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DNAploidy analysis of cells is an automation technique applied in pathological diagnosis. It is important for this technique to classify
various nuclei images accurately.However, the lack of overlapping nuclei images in training data (imbalanced training data) results in
low recognition rates of overlapping nuclei images. To solve this problem, a newmethodwhich synthesizes overlapping nuclei images
with single-nuclei images is proposed. Firstly, sample selection is employed to make the synthesized samples representative.
Secondly, random functions are used to control the rotation angles of the nucleus and the distance between the centroids of the
nucleus, increasing the sample diversity. Then, the Lambert-Beer law is applied to reassign the pixels of overlapping parts, thus
making the synthesized samples quite close to the real ones. Finally, all synthesized samples are added to the training sets for
classifier training. The experimental results show that images synthesized by this method can solve the data set imbalance
problem and improve the recognition rate of DNA ploidy analysis systems.

1. Introduction

In recent years, cervical cancer with its incidence rate rising
year by year has become a social problem which threatens
women’s lives. According to a survey report released by
the World Health Organization in 2012, cervical cancer is
the second largest killer of women in less developed areas
[1, 2]. Cervical cancers can be detected at an early stage,
and early diagnosis and early treatment are effective ways
to deal with this problem. Currently, cervical smear is the
most popular method for the screening of cervical cancer.
In this method, human cervical exfoliated cells were first col-
lected from patients and DNA contained in cells was stained.
Then the stained specimen was placed under a microscope
and observed by experienced pathologists to make a diagno-
sis. However, with the outbreak of cancers, this technique
cannot meet the demand of practical applications. On the
one hand, it requires great amounts of manpower and mate-
rial resources; on the other hand, it often causes errors
because of subjectivity and visual fatigue of pathologists.
Therefore, automatic screening techniques become more
and more important.

As an automatic screening technique, DNA ploidy analy-
sis developed rapidly in recent years [3]. In this technique,
cell specimens were first collected from patients and the
DNA contained in cells was stained. Next, the specimens
were placed under a microscope and images of the nucleus
were taken using a high-resolution camera. Then, the nuclear
images were classified and recognized by machine learning
methods. Finally, the relative content of DNA in cells was
measured and the abnormal cells were found to provide
information for diagnosis. It is important for DNA ploidy
analysis to analyze overlapping nuclei, where cancer cells
are often found. However, it is difficult to collect enough
overlapping nuclei images to learn a good classifier, because
the samples of overlapping nuclei are few. Therefore, the
number of overlapping nuclei images are far less than those
of other categories, resulting in imbalance training data set
problems [4, 5].

Most classifiers learned with imbalance data show poor
performance when classifying samples from the classes with
few training data. The samples from the minority classes
are overwhelmed by those from the majority classes. Many
methods have been proposed to solve this problem, and these
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methods can be mainly divided into two categories. The first
category works at the data level, including resampling [6, 7]
and feature selection approach [8]; the second one works at
the algorithm level including the cost-sensitive [9] and
single-class learning [10]. Resampling includes undersam-
pling (removing samples from themajority class) and upsam-
pling (creating new samples for the minority class). The most
well-known method is the synthetic minority oversampling
technique (SMOTE) [11] which interpolates among existing
minority class examples and generates new minority class
samples. But traditional SMOTE, which involves blindness,
cannot solve the imbalance problems. Many improvements
have beenmade by follow-up researchers, and some examples
are SDSMOTE [12], GASMOTE [13], ECO-Ensemble [14],
and WK-SMOTE [15]. At the algorithm level, the cost-
sensitive learning-based method considers the costs associ-
ated with misclassifying samples, such as the cost-sensitive
adaboost algorithm [16] and AdaCost [17]. Ensemble
learning-based methods combine strength from individual
learners and handle the class imbalance problem at the
individual and ensemble levels, and some examples are the
boosting algorithm [18, 19] and bagging algorithm [20, 21].
In addition, researchers also combine the resampling method
with the learning algorithm method to deal with the class
imbalance data sets, such as the PcBoost [22], CSFSG
algorithm [23], HSDD method [24], and GADBSM method
[25]. There are methods which use active learning to solve
the class imbalance problem, such as the Bayesian active
learning method [26] and the KA-SVM [27] method.

However, these methods can only learn from the existing
samples, but cannot obtain class information beyond what is
contained in the existing samples. For the imbalance data in
cell classification, on the one hand, overlapping cells are
formed by single cells; on the other hand, we can collect a
large number of single-cell images easily. If we can simulate
the process of generating overlapping images in the image
data domain, we can generate enough overlapping cell
images close to real images for feature extraction and model
training. Therefore, we present a new method to synthesize
overlapping nucleus images by using single-cell images.

