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Given the considerable research efforts in understanding and manipulating the
vasculature in tissue health and function, making effective measurements of vascular
density is critical for a variety of biomedical applications. However, because the
vasculature is a heterogeneous collection of vessel segments, arranged in a complex
three-dimensional architecture, which is dynamic in form and function, it is difficult
to effectively measure. Here, we developed a semi-automated method that leverages
machine learning to identify and quantify vascular metrics in an angiogenesis model
imaged with different modalities. This software, BioSegment, is designed to make high
throughput vascular density measurements of fluorescent or phase contrast images.
Furthermore, the rapidity of assessments makes it an ideal tool for incorporation in tissue
manufacturing workflows, where engineered tissue constructs may require frequent
monitoring, to ensure that vascular growth benchmarks are met.
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INTRODUCTION

A mature vascular network is essential for the viability of tissues, native or fabricated. Thus, making
informative, quantitative measurements of a vascular network is important. This is especially
relevant for a maturing, vascularized engineered tissue, which needs to meet certain vascular
density benchmarks to remain viable. Making accurate vessel density measurements, particularly
during angiogenesis, can be challenging due to the irregular features of both the individual vessels
and the complex networks they form, and the surrounding tissue environments. Vasculatures
exist in three dimensional environments with vessels extending across all dimensions, may vary
in density, and can resemble other non-vascular tissue elements (e.g., ducts, cell bundles, etc.).
A variety of imaging modalities are employed to visualize the vasculature in both the laboratory and
the clinic (Spaide et al., 2015; Grüneboom et al., 2019; Bautista et al., 2020). Usually, a contrast agent
that fills the blood space and/or labels vessel cells directly is involved, as inherent contrast between
the vessel and the surrounding tissue is often low. Segmentation and quantification from these
images is subsequently performed to assess the vasculature. While effective at visualizing vessel
elements, non-uniform labeling of vessels by these agents can confound segmentation and feature
detection. All of this complicates computer-based image analyses. Additionally, many labeling
methods rely on contrast agents flowing through the vasculature and are, therefore, not useable
for neovascular systems in which intravascular perfusion is not yet established.
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Other pixel-based computational systems for quantifying
do exist, designed to analyze images of vasculatures stained
with fluorescent labels, but are often intended for very specific
applications. The ImageJ plugin Angiogenesis Analyzer, for
example, has been widely published for use in 2D endothelial cell
assays (Yamamoto et al., 2014; Yang et al., 2016) and a handful of
3D tissues where the vasculature was very distinct and uniform
(Samarelli et al., 2014). Rarely, however, in tissues, fabricated or
native, is the vasculature so clear. Often clumps of cells or tissue,
or irregularly shaped immature vessels, present challenges for
computational methods of identifying blood vessels, even with
highly specific stains.

Artificial intelligence and machine learning (AI/ML) are
increasingly employed to make measurements in biomedical
research that can be challenging for more traditional
computational systems biological systems. With AI/ML, a
software program can be “trained” to distinguish certain features.
A handful of AI/ML programs exist that have been used to
quantify the vasculature, although none have been designed
specifically for high throughput analyses, especially involving
phase contrast imaging. Additionally, all of these programs
have only been tested on clearly defined, mature vasculatures,
that lack the feature noise visible in growing and remodeling
neovasculatures in a tissue space. For example, the program
VesSAP has been used to map the vasculature in a whole mouse
brain following the use of a perfused tag. While the program was
able to accurately map the vasculature and produce an impressive
amount of data, extensive clearing and staining protocols were
needed to obtain clean, high resolution 3D images, which took
an additional 24 h to segment (Todorov et al., 2020). While
this may be ideal for some applications, it may not be as useful
for high throughput analysis or as a routine-use tool in the
laboratory. VesSAP also requires a background in computer
software to operate. Another program, REAVER, has been used
in similar applications, but also requires a MATLAB license and
an understanding of software coding in order to use (Corliss
et al., 2020). The open source software Ilastik has been used
to quantify vascular density using ML (Bochner et al., 2020).
However, it also can be challenging to use by the non-expert and
requires more computing power to run than is available to a
typical biomedical laboratory.

