw of 28519.63 Dalton and pI of 8.54. The molecule has ten α helices: α1 3→19, α2 

22→35, α3 64→73, α4 80→87, α5 104→115, α6 147→173, α7 185→195, α8 

200→207, α9 211→224 and α10 230→239 and four ß sheets: ß1 40→46, ß2 56→60, 

ß3 92→95 and ß4 133→139 [Fig. 4B]. Phyr
2
 demonstrated the tertiary structure 

prediction of the molecule (Fig. 5).  

 

 
Figure 4: Amino acid sequence of LuxR and secondary structure of LuxR predicted by SSpro8. H: 

alpha-helix, E: extended strand, T: turn, S: bend, C: the rest. 

 

 

MOTIF was also used to analyze LuxR (Table 1). The results indicate that the 

inducer binding site extended from amino acid residues 23 to 147, while the LuxR 

activator site extended between amino acids 182 and 236. The homeodomain fold is a 

protein structural domain that binds DNA and is found in transcription factors. The fold 

consists of a 60-amino acid helix-turn-helix structure on which three alpha helices are 

connected by short loop regions. The two N-terminal helices are antiparallel, and a 

longer C-terminal helix is perpendicular to them, interacting directly with the DNA [26, 

27].  

http://en.wikipedia.org/wiki/Protein
http://en.wikipedia.org/wiki/Structural_domain
http://en.wikipedia.org/wiki/DNA
http://en.wikipedia.org/wiki/Transcription_factor
http://en.wikipedia.org/wiki/Amino_acid
http://en.wikipedia.org/wiki/Helix-turn-helix
http://en.wikipedia.org/wiki/Alpha_helix
http://en.wikipedia.org/wiki/N-terminus
http://en.wikipedia.org/wiki/Antiparallel_%28biochemistry%29
http://en.wikipedia.org/wiki/C-terminus
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Figure 5: LuxR tertiary structure is composed of ten α-helices ( ) and four β-strands ( ) 

connected by loops as predicted by Phyr
2
. 

 

Table 1: Functional motifs in LuxR predicted by MOTIF program 

Motif Position/(e-value)* Recognition sequence 

Autoinducer binding 

domain 

23...147/ 

(1.3×10
-26

) 

KDINQCLSEIAKIIHCEYYLFAIIYPHSIIK 

PDVSIIDNYPEKWRKYYDDAGLLEYDP 

VVDYSKSHHSPINWNVFEKKTIKKESPN 

VIKEAQESGLITGFSFPIHTASNGFGMLSFAHSDK

DIYT  

Bacterial regulatory 

proteins, luxR family 

182...236/ 

(1.2×10
-20

) 

ILTKREKECLAWASEGKSTWDISKIL 

GCSERTVTFHLTNTQMKLNTTNRCQSISK  

Homeodomain-like 

domain 

191...215/ 

(0.002) 

LAWASEGKSTWDISKILGCSERTVT  

Sigma-70, region 4 183...219/ 

(0.0051) 

LTKREKECLAWASEGKSTWDISKILGCSERT 

VTFHLT 

Helix-turn-helix 

domain 

190...214/ 

(0.48) 

CLAWASEGKSTWDISKILGCSERTV 

HTH DNA binding 

domain 

201...225/ 

(0.41) 

WDISKILGCSERTVTFHLTNTQMKL 

*e-value represent the probability that a sequence could arise randomly by chance, values below 

0.01 could be of random appearance.  

 

DNA-binding proteins play a crucial role in the biology of the cell, being responsible 

for the transfer of biological information from genes to proteins [28, 29]. A large 

number of DNA-binding proteins are deposited in the Protein Data Bank (PDB) [30] 

and the Nucleic Acid Database [31]. HTH is a short motif consisting of a first alpha-

helix, a connecting turn and a second recognition helix which interacts with the DNA. 

The two alpha-helices extend from the domain surface and make a convex unit to fit 

into the major groove of DNA [23, 33, 34].  

Protein families with DNA-binding HTHs are greatly diverged, showing immense 

variation in amino acid sequences, sequence portions of DNA-binding domains and 

structural elements outside the DNA-binding motif [35]. It can be concluded from the 

analysis performed by MOTIF that LuxR possesses a regulatory domain extending 

along the C-terminal region, and an HTH structure which binds DNA and contains a 

sequence similarity to region 4 of the sigma factor belonging to RNA polymerase. 
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LuxR is a member of a family of transcriptional activators defined by sequence 

similarities in a C-terminal helix-turn-helix containing region [36]. Previous studies 

indicated two regions of the LuxR protein necessary for activity; one extending between 

residues 79-127 involved in autoinducer binding, and the other, between residues 184-

230, supposedly involved in DNA binding [37, 38].  

Residues 184-230 form the helix-turn-helix, which is a highly conserved region 

characterizing the LuxR family [36]. The C-terminal region of the LuxR family 

members also shows significant sequence similarity to region 4 bacterial RNA 

polymerase σ factors [39, 40]. Region 4 is a helix-turn-helix-containing region 

considered to recognize the -35 sequences of promoters [41]. 

InterProScan 5 program was used to explore further the different motifs in LuxR 

shown by MOTIF. The results showed four motifs;  (1) transcription regulator LuxR, C-

terminal (2) transcription factor LuxR-like autoinducer-binding domain (3) winged 

helix-turn-helix DNA binding motif (4) signal transduction response regulator, C-

terminal effector, (which is an unrelated motif since it is a fragment of the two-

component signal transduction system). Accordingly, LuxR is a transcription regulator 

containing an autoinducer binding site and of winged helix-turn-helix configuration. 

The winged helix proteins constitute a subfamily of helix-turn-helix proteins. A large 

number of such related proteins with diverse biological functions have been 

characterized by X-ray crystallography and solution NMR spectroscopy. Studies of 

winged helix proteins and their complexes with DNA have shown that the motif is 

extremely variable, exhibits two different modes of DNA binding, and can participate in 

protein–protein interactions [42]. 

The winged helix motif is a compact α/ß structure composed of two wings (W1 and 

W2), three α-helices (H1, H2 and H3) and three ß-strands (S1, S2 and S3), arranged in 

the order H1-S1-H2-H3-S2-W1-S3-W2 (Fig. 6). The N-terminal half of the motif is 

helical, whereas the C-terminal half is composed of two of the three strands forming the 

twisted antiparallel ß-sheet and the two large loops or wings, W1 and W2. Wing W1 

connects strands S2 and S3, and wing W2 extends from strand S3 to the C terminal of 

the DNA binding domain. These loops flank helix H3 like the wings of a butterfly, 

inspiring the name “winged helix motif” [43]. 

 
Figure 6: Winged helix-turn-helix topology consists of two wings: W1 and W2, three α-helices (H1, 

H2 and H3) and three ß-strands (S1, S2 and S3). The N-terminal half (N) is helical, whereas the C-

terminal half (C) is composed of the twisted antiparallel ß-sheet and the two large wings (see text 

below) (41).  
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The results of this study show that the quorum sensing system of V. fischeri is 

composed of two proteins; the LuxI, a synthease which produces the autoinducer and 

contains the Acyltranseferase motif, and the LuxR, which is a transcription regulator 

containing LuxR-like autoinducer-binding sites and possess a winged helix-turn-helix 

DNA binding domain. 
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