In this paper, we present a new method to synthesize
overlapping nucleus images by making use of the prior
knowledge of forming overlapping nucleus images. This
method first selects two-cell images and then synthesizes
new overlapping nucleus images after rotation and segmen-
tation. In order to make the synthesized cells as close as
possible to the real ones, we consider three aspects in the
proposed method. To ensure that synthesized cells are repre-
sentative, we select typical single-cell images as source images.
In order to avoid the excessive accumulation of the synthe-
sized data, we introduce randomness for the rotation angle
and the overlapping length for cells. To make the overlapping
parts close to real ones, we reconstruct the pixels of the over-
lapping parts according to the Beer-Lambert Law [28, 29].
Experimental results show that after adding synthesized
overlapping cell images to minority categories, the accuracy
is improved on the three classifiers, including the multilayer
perceptron (MLP, also called artificial neural network) [30],
support vector machine (SVM) [31], and Gaussian mixture

model (GMM) [32]. The proposed method also outperforms
four typical methods (undersampling [33], upsampling [11],
adaboost [34], and randomForest [35]) which are popular in
solving the imbalance problem.

2. The Methods

As large amounts of single-cell images are available, we can
synthesize two-cell images with two single-cell images;
namely, three-cell images can be synthesized with a two-cell
image and a single-cell image. Similarly, we can always
synthesize a (i+ j)-cell image with an i-cell image and a
j-cell image.

The procedure of image synthesis is shown in Figure 1. In
the selection module, representative samples are chosen to
avoid redundancy. Then the two selected images are rotated
in a random angle, respectively. Next, two-cell images are
segmented and the cell background is removed. Finally, the
two segmented parts are overlapped to form an overlapping
image, with the pixels of the overlapped part reconstructed
according to the Beer-Lambert Law.

The synthesizing procedure is shown in Figure 2. In order
to obtain a 4-cell image, a single-cell image and a 3-cell image
are chosen. After rotation, segmentation, and contour extrac-
tion, two-cell parts are overlapped to yield a new overlapping
cell image.

2.1. Randomness Introduction. Randomness is employed
to ensure the diversity of the generated overlapping cells.
Firstly, rotation angles are randomly generated. Then, the
overlapping length is random produced in an expected range.
A uniform random number is generated by a linear random
congruence method [36]. The basic recursive formula is
presented as (1):

xn = αxn−1 + c mod M , 1

λn = xn/M, n = 1, 2,… , where x0 is the initial value, α is the
multiplier, c is the increment, and M is the modulus. They
are all nonnegative integers.

2.2. Image Selection. Image selection [37] is aimed at ensuring
that the selected images are representative. One feasible
method is to prevent similar images from being used more
than once. When selecting cell images to generate new over-
lapping images, representative samples which accurately
reflect the larger entity should be chosen. In order to make
the synthesized samplesmore representative, sample selection
of cell images is necessary. Algorithm 1 is used for image
selection.where n is the feature dimension of the cell image.
P is the initial sample set, whileQ is the sample set after selec-
tion.T is the threshold valuewhich is themean distance of two
samples in P, and di is the Euclidean distance of all the
samples. f eature α means the feature vector of the sample α.

2.3. Image Rotation and Segmentation. Image rotation refers
to rotating an image with the centroid as center point. Given
two-cell images, different overlapping cell images are gener-
ated when different rotation angles are used. The synthesized
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overlapping cell images can cover more conditions to ensure
the diversity.

The original images for synthesis contain a background,
which should be removed before synthesizing. In this paper,
the threshold segmentation method is used to locate the cell
area. In this method, pixels whose gray value is less than a
threshold belong to the nucleus region; otherwise, the pixels
belong to the background region. The segmentation formula
is presented as (2):

F x, y =
1, f x, y ≥ T

0, f x, y < T
, 2

where T is the segmentation threshold, f x, y is a gray value
in an image, and F x, y is the corresponding gray value after
segmentation. The valley point of the histogram is set as the
initial threshold.

After image segmentation, nucleus contours are obtained.
The cell region is extracted by removing the background of
the cell image. This process is shown in Figure 3.

2.4. The Random Overlapping Length. The overlapping cells
have a common area. We use overlapping length to describe
the degree of overlapping. When one nuclear region is tan-
gent to the second nuclear region (as shown in Figure 4(a)),

the value of d is zero. Here, the overlapping length is subject
to 0 ≤ d ≤ 1/2Rmin (Rmin refers to the minimum width value
of two nuclear regions). The overlapping length of two black
rectangles (as shown in Figure 4(b)) is a random value
generated by (1).