Perhaps because existing programs can be challenging to use,
and are designed for very specific applications, the most common
approach for measuring vessel density is still having an expert
user manually trace vessels in each individual image (Holley et al.,
2010; Top et al., 2011; Da et al., 2015; Cossutta et al., 2019). While
manual annotations are an easy way to accurately quantify vessel
density, it can be very tedious and time consuming, and is not a
practical way to analyze large amounts of data.

Here, we leveraged modern ML to develop an easy-to-
use analysis tool specifically designed to make measurements
of vascularity in in vitro tissue environments. The focus of
this application is assessing angiogenesis (new vessel growth)
in which vessel morphology and network topology is highly
variable. We focused on reporting vessel length density
measurements from our experiments, although it may be
possible for the tool to be trained to identify other features

and corresponding metrics, as well. Ultimately, BioSegment
will be incorporated into high-throughput tissue manufacturing
workflows to monitor vascular growth within fabricated, tissue
engineered products. Here, we demonstrate the application of
this tool, the BioSegment software, in assessments of vascularity
from confocal fluorescence and phase contrast images.

METHODS

Microvessel Culture
Whole, intact, microvessel fragments were isolated from adipose
tissue, from either discarded human lipoaspirates or epididymal
fat from male retired breeder Sprague Dawley rats (all animal
procedures were approved by the Dartmouth College IACUC)
and assembled into angiogenesis assays as previously described
(Nunes et al., 2013; Strobel et al., 2020). Rat vessels were cultured
at 60 k/ml in DMEM (Gibco) containing 20% fetal bovine serum
(FBS; Thermo Fisher), 1% penicillin-streptomycin (Fisher), and
1% amphotericin B (Fisher). Human microvessels were cultured
at 100 k/ml in RPMI (Corning) containing B27 (Gibco) and
50 ng/ml vascular-endothelial growth factor (VEGF; Peprotech).
Assessments were made of four different treatments (Groups
1–4) promoting differing levels of angiogenesis. Experimental
setups are reported in detail in Strobel et al. (2020). Briefly, for
fluorescent 4× images, Group 1 contained microvessels with no
additional stimuli, Group 2 was treated with vascular endothelial
growth factor (VEGF), stromal cells were incorporated in Groups
3 and 4, and Group 4 was treated with a VEGF trap [R&D
systems, described in Strobel et al. (2020)]. For 10× images,
Group 1 contained microvessels alone, Group 2 contained
stromal cells in a separate region of collagen surrounding the
microvessels, Group 3 contained stromal cells mixed in with
the microvessels, and Group 4 contained stromal cells both
around and within microvessel containing regions [described
in detail in Strobel et al. (2020)]. Phase contrast images were
experiments comparing different microvessel donors or different
culture medium types. The variation in treatment groups was
intended to demonstrate the utility of the BioSegment software.
The data presented and discussed in this manuscript pertains
to the accuracy of BioSegment measurements, not the scientific
findings of these experiments, which are already published
(Strobel et al., 2020).

Lectin Staining and Imaging
Constructs were fixed overnight in 10% neutral buffered
formalin. Rat microvessels were further processed by staining
with a fluorescently labeled lectin. After rinsing in phosphate
buffered saline (PBS), constructs were permeabilized for 20 min
in 0.25% Triton X-100 and blocked for 4 h at RT in 5%
bovine serum albumin. They were incubated overnight at 4◦C
in lectin stain at a dilution of 1:50 in blocking solution
[Griffonia (Bandeiraea) Simplicifolia Lectin I (GSL I, BSL I),
Vector Laboratories]. Constructs were rinsed multiple times, with
one overnight wash, before imaging. Human constructs were
imaged using a phase contrast filter on a standard benchtop
upright microscope (Olympus). Lectin-stained rat constructs
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were imaged with a confocal Olympus FV3000 or an INCell 6500
scanner (Cytiva, formerly GE Life Sciences), depending on the
dataset. Confocal images were processed to create maximum z
projections and saved as .png files before analysis.

Application of the BioSegment Software
BioSegment utilizes YOLOv4, a machine learning deep
convolutional neural network (CNN) to detect and localize
user-defined classes within images (Girshick et al., 2014). It’s
end-user facing front-end is desktop application written in C#
and is used for image processing and annotation. Annotations
and images are stored in the AWS cloud. Training is performed
using AWS SageMaker. Trained models are retrieved from AWS
cloud storage and transferred to the local storage for desktop
inferencing via subordinate python process.

