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A B S T R A C T   

Background and aims: Through a nested cohort study, we evaluated the diagnostic performance of 
breath-omics in differentiating between benign and malignant breast lesions, and assessed the 
diagnostic performance of a multi-omics approach that combines breath-omics, ultrasound 
radiomics, and clinic-omics in distinguishing between benign and malignant breast lesions. 
Materials and methods: We recruited 1,723 consecutive patients who underwent an automated 
breast volume scanner (ABVS) examination. Breath samples were collected and analyzed by high- 
pressure photon ionization time-of-flight mass spectrometry (HPPI-TOF-MS) to obtain breath- 
omics features. 238 of 1,723 enrolled participants have received pathological confirmation of 
breast nodules finally. The breast lesions of the 238 participants were contoured manually based 
on ABVS images for ultrasound radiomics feature calculation. Then, single- and multi-omics 
models were constructed and evaluated for breast nodules diagnosis via five-fold cross-validation. 
Results: The area under the curve (AUC) of the breath-omics model was 0.855. In comparison, the 
multi-omics model demonstrated superior diagnostic performance for breast cancer, with sensi
tivity, specificity, and AUC of 84.1 %, 89.9 %, and 0.946, respectively. The multi-omics perfor
mance was comparable to that of the Breast Imaging Reporting and Data System (BI-RADS) 
classification via senior ultrasound physician evaluation. 
Conclusion: The multi-omics approach combining metabolites in exhaled breath, ultrasound im
aging, and basic clinical information exhibits superior diagnostic performance and promises to be 
a non-invasive and reliable tool for breast cancer diagnosis.   

1. Introduction 

Breast cancer is the most prevalent tumor globally, with an estimated 2.261 million new cases and 685,000 deaths globally in 2020 
[1]. In China, breast cancer is the most common malignancy among women, and ranks fifth in cause of cancer-induced mortalities. The 
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incidence of breast cancer is continuously increasing [1]. 
Imaging screening can detect breast cancer at an early stage, allowing for early interventions, which are crucial to improving the 

prognosis of breast cancer patients. Asian women often have dense breast tissue and, according to the recommendations of the 
American College of Radiology, breast ultrasound should be used to screen these patients [2]. However, breast ultrasound screening 
relies on ultrasound physicians who visually observe and describe the sonographic features of the lesion, followed by lesion catego
rization using the Breast Imaging Reporting and Data System (BI-RADS) [3]. This process is time-consuming and subjective, depending 
on the ultrasound physician’s interpretation, leading to inevitable errors in diagnosis. Traditional breast ultrasound screening also has 
false negative and positive rates as high as 33.3 % and 20.2 %, respectively [4]. Therefore, the development of more objective and 
accurate diagnostic tools is of great significance for the early diagnosis of breast cancer patients. 

Radiomics, as an emerging field, offers a promising approach to this development. By converting imaging into high-dimensional 
data, radiomics can extract microscale lesion features that are not visible to the naked eye, providing a comprehensive reflection of 
the lesion’s information [5]. The selection of potentially meaningful features can be objectively quantified or used to build machine 
learning models, which could provide an almost instantaneous diagnosis of lesions without the need for manual intervention [6–8]. In 
Li J’s study, the deep learning-based models built on ultrasound images have good diagnostic performance in differentiating between 
benign and malignant breast lesions (AUC = 0.94) [9], predicting molecular subtypes of breast cancer (AUC = 0.87) [10] and axillary 
lymph node metastasis in breast cancer patients (AUC = 0.95) [11]. The automated breast volume scanner (ABVS) is an emerging 
ultrasound technology that automatically scans the breast to obtain ultrasound images, overcoming the operator dependency asso
ciated with handheld ultrasound [12,13]. Therefore, ultrasound radiomics based on ABVS offers higher automation and reproduc
ibility. Furthermore, multi-omics studies, including metabolomics, can provide additional information on breast cancer characteristics 
from different perspectives [14]. By combining ultrasound radiomics with other omics features, it may be possible to develop diag
nostic tools with higher diagnostic performance. 