2.5. Pixel Reconstruction of Overlapping Regions. The non-
overlapping regions of cells remain unchanged after the
overlapping operation. However, the overlapping region is
too dark, which is not in accordance with the real cell images.
Therefore, it is necessary to reconstruct the gray value of the
overlapping region. First of all, we need to locate overlapping
areas. The specific steps are as follows:

(1) Finding the smallest cross x and vertical coordinates
y, the maximum horizontal X and vertical coordi-
nates Y , according to the coordinates of all points in
the cell areas, and point x, y and X, Y respec-
tively, are coordinates of the upper left and lower
right corner of the minimum bounding rectangle in
the nuclear region. In the same way, the minimum
bounding rectangle is obtained (such as the two black
rectangles in Figure 5), and two rectangles are inter-
secting at the point of a and b (as points a and b in
Figure 5).

(2) The length of ab with the added 2 points is the width,
and the rectangle’s height is the new height; with
these, a new searching area is constructed (such as
the red rectangle in Figure 5).

(3) Every pixel in the searching area of the nonwhite part
is traversed. If this point is within the first contour
and at the same within second one, this point is
determined as the one that need be reconstructed.

Figure 2: The synthesizing procedure.
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(4) All pixels that need to be reconstructed are searched,
and all the points form a reconstruction pixel set.

(5) The pixel in the reconstruction pixel set is given a
new value via (7).

Since the two pictures are operated in one background
image, the positions in the background and in the source
image need a coordinate transformation. As is shown in
Figure 6, assuming that the background is rectangle B, the
source image is rectangle A. X, Y is the position of point
P in B, a, b is the position of point P in B, and x, y is
the position of point P in A. The formula used for position
transformation is presented as (3):

x = X − a,

y = Y − b
3

With (3), the point coordinates are obtained in the over-
lapping region of the source image, then the corresponding
pixel values can be obtained.

According to the Beer-Lambert Law [24, 25], we can infer
the pixel gray value in the overlapping areas. Firstly, a gray
value of the point is converted to the value of optical density,
and then optical density is accumulated. Finally, the value of
optical density is converted to grayscale values. The gray
value cannot be added directly in overlapping cell images.
Since the absorbance represents the amount of cellular

materials, the absorbance of the overlapping part can be
superimposed. Therefore, the gray value of the overlapping
region needs the conversion process. For the two overlapping
cells, the relationship between gray values and the optical
density can be modeled as follows:

A1 = lg
I0
I1

, 4

A2 = lg
I0
I2

, 5

where I0 is the average gray value of the background (I0 is the
threshold), I1 denotes a gray value in the first cell, and I2 are
the gray values in the second cell. A1 and A2 are the corre-
sponding optical density values.

When the two points in the two cells are overlapping, the
optical density satisfies the following additive relation:

A = A1 + A2 = lg
I0
I1

+ lg
I0
I2

= lg
I0I0
I1I2

= lg
I0

I1I2/I0
= lg

I0
Is

,
6

where A is the new optical density of the corresponding posi-
tion at an overlapping point, and Is is the new gray value at
the overlapping point. According to (6), the new gray value
can be computed with

Is =
I1I2
I0

7

As shown in Figure 7, it can be seen that the synthe-
sized overlapping region is darker than the real overlapping
region. After reconstruction, the overlapping region looks
more natural.

1: Input: P = α1, α2, α3,… , αn , T =mean d αi, αj , i, j = 1, 2,… , n i ≠ j
Output: Q = β1, β2, β3,… , βk , k ≤ n

2: Initializing
Q← αk , αk ∈ P; P← P − αk ;

3: Begin
4: For each α ∈ P

x = f eature α ; yi = f eature βi , where βi ∈Q;
di = x − yi 2;
dmin ←min di, i = 1, 2,… , len Q ;

5: if dmin < T
6: P← P − α
7: else

Q←Q + α ; P← P − α ;
8: Endif
9: Endfor
10: End

Algorithm 1

(a)

(c)
(b)

(e)

(d)

Figure 3: The process of removing background.
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3. The Results