Prior to training, confocal images are transformed into a
maximum projection if necessary and saved as a .png file using
an ImageJ macro. After import into BioSegment, images can
be further pre-processed through a histogram equalization to
intensify features (Supplementary Figure 1). This can make the
geometry easier for the algorithm to identify if the image has low
contrast, and is done by selecting a “pre-process” option prior to
training. Phase contrast images were converted to .png files and
pre-processed with the same pre-processing function.

During implementation, a neural network was “trained” via
expert annotation using polygonal chains (polylines) identifying
user-defined features or classes of raw images within the
BioSegment software environment (Figure 1). Polylines are
generated by manually stepping over each vessel, and these
lines are in turn bounded by a series of overlapping rectangles.
These rectangles are the input regions for the model. Because
a large number of rectangles are generated, YOLOv4 gains a
large number (typically hundreds) of input regions from each
image. Beyond this we utilized a set of pre-trained weights,
thereby leveraging transfer learning to allow for generalization
from a smaller data set. For the purposes of this application the
YOLOv4-tiny.weights set of weights (trained on the MS-COCO
dataset) were utilized.

When training is performed on a new dataset, training data is
divided or “partitioned” into 3 sets (or groups): training, testing,
and holdout. The “training partition” is the training group set
for a specific fold. The “holdout” refers to the partition that
was entirely segregated from the training process, to be used for
later validation. After images were annotated (“train” data), the
model was trained and then used to perform inference on new
data (“test” data). With the BioSegment approach, images were
annotated via the BioSegment interface by manually tracing each
vessel to provide training sets for the machine learning engine,
which then generated vessel measurements. For phase contrast
images, the user also annotated “out of plane” vessels, which were
too blurry for the user to tell if they were vessels or not, and
“debris” (undigested pieces of tissue or other objects that are
not microvessels). For confocal lectin-stained images, these extra
parameters were not necessary, as confocal does not pick up out
of plane objects, and the lectin stain will not label most debris.

When a trained model is used for object detection, YOLOv4
produces output detection regions (“raw ML detections”) which

are processed into polylines through a BioSegment specific
process (Figure 2). First, the object detection regions are
connected using a neighbor detection algorithm. Then, a contour
detection algorithm is used to eliminate “false” connections
that are suggested by proximity, but do not represent actual
vessels (Figure 3A). Finally, a minimum spanning tree algorithm
removes cycles that are generated through the neighbor detection
region and allowed by contour detection but not representative
of vessel structures (Figure 3B). The most up to date version of
BioSegment includes a feature that enables users to correct false
segmentations, although this was not available at the time the
present data was analyzed.

The BioSegment models were compared to two existing
measurement protocols. First, we compared BioSegment data to
manual tracings of the vessels, an approach widely considered
the gold standard. Other programs for vascular quantification
do exist, but these are designed for very specific applications.
Our target users, who are scientists looking for quick assessments
of vascular density in in vitro tissues, are still using manual
annotations, by an overwhelming majority. Thus, manual
annotations were our primary validation method. In addition,
we compared the BioSegment measurements to our in-house
pixel-based protocol in which images are processed to improve
contrast, thresholded, filtered to remove small cells and large
clumps, and skeletonized to measure vessel lengths (Strobel et al.,
2020). The data reported are from either combined train and test
datasets, or test-only datasets.

Total vessel length was calculated for each image and used
to calculate vessel length density. Measurements from 4 images
per sample were averaged to obtain the length density for each
sample. Then, samples within each of the four experimental
groups were averaged to determine the average vessel length
density within each treatment group. These average vessel length
densities, calculated using both measurement methods, was used
to calculate percent error for each experimental group. Percent
accuracy was calculated by subtracting percent error (below)
from 100.

Percent Error =
|Manually annotated length− BioSegment calculated length|

Manually annotated lengths
∗100

Accuracy is reported for each group of each experiment,
as different groups sometimes had different densities and
morphologies, which affect overall accuracy. An accuracy of
“N/A” is assigned to any group where the percent error was
greater than 100.