Human exhalation contains hundreds of trace volatile organic compounds (VOCs) [15], leading to the development of a new 
branch of breath-omics in metabolomics. Machine learning models based on breath-omics have value in the diagnosis of breast cancer 
[16–19], and some VOC features related to breast cancer have been discovered [20]. There are various methods to determine VOCs in 
exhaled air, each with its advantages and disadvantages (Supplementary Table 1). Gas chromatography-mass spectrometry (GC-MS) 
requires complex preprocessing of the collected gas and involves cumbersome procedures [21]. Although electronic nose technology is 
portable and easy to use, its detection limits are insufficient for quantitative or qualitative analysis of VOCs [22]. High-pressure 
photoionization time-of-flight mass spectrometry (HPPI-TOF-MS) enables qualitative and quantitative analysis of VOCs in exhaled 
air under high humidity and ambient temperature conditions, without any gas preprocessing. HPPI-TOF-MS also has high sensitivity, 
capable of detecting VOCs in exhaled air at concentrations as low as 10 parts per trillion (ppt) [23], making it a very promising 
detection technique. 

A standardized workflow has been established using HPPI-TOF-MS for the collection, detection, and data processing of exhaled 
VOCs, and has validated the feasibility of this technology in detecting diseases such as breast cancer [24], lung cancer [25], esophageal 
cancer [26], tuberculosis [27], and Covid-19 [28]. We aimed to integrate breath-omics, ultrasound radiomics, and clinical features to 
construct a multi-omics machine learning model, to develop a more accurate, objective, and automated non-invasive diagnostic tool 
for breast cancer. 

2. Materials and methods 

2.1. Patients 

This nested cohort study recruited consecutive patients who underwent ABVS examination at The Third Xiangya Hospital of Central 
South University in China from March 2022 to December 2022. Patients were screened according to the inclusion and exclusion 
criteria, and the study obtained approval from our institutional ethics committee. The inclusion criteria were as follows: 1) age 18–75 
years; 2) planned ABVS examination; 3) signed written informed consent to participate in the study. We excluded patients as per the 
following criteria: 1) pre-existing conditions that hindered the exhalation of sufficient breath samples; 2) underwent general anesthesia 
within the past 10 days before breath collection; 3) has a previous history of malignant tumors; 4) received anti-tumor treatments such 
as radiation therapy, chemotherapy, or targeted therapy; 5) currently breastfeeding; 6) pregnant or planning to become pregnant. As 
illustrated in Fig. 1a and ,723 participants were pre-enrolled in this study, and 13 refused participation, all other patients signed 
written informed consent. Breath samples were then collected from all participants at the same location, while the air around the 

Abbreviation 

ABVS Automated breast volume scanner 
AUC Area under the curve 
BI-RADS Breast Imaging Reporting and Data System 
VOCs Volatile organic compounds 
ROI Region of interest 
HPPI-TOF-MS High-pressure photon ionization time-of-flight mass spectrometry  
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sampling site was sampled, and ultrasound images and clinical information were subsequently collected. Those with invalid breath 
samples, poor ABVS image quality, and incomplete clinical information were excluded. Of the remaining participants, 238 underwent 
surgery or aspiration biopsy. Based on the pathology results, 77 were finally identified with breast cancer, with 82 malignant and 168 
benign breast lesions confirmed by pathological results. 

2.2. ABVS examination 

ABVS examinations were performed using the Siemens ACUSON S2000 ultrasound scanner with a high-frequency linear array 
transducer (model 14L5BV) operating at frequencies ranging from 5.0 to 12.0 MHz, maximum scanning volume of 154 mm × 168 mm 
× 60 mm. Patients were positioned supine with their arms raised above their heads to fully expose the breasts, and the scanner was 
applied with appropriate pressure. A replaceable membrane was placed on the scanner surface to ensure sufficient contact with the 
skin. The instrument settings were preconfigured based on the size of the patient’s breasts. Scans were performed in the median, 
lateral, medial, or other non-standardized orientations of both breasts. After the scan, the position of the nipple was marked, and the 
acquired transverse and sagittal plane images were uploaded to the image processing workstation for image reconstruction, including 
the generation of coronal and 3D images. An experienced senior ultrasound physician with 20 years of expertise in breast ultrasound 
examination blindly reviewed the ABVS images without knowledge of clinical pathology information. The physician assessed the 
acoustic