3.1. Experiments. A DNA ploidy analysis system is mainly
used for the identification and analysis of diseased cells and
cancer cells. In order to obtain real data, the samples are
collected by the staffs of the Heilongjiang Maria Maternity
Hospital. The cell samples were collected from 300 patients.
The cells of each patient were smeared on a slide and then
Feulgen stained. After that, the slide was placed under a
microscope and the microscope automatically took cell

images. Then, the DNA ploidy analysis system segmented
cell images into single-cell images or overlapping cell images.
Finally, cell pathology doctors classified each cell image man-
ually into one of 8 categories, namely, single typical epithelial
cell, single atypical epithelial cell, two epithelial cells, three
epithelial cells, four or more epithelial cells, single lympho-
cyte, single centriole, and two or more centrioles. These cell
images of each class are examples of a typical imbalance.
The amount of single-cell images in classes 1, 2, 3, 4, and 6
are very large, while those of the other classes are very small.
Our task is to synthesize overlapping samples for classes 4, 5,
7, and 8 with single-cell images. First of all, we need to select
representative samples from classes 1, 2, 3, and 6. The cells in
classes 1, 2, 3, 4, and 6 are used to synthesize new overlapping
images, and the images of these classes need sample selection.
The original data in the experiment are extremely unbal-
anced. In order to show the influence of the imbalance data
on the accuracy rate, the number of testing samples is 2000
in each class. There are 8 types of cell images in total, and
classes 3, 4, 5, and 8 have small number of training samples.
Experiments are performed by adding synthesized cell data
to these classes (i.e., classes 3, 4, 5, and 8) to make the data
more balanced. In the experiments, the synthesized data are
added into the training set gradually to make it more and
more balanced.

Three popular classifiers, that is, the multilayer percep-
tron (MLP), support vector machine (SVM) and mixed
Gaussian model (GMM), are chosen to evaluate the proposed
method. The classifiers are trained with the new train sets of
different amounts and their performance is compared. In the
neural network training, the hidden node is 100, and the
number of iterations is 200. The minimum error in training
is set as 0.1. The number of transformation characteristics
is 5. The random seed value is 20 to initialize the multilayer
perceptron. In the SVM classifier, the number of transfor-
mation parameters is 80. Kernel type is rbf, and the mode
of the classifier is one-versus-one. In the Gaussian model
classifier, the pretreatment type is a normalization and
pretreatment parameter (the number of transformation char-
acteristics) with a value of 100, which is used for its trans-
forming characteristics. The seed value generated by the
randomizer is 42.

3.2. Feature Extraction. Based on the features of cell images,
45 dimensional features are first extracted and then 28
dimensional features are selected for classification. The

(a) (b)

Figure 4: The random overlapping results.

b

a

Figure 5: Nuclei overlapping region.

a

b
Y

X P(X,Y) A

B

Figure 6: Coordinate conversion.
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Figure 7: Comparison of constructing overlapping parts.
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selected features include 20 morphologic features [38] and 8
texture features [39]. They are essential for distinguishing 8
types of cell images in classification. The 20 morphologic
features are used to describe the shape and size of cells,
including area, circularity, distance, sigma, sides, roundness,
convexity, Ia (centroid coordinates of x axis), Ib (centroid
coordinates of y axis), M11, M02, M20, compactness,
ContLength, diameter, radius, rectangularity, anisotropy,
bulkiness, and StructureFactor [38]. The 8 text features
consist of contrast, energy, homogeneity, correlation, entropy,
anisotropy, mean, and deviation [39]. Some typical mor-
phologic features can be defined by (8), (9), (10), (11),
(12), (13), (14), and (15), and two typical texture features,
that is, the mean and deviation can be expressed by (14)
and (15).

Sigma = 〠
x,y

g0 − g x,y − distance
2
/area, 8

Distance =〠
x,y

g0 − g x,y

area
, 9

Roundness =
1 − sigma
distance

, 10

where g0 represents the mean values of pixels of the cell
area, and g x,y is the pixel value of dot x, y in the area of
the cell.

h =
M20 +M02

2
, 11

Ia = h + h2 −M20 ∗M02 +M2
11, 12

Ia = h − h2 −M20 ∗M02 +M2
11, 13

where M20 and M02 mean the sum of the pixel values of the
x and y axes of the nucleus separately. M11 is the mean value
of every pixel in the nucleus.

Mean =
〠x,yg x, y

Num
, 14

Deviation = 〠
x,y g x, y −mean 2/Num, 15

where g x, y is the gray values of the pixel(x,y) and Num is
the number of pixels of images.

For each cell image, the 28 features extracted for classifi-
cation are shown in Table 1.

3.3. Evaluation Criteria. For multiple class problems, we
suppose that the classes have been labelled C0, C1, C2,… ,
Ck k > 2 with the order of the labels which do not reflect
any intrinsic order to the classes. The results of classifications
are accessed according to the confusion matrix shown in
Table 2. Their total accuracy is computed via (16). The recall
rate of each class is computed in (17), and the G-mean can be
computed via (18).