Machine Learning Methodology and
Validation
The primary metric of concern related to vessel growth is
vessel length density. Vessel lengths are measured manually by
estimating the linear extents of visible vessels within a projected
image (that is, one that is composed my merging images across
a range of focal lengths), and then divided by image area to
calculate density.
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FIGURE 1 | Vessel length density measurement. Fluorescent (A) and phase contrast (B) images taken at a 10× magnification. Annotations are manually added to
images to mark vessels (C,D). After training, the BioSegment software automatically identifies vessels and calculates vessel pixel length (E,F), which is used to
calculate vascular length density. Scale = 0.2 mm.

FIGURE 2 | Polyline generation workflow. Raw images are subject to ML detections by YOLOv4. Then, BioSegment generates polylines from these detections.

The approach presented here performs vessel length
measurements through an application of object detection. The
annotation process involves tracing the linear extents of vessels
using polylines (joined line segments). Input object regions
are programmatically constructed along the polylines and
then used to train an YOLOv4 object detection model1. The
input and output of object detection models such as YOLOv4
are rectangular bounding regions within a 2D image, which
contain an object of interest along with bordering pixels. In most
YOLOv4 applications, each input image within a training set
will typically contain only 1 or a few examples of an object or
objects which are the target of training, thus many images are
required to produce enough input regions. In our case, there

1https://github.com/AlexeyAB/darknet

were often many microvessels in a given image. Thus, relatively
small numbers of images (50–100 images) were used in a given
training set.

The underlying model is an object-detection model and, as
such, explanation algorithms such as Lime were not of value
in performing feature importance/interpretability studies. Visual
inspection was used to validate that both raw detections and
constructed detection polylines represented vessels sufficiently
well to produce valid linear extent measurements. This
inspection showed that variance that is introduced by the
process used to connect detection regions, that is, detection
polylines have “kinks” or branches that would not be present
in manual annotations, but such deviations tend to offset
one another, and thus have a minimal impact on the final
length measures.
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FIGURE 3 | Polyline segmentation and cycle removal. A neighbor detection algorithm is used to create polylines from ML detections (A). This can result in “false”
connections between vessel segments, which are then removed using a spanning tree algorithm (B).

A five-fold cross-validation was performed to evaluate
the consistency of the vessel measurement algorithm. Two
datasets were constructed using lectin-stained images at different
magnification levels (referred to as “lectin 4×” and “lectin 10×”).
The lectin 4× dataset was comprised of 108 total images from 35
samples. Samples were included from 4 experimental groups. The
lectin 10× dataset was comprised of 24 samples, with 2–10 images
per sample and 172 total images. Images within each dataset and
within each image groups were assigned to training, validation,
and holdout partitions. Training partitions were used to train
each fold. Validation partitions were utilized by the training
process to report training metrics. Image groups assigned to
holdout partitions were entirely excluded from the data passed
to the model during the training process. Error for a partition
overall was calculated by averaging the percent error, as calculated
above, for the partition. Overall, data was validated using 2
experiments for the lectin 10×model, 3 for the lectin 4×model,
and 3 for phase contrast.

Overall, the cross-validation shows that the vessel-
measurement algorithm sufficiently generalized across each
fold such that any set of trained weights can be used reliably
(Tables 1, 2). Error can be minimized by performing a cross-
validation for a specific data set and selecting the best resultant
weights for detection.

RESULTS

BioSegment Accurately Measured
Multiple Types of Images
Here, we created a program that leverages artificial intelligence
and machine learning to identify tissue components, specifically
microvessels. The interface was, subjectively, easy to use, and
enabled users to upload and annotate images needed for training.
Figure 1 shows images of fluorescent (A) and phase contrast
(B) images prior to processing. After manual annotation (C, D),

TABLE 1 | Cross validation results for the model trained to analyze
4× lectin images.