Accuracy =
n11 + n22 +⋯ + nkk

〠k
i=1ni1 + ni2 +⋯ + nik

, 16

Recalli =
nii

〠k
j=1nij

, 17

G‐mean = ∏
k

i=1
recalli

1/k

, 18

where Ci represents the label of the class i, and nii means that
the sample number from class i is predicted to be class i in
(18). k is more than 2 in these equations.

3.4. Results. The image number for training in each class is
shown in Table 3. The synthesized cell images are added to
the training data to make them more balance. The accuracy
of the three classifiers is compared in Table 4, where the con-
ditions, imbalance ratio (the ratio of the number of samples
of the largest class to the smallest class), the accuracy rate,
and G-mean are shown and the experimental results of the
inadequate training and full training with synthesized cells
are compared. The entries in the table are sorted by descend-
ing order on an unbalanced ratio, namely the training data
become balanced gradually.

As shown in Table 4, when the imbalance ratio is 100, the
original data without adding synthesized samples are used for
training. The accuracy rates obtained by these three classifiers
are the lowest. With the imbalance ratio decreasing, the
accuracy increases. When the unbalance ratio is 1, that is,
the sample numbers of all classes become the same, the three
classifiers achieve their best performance compared with 1,
and the accuracy rates are increased by 8.29%, 8.97%, and
14.34%, respectively; at the same time the G-mean reaches
0.8292, 0.7931, and 0.7484, respectively. The accuracy rate
and G-mean changes, respectively, in the range of the distri-
bution ratio of a small class in Figure 8.

3.5. Comparison with Other Methods. Four methods, namely,
the proposed method, upsampling [11], undersampling [33],
and the adaboost method [34] are compared. The proposed
method can be treated as an upsampling method which sim-
ulates the process of generating overlapping images in the
image data domain. In the upsampling method, new features
in feature space-based SMOTE [11] are generated. In the
undersampling method, the training data are divided into
clusters. Then, in view of the ratio of majority class samples
to minority class samples, the representative data for major-
ity class samples from each cluster are selected. Adaboost is
an iterative algorithm, which places different weights on the
training distributions in each iteration. After each iteration,
the classifier increases the weights associated with the incor-
rectly classified examples and decreases the weights associ-
ated with the correctly classified examples separately. This
forces the learner to focus more on the incorrectly classified
examples in the next iteration.

The proposed method, the undersampling method, and
the upsampling method use theMLP classifier, while the ada-
boost method uses the adaboost algorithm. In the adaboost
classifier, the number of iterations is 50 and the learning rate
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is 1.0. The confusion matrix can show the relationship
between the predicted results and the original cell classes.
The assessment results on the precision of the classification

using the confusion matrix comparing with 4 methods are
shown in Figure 9.

As can be seen from Figure 9, in the proposed method,
three epithelial cells (class 4) and four or more epithelial cells
(class 5) have a lower accuracy rate of 62.2% and 66.3%,
respectively. In comparison, the accuracy rate of class 4 and
class 5 is only 40.3% and 52.1% in the undersampling
method, 43.9% and 55.1% in the upsampling method, and
53.3% and 76.4% in the adaboost method. The images of class
4 and class 5 are difficult to classify because of diverse over-
lapping situations and overlapping cell numbers. In conclu-
sion, the proposed method achieves the best performance,
while the adaboost method gets the worst performance.

According to literature, when the resampling method
combines with the learning algorithm, good performance
can be obtained. Therefore, we choose the randomForest

Table 1: Features of each class of cell images.

Class 1 2 3 4 5 6 7 8

Cell images

IOD 89.610977 71.606436 180.15888 272.85886 470.77552 76.777616 86.473958 940.99801

Area 837 447 1341 1705 1805 289 299 2910

Circularity 0.7921 0.480011 0.461493 0.382338 0.479377 0.920065 0.654806 0.510143

Roundness 0.903653 0.727129 0.68578 0.640621 0.732710 0.944292 0.812886 0.722639

Radius 18.718845 17.566048 30.722118 37.70215 33.625638 10.377715 12.087826 41.920397

Deviation 0.056678 0.096081 0.080454 0.090358 0.173582 0.159820 0.180099 0.18441

Mean 0.642317 0.57354 0.6061 0.573193 0.482879 0.470737 0.457682 0.430258

Sigma 1.475920 3.135578 6.373434 8.491296 6.312004 0.474985 1.634735 8.020041

Contrast 1.593787 6.369128 2.674124 2.777126 9.373961 16.356402 15.341137 12.716838

Convexity 0.974389 0.959227 0.90303 0.830088 0.827602 0.969799 0.934375 0.812395

Bulkiness 1.002132 1.001983 1.051246 1.223468 1.161857 1.000329 1.045995 1.132826

StructureFactor 0.283446 1.125497 1.343892 1.689330 0.973999 0.049896 0.463667 0.815918

Ia 71551.46 33796.029 335417.10 622132.67 511789.63 6978.0203 10412.977 1223692.3

Ib 43622.82 7510.4405 67471.275 128759.63 177297.55 6334.6855 5318.0129 476218.75

M11 −0.018070 −0.054505 −0.073719 0.084856 0.049427 0.001029 0.007442 −0.039142
M20 0.073786 0.140186 0.122783 0.129873 0.119612 0.083408 0.060474 0.120763

M02 0.073786 0.066543 0.101258 0.128430 0.091892 0.075985 0.115486 0.079980

Energy 0.023546 0.008648 0.011273 0.011569 0.003225 0.004424 0.005000 0.002741

Correlation 0.941807 0.920241 0.950388 0.959477 0.962070 0.925055 0.943140 0.954548

Homogeneity 0.601926 0.313502 0.511144 0.515849 0.315213 0.239775 0.322485 0.306934

Entropy 5.706993 6.248901 6.224919 6.415742 7.111077 6.711657 6.795570 7.259227

Anisotropy −0.525847 −0.510334 −0.537583 −0.514221 −0.514942 −0.490626 −0.499718 −0.499788
Compactness 1.108596 1.311802 1.633726 1.912168 1.913056 1.028384 1.198749 2.272140

ContLength 107.9827 85.840620 165.92388 202.40916 208.30865 61.112698 67.112698 288.24978

Diameter 36.359318 34.132096 60.440053 74.404301 64.412732 19.646883 23.021729 82.800966

Rectangularity 0.801250 0.800937 0.793462 0.646409 0.707792 0.804348 0.771812 0.678742

Distance 15.318871 11.491077 20.283375 23.627692 23.614855 8.526281 8.736569 28.915494

Sides 4.261805 2.606224 2.438174 2.288309 2.631792 5.520584 3.114689 2.586205

NumRuns 32.000000 32.000000 52.000000 62.000000 67.000000 20.000000 18.000000 91.000000

MeanLength 26.156250 13.968750 25.788462 27.500000 26.940299 14.450000 16.611111 31.978022

Table 2: Confusion matrix for multiple class classification
problems.

Predicted classes
C1 C2 … Ck

Actual classes

C1 n11 n12 … n1k
C2 n21 n22 … n2k
… … … … …

Ck nk1 nk2 … nkk
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algorithm [35] to train models. The randomForest belongs to
an ensemble learning method, which fits a number of deci-
sion tree classifiers on various subsamples of the data sets.
It also uses an averaging value to improve the predictive
accuracy and control overfitting. We combine the upsam-
pling method with the randomForest method, the proposed
method with the adaboost method, and the proposed method
with the randomForest method. In the randomForest classi-
fier, the number of iterations is 60, the maximum depth of
each tree is 3, the minimum number of sample leaves is 20,
and the maximum features is “sqrt.”

As can be seen from Figure 10, the combinations of the
two methods have a higher accuracy than that of a single
method. The accuracy rate of class 3 is only 10.5%, which is
extremely abnormal in the randomForest method, and the
accuracy rate of class 8 just reaches 50%, relatively low com-
pared to the other 6 classes except class 3. However, in the

upsampling+ randomForest method, the accuracy rate of
class 3 obtains an accuracy of 95.8% and the accuracy rate
of class 8 is 78.8%. According to the confusion matrix
of the proposed + adaboost method, this method is not
suited to deal with the balanced data generated by the
proposed method. Finally, in the proposed + randomForest
method, the accuracy rate of each class is good, and the
lowest accuracy among 8 classes is 80.3%. Therefore, the
proposed+ randomForest method achieves the best perfor-
mance among the 4 hybrid methods.

Even though the confusion matrix can indicate the accu-
racy rate of each type of cells in detail, it cannot directly show
the overall correctness, G-mean, and so on. Figure 11 shows
the results of all 8 methods.

As can be seen from Figure 11, the accuracy of the ran-
domForest method is the highest, but the G-mean is far from
the value of accuracy. It is obvious that the randomForest

Table 3: The number of cell images with different conditions.