Fold Partition % Error

Lectin

1 holdout 0.0845

1 validation 0.5605

1 train 2.7385

2 holdout 5.8329

2 validation 2.1858

2 train 4.619

3 holdout 12.8576

3 validation 7.2046

3 train 2.8441

4 holdout 0.8912

4 validation 3.6903

4 train 0.4749

5 holdout 1.5407

5 validation 5.5789

5 train 0.4428

the model is trained and then “learns” to identify vessels
(E, F). Representative datasets show vessel length density as
calculated by manual annotation, our previously published pixel-
based method, and by BioSegment (Figure 4). The percent
accuracy was calculated for each group within each dataset,
as BioSegment compared to either manual annotations or the
pixel-based method (Figure 4D). The fluorescent 10× images
had the highest accuracies, with percentages ranging from 82.79
to 98.74% accurate. Most accuracies were above 90%. On the
same images, the pixel-based measurements had an accuracy of
0–76%, though all but one point was above 44%. With lower
magnification images (4×), BioSegment had accuracies of 53.4–
99.74% (Figure 4D). In these images, subjectively, the lower
accuracies occur in images with the highest vessel densities.
For the 4× images, pixel-based accuracies were comparable to
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TABLE 2 | Cross validation results for the model trained to analyze
10× lectin images.

Fold Partition % Error

Lectin 10×

1 holdout 19.351

1 validation 11.3737

1 train 16.1774

2 holdout 11.0625

2 validation 15.2432

2 train 15.6101

3 holdout 13.4747

3 validation 14.6666

3 train 16.2374

4 holdout 14.8235

4 validation 11.2876

4 train 16.1631

5 holdout 23.9069

5 validation 16.7967

5 train 12.9337

BioSegment, ranging from 62.2 to 96.95% (Figure 4D). For
phase contrast images, which were taken at a 10×magnification,
accuracy ranged from 56.4 to 98.48% (Figure 4D).

Accuracy of BioSegment Improved With
Time
Due to differences in vascular morphology from experiment to
experiment, sometimes a model trained on a dataset from a
single experiment failed to yield satisfactory results when tested
on a different experiment. In these cases, another training set,
from an additional experiment, was added, to add more variety
in terms of vascular morphology to the model. After multiple
training sets, the model demonstrated increased accuracy across
subsequent datasets from multiple experiments, regardless of
vascular morphology. Accuracies improved after 2 training sets
for the 4× images (81 images total, Figure 5A). Here, black
bars are annotated controls, gray bars are the BioSegment output
after one round of training (Bio 1), and white bars are after 2
rounds of training (Bio 2). In groups 2, 3, and 4, one round
of training resulted in inaccurate measurements compared to
annotated controls. When a second training dataset was added,
accuracy was improved and white BioSegment bars are similar
in magnitude to black annotation bars. The exception to this
is group one, where both rounds had different magnitudes
compared to controls. For phase contrast images, 3 different
training datasets were needed (155 images total; Figure 5B).
Here, the software was highly accurate after a third round of
training across all groups (dark gray bars compared to black
bars). The 10× fluorescent images had a high accuracy after
one large training set (79 images; Figure 5C). Statistics were
performed using SigmaPlot 11.0 (Systat). A two-way ANOVA
test was performed where applicable with Holm-Sidak post hoc
analysis. Bars are mean ± standard deviation. A significant
level of α = 0.05 was used for all comparisons to determine
statistical significance.

Use of BioSegment Saves Considerable
Amounts of Time
It took an experienced scientist 7.26, 4.33, and 2.78 min
to annotate a single 4× fluorescence, 10× fluorescence, and
10× phase contrast images (averaged over 3 images of
varying density), respectively. The pixel-based method takes an
experienced user approximately 80 s per image. Meanwhile, the
BioSegment analyzed 45 images in 52 s, for an average of 1.15 s
per image. For a single dataset of 45 images, the BioSegment
therefore saves from 124 to 325 min of time (2–5.4 h), compared
to manual annotations.

“Training and Test” Combined Data Are
Comparable to “Test Only” Data
In all datasets used to train the BioSegment models, some
images were used for training, while some were used to “test”
the model. Whenever possible, the data is reported using “test”
images only (Figure 4C, and 2 additional experiments plotted
in Figure 4D). However, in some cases, data is presented as
a combination of the training and test images in a dataset, to
enable comparison of multiple groups within an experiment,
as there were not quite enough “test” samples for meaningful
comparisons (Figures 4A,B, and 3 additional experiments
plotted in Figure 4D). To test the validity of the combined test
and training data, the accuracy of combined data (compared to
manual annotations) was compared to the “test only” images
pulled from the same combined dataset. In all cases, average
accuracy measurements of test only vs. combined test and train
were within 2 percentage points (Figure 6). Thus, we can
conclude that including training images in our datasets did not
skew the calculated accuracy of the results.