Classes
Imbalance ratio Conditions

1 2 3 4 5 6 7 8

20,000 20,000 200 200 200 20,000 20,000 200 100.0 1

20,000 20,000 500 500 500 20,000 20,000 500 40.0 2

20,000 20,000 1000 1000 1000 20,000 20,000 1000 20.0 3

20,000 20,000 2000 2000 2000 20,000 20,000 2000 10.0 4

20,000 20,000 4000 4000 4000 20,000 20,000 4000 5.0 5

20,000 20,000 6000 6000 6000 20,000 20,000 6000 3.3 6

20,000 20,000 8000 8000 8000 20,000 20,000 8000 2.5 7

20,000 20,000 10,000 10,000 10,000 20,000 20,000 10,000 2.0 8

20,000 20,000 12,000 12,000 12,000 20,000 20,000 12,000 1.7 9

20,000 20,000 14,000 14,000 14,000 20,000 20,000 14,000 1.4 10

20,000 20,000 16,000 16,000 16,000 20,000 20,000 16,000 1.3 11

20,000 20,000 18,000 18,000 18,000 20,000 20,000 18,000 1.1 12

20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 1.0 13

Table 4: The results with the range of conditions.

Conditions Imbalance ratio
Accuracy (%) G-mean

MLP SVM GMM MLP SVM GMM

1 100.0 75.58 71.68 62.05 0.7280 0.6932 0.5486

2 40.0 77.24 74.02 64.29 0.7496 0.7021 0.5776

3 20.0 79.73 75.18 65.01 0.7799 0.7318 0.5841

4 10.0 80.77 77.61 69.73 0.7912 0.7598 0.6570

5 5.0 81.49 78.57 74.15 0.7994 0.7696 0.7229

6 3.3 82.33 79.64 74.58 0.8102 0.7820 0.7272

7 2.5 82.47 79.92 75.28 0.8106 0.7845 0.7363

8 2.0 82.30 79.93 74.79 0.8086 0.7846 0.7314

9 1.7 82.43 80.70 75.69 0.8097 0.7816 0.7404

10 1.4 82.88 80.31 75.49 0.8167 0.7903 0.7379

11 1.3 83.38 81.03 75.98 0.8225 0.7979 0.7427

12 1.1 83.93 80.47 76.33 0.8290 0.7913 0.7470

13 1.0 83.87 80.65 76.39 0.8292 0.7931 0.7484
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method is not suitable for dealing with imbalance data and it
pays more attention to the samples of the majority class and
ignores the samples of the minority class. Therefore, the
method proposed effectively solves the imbalance problem.
As for the proposed + randomForest method, the accuracy

is close to that of G-mean, while they are higher than those
of the other methods except for the randomForest method.
The accuracy and G-mean of the proposed method are
less than that of the proposed + randomForest method. The
accuracy is high but the G-mean is relatively low in the
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Figure 8: The results in the range of distribution ratio of a small class.
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Figure 9: The comparison of the confusion matrix by 4 single methods.
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proposed + adaboost method, so it also performs worse on
the imbalance data. In summary, judging by all the evalua-
tion criteria, the proposed + randomForest method has
achieved the best performance.

In fact, the classifier can perform better by adjusting the
parameters of the learning algorithm. Table 5 shows the
range of results when parameters are varied. The data used
in the adaboost and randomForest are synthesized by the
proposed method.

As can be seen from Table 5, in the adaboost algorithm,
the accuracy and G-mean decrease in a trend when the iter-
ation number increases. When the iteration number is 0.4,
the accuracy is the highest. However, the algorithm can cause
more errors when the learning rate is low. When the iteration
number is 80 and the learning rate is 0.8, the classifier per-
forms its best. The accuracy and G-mean of the randomFor-
est method show an upward tendency with the iteration
number increasing from 10 to 60. The accuracy decreases
when the iteration number increases from 60 to 80. When
the iteration number is 100, the randomForest algorithm
performs its best, because the values of the accuracy and
G-mean are both relatively high.

4. Conclusion

In conclusion, we proposed a newmethod to synthesize over-
lapping cell images to solve the imbalance data problem. This
method simulates the generation of overlapping cells by
making use of prior knowledge. In this method, representa-
tive images are first chosen, and then the images are rotated
randomly. After that, two segmented cell parts are over-
lapped, and finally the overlapping parts are reconstructed.
Sample selection and randomness are introduced to make
the synthesized images more representative. The new images
are added to the training samples for model training. Exper-
iments show that the proposed method greatly improves the
accuracy of cell classification. The accuracy is improved from
75.58% to 83.93% and G-mean is improved from 0.7280 to
0.8292. When we combine the synthesized method with the

Class 1
Class 2
Class 3
Class 4
Class 5
Class 6
Class 7
Class 8

Cl
as

s 1

Cl
as

s 2

Cl
as

s 3

Cl
as

s 4

Cl
as

s 5

Cl
as

s 6

Cl
as

s 7

Cl
as

s 8

Cl
as

s 1

Cl
as

s 2

Cl
as

s 3

Cl
as

s 4

Cl
as

s 5

Cl
as

s 6

Cl
as

s 7

Cl
as

s 8

Cl
as

s 1

Cl
as

s 2

Cl
as

s 3

Cl
as

s 4

Cl
as

s 5

Cl
as

s 6

Cl
as

s 7

Cl
as

s 8

Cl
as

s 1

Cl
as

s 2

Cl
as

s 3

Cl
as

s 4

Cl
as

s 5

Cl
as

s 6

Cl
as

s 7

Cl
as

s 8

Class 1
Class 2
Class 3
Class 4
Class 5
Class 6
Class 7
Class 8

Class 1
Class 2
Class 3
Class 4
Class 5
Class 6
Class 7
Class 8

Class 1
Class 2
Class 3
Class 4
Class 5
Class 6
Class 7
Class 8

The randomForest method

The proposed + adaboost method

The upsampling + randomForest method

The proposed + randomForest method

4%
15.8%

4%
0.00
2.1%
0.2%
0.00

4.8%
93.5%
26.3%

8%
0.00
1.6%
0.8%
8.3%

0.00
0.00

10.5%
0.00
0.00
0.00
0.00
0.00

0.00
0.00

21.1%
88%
0.00
0.00
0.00
0.00

0.00

0.00
0.00
80%
0.00
0.00

12.5%

2.9%
2%
0.00
0.00
0.00

94.4%
1.2%
0.00

0.2%
0.5%

15.8%
0.00
0.00
1.9%

97.8%
29.2%

0.00
0.00

10.5%
0.00
20%
0.00
5%

50%

92.1%
0.00 30.8%

1.2%
0.2%
0.2%
3%

0.2%
0.1%

1%
63.8%
0.4%
0.00
0.2%
0.00
0.3%
0.3%

0.5%
2.8%

95.8%
43. 6

7.5%
0.00
1%

8.3%

0.00
0.00
1.1%

42.2%
26.6%
0.00
0.00
2.1%

0.00

0.00
8.4%

55.5%
0.00
0.00
2.2%

2.4%
0.3%
0.00
0.00
0.00

85.6%
0.3%
0.00

0.3%
2.2%
0.5%
0.2%
0.00

14.1%
97.7%
8.2%

0.00
0.1%
1%

5.4%
10%
0.00
0.5%

78.8%

95.8%
0.00

11.2%
2.5%
0.2%
0.00
0.9%
0.2%
0.00

3.7%
80.2%
1.0%
0.00
0.00
0.6%
0.3%
0.2%

0.7%
1.7%
30%
2.1%
0.1%
0.00
1%

2.9%

0.2%
0.4%

59.8%
92.3%
97.5%
0.00
0.00

44.3%

0.00

2.8%
2.8%
1.6%
0.00
0.00
7.7%

11.6%
5.1%
0.00
0.00
0.00

98.1%
0.3%
0.00

0.00
1.2%
0.5%
0.00
0.00
0.4%

97.7%
2.6%

0.00
0.2%
6.4%
2.6%
0.7%
0.00
0.5%

42.3%

83.8%
0.00 7.6%

0.8%
0.00
0.00
3.3%
0.1%
0.00

4.7%
88.9%
0.7%
0.00
0.00
1.5%
0.4%
0.2%

0.5%
1.3%

89.7%
6.9%
0.5%
0.00
0.2%
1.8%

0.00
0.00
5.3%

82.4%
17.1%
0.00
0.00
0.7%

0.00

0.4%
9.2%

80.3%
0.00
0.00
1.8%

3.4%
1.6%
0.00
0.00
0.00

92.9%
1.2%
0.00

0.1%
0.6%
0.4%
0.00
0.00
2.3%

97.5%
1.3%

0.00
0.1%
2.5%
1.5%
2.1%
0.00
0.6%

94.2%

91.3%
0.00
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U
nd

er
sa

m
pl

in
g

U
ps

am
pl

in
g

Pr
op

os
ed

Ad
ab

oo
st

Ra
nd

om
Fo

re
st

U
ps

am
pl

in
g

+ 
rf

Pr
op

os
ed

+ 
ad

a
Pr

op
os

ed + 
rf

Methods

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Accuarcy
G-mean

Figure 11: The comparison of 8 methods (ada means the adaboost
method, rf refers to the randomForest method).

10 Analytical Cellular Pathology



randomForest algorithm, the accuracy reaches around 89.7%
and the G-mean gets about 0.895. With the proposed
method, a large amount of images can be generated. It is an
interesting topic to select synthesized samples according to
the performance of classification. In the future, we will focus
on the task to select representative synthesized samples with
the active learning method.
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