DISCUSSION

A variety of applications benefit from or require quantitative
assessments of vascularity. Whether in an experimental
model of angiogenesis or vascularizing a tissue construct or
organoid, knowing the extent and character of the vascular
dynamics can be critical to successful outcomes. Furthermore,
as tissue fabrication solutions continue to evolve matched by
concomitant development of tissue manufacturing processes,
real-time assessments of vascularity (perfused or otherwise)
are critical. Yet, most methods of quantifying vascular growth
are challenging to use without prior experience in computer
programming, not conducive to high-throughput applications,
or cannot accurately detect complex neovasculatures. Here, we
describe a novel machine learning-based software program for
semi-automatic quantification of microvessel length density
that is simple to use yet leverages the power of machine
learning. While directed at assessing vascularity, reflecting
our research focus, BioSegment could be adapted to identify
other cellular and tissue features as well. In addition to
facilitating research investigations, we envision integrating
BioSegment as part of a quality assurance program in a tissue
manufacturing workflow.
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FIGURE 4 | Accuracy of BioSegment vessel measurements. BioSegment calculated vessel length densities (Bio) were compared to manual annotations (Annotated)
and pixel-based (PB) measurements. Representative datasets are shown for 10× fluorescent confocal projections (A), phase contrast images (B), and 4× confocal
stacks (C). The percent accuracy of the BioSegment (circles) and PB (squares) compared to manual annotations is shown in (D), across all groups from all
experiments analyzed. Bars are mean ± SD. A Two-Way ANOVA with Holm Sidak post hoc analysis was performed on (A–C). ∗P < 0.05 with compared to all other
quantification methods (Annotated, Bio 1, PB) within that group; #P < 0.05 compared to all other groups, regardless of quantification method.

FIGURE 5 | Increasing the number of training datasets improves model accuracy. Representative datasets for 4× fluorescent images (A) and phase contrast images
(B) after each iteration of the respective model. Annotated images are compared to multiple versions of the BioSegment model (Bio 1, Bio 2, Bio 3). Later versions,
which contain more training sets, are more accurate. In (A), additional training data increased overall accuracy from 58.5 to 82.13%. In (B), Bio 3 (model version 3)
improved to 83% accurate, compared to 0% in Bio 1 and Bio 2 (model versions 1 and 2). Bars are mean ± SD. A Two-Way ANOVA with Holm Sidak post hoc
analysis was performed. *P < 0.05 compared to all other quantification methods (Annotated, Bio 1, Bio 2, Bio 3) within that group; #P < 0.05 compared to all other
groups, regardless of quantification method. @P < 0.05 compared to groups 2 and 4, within that quantification method. ˆP < 0.05 compared to other methods
within that group.

Here, we compared measurements of vessel length density
made by BioSegment to manual annotations made “by hand,”
and a pixel-based computational method previously developed
by our lab. The BioSegment-based measurements of vessel
length density from 10× fluorescent confocal images were
overall highly accurate compared to manual assessments, both
in overall vessel length density magnitude and the trends
measured between groups (Figure 4). On the same images, the
pixel-based approach was considerably less accurate (Figure 4).

Pixel-based measurements tended to overestimate vessel density.
This is because it cannot distinguish between microvessels and
other objects with similar dimensions to microvessels, such
as elongated endothelial cells and some pieces of undigested
tissue. Both 4× fluorescent confocal images and 10× phase
contrast images produced a broader range of accuracies across
the different treatment groups, although most were above 80%
accurate (Figure 4D). With 4× fluorescent images, the accuracy
of both the pixel-based and BioSegment approaches both had
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FIGURE 6 | Accuracy of “test and train” combined data compared to “test
only” data. Percent accuracy of the BioSegment compared to manual
annotations is shown for image sets containing both test and train images
(combined; squares), compared to test only images (test; circles) from the
same dataset. Individual experiments are shaded, while the average of all
experiments is shown in white.

slightly lower reported accuracies (Figure 4D). The pixel-
based approach was not able to derive vascular length density
measurements from phase images due to the lower contrast.
In all cases, data produced by the BioSegment within each
experiment followed the same trends as annotated controls.
For example, in Figure 4C Group 2 was highest regardless of
quantification method. Thus, even though there is a small degree
of error in the magnitude, the user is able to draw the same
conclusions. Additionally, while this 20% error seems high, it is
comparable to what others have observed in cases where machine
learning was applied to biological systems (Liang et al., 2017;
Tourlomousis et al., 2019). The observed error may improve
with additional training, as is true of all machine-learning based
applications. With our data, we observed that more training
datasets improved performance (Figure 5). It should also be
noted that, images contained a substantial amount of noise in
the form of non-vessel elements, such as elongated endothelial
cells and clumps of undigested tissue. Additionally, there were
slight differences in vascular morphology from experiment
to experiment. The reported accuracies reflect the ability of
BioSegment to distinguish microvessels from this other noise,
which further supports the robustness of the program. Cleaner
images would likely produce better results.

It was not surprising that the higher magnification images
yielded a high percent accuracy, as individual vessel features
are more discreet, thereby making it easier both for the
user to annotate and BioSegment to segment. For the low
magnification confocal images, and particularly those with dense
vasculatures, identifying individual vessel segments by both
the user and the BioSegment model is relatively challenging.
This is largely due to non-distinct boundaries between two or
more vessel segments and the intrinsic variation in fluorescence
intensities of different vessels, all of which are highly overlapping
in the projections. In the future, magnifying images for
annotating, in the absence of taking higher magnification images,

may improve user annotations and thus BioSegment training.
Additionally, extending the analysis to work with 3D image
sets, as opposed to the 2D projections used in this study, might
facilitate identification of discreet features. Future iterations of
BioSegment will include the ability to measure vascular density
and other parameters, such as branch points, directly from a 3D
confocal image stack. This would enable measurements in Z, as
well as X and Y. However, the ability to assess 2D projections
makes the program more amenable to rapid, high-throughput
screening. From past experience, microvessels in our models
grow largely in the X and Y plane, rather than in the Z direction
(due to collagen fibril orientation). Thus, the amount of data lost
by eliminating growth in Z is minimal and the ability to analyze
3D confocal stacks is not necessary for our current application.
Accuracies were determined by comparing BioSegment and
pixel-based measurements to those values obtained by manual
annotation, which we consider the “gold standard.” However,
measurements made by manual annotations, even by the most
experienced user, can be inaccurate for a variety of reasons
(Rudyanto et al., 2014), including subconscious bias, mood, etc.
As mentioned above, overlapping vessels, and varying fluorescent
intensities, can make it challenging to accurately annotate. Phase
contrast images are even more challenging to annotate, as
contrast between feature edges and background is often low
creating ambiguity in object identification. If the software is
trained with inaccurately annotated training sets, it may also have
reduced accuracy. One potential way to overcome this challenge
is to include training sets from multiple users, which may negate
potential user bias and differences in mood/attentive states.
Providing sufficient training to the BioSegment model in this way
could potentially make it more accurate than a single human user.
Furthermore, the ability to identify features from phase contrast
images, which can be taken of live cultures quickly and easily
without the risks associated with staining, presents an enormous
advantage, even if there is some risk of quantitative error.

The amount of time saved by using the BioSegment was
considerable, with potential to save users hours of time per
experiment. This effect is magnified if users have multiple
datasets. The rapid measurements possible with the BioSegment
platform have implications for use in high throughput and high
content screens and cell/tissue manufacturing efforts. Here, there
may be hundreds of samples in culture that require imaging at
frequent time points to assess tissue quality and maturation. This
could generate thousands of images, which will be impossible to
quantify without automated analysis.

Overall, we have demonstrated an innovative software system
that utilizes machine learning to quantify microvessel length.
It can rapidly and accurately measure vascular features from
both fluorescent and phase contrast images. Such a tool saves
users an enormous amount of time and has potential to be
incorporated into automated processes such as assay screens or
quality control in tissue manufacturing. While we focused on
training the program to identify microvessels, it could potentially
be used to identify any tissue element, including but not limited
to cellular density, subcellular features, or contaminants. This
could be done following the same procedures for identifying
microvessels. The ability to make varied, accurate, and rapid
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measurements via a customizable and flexible package may prove
invaluable for automation of tissue fabrication, quality control,
and real-time monitoring in an automated workflow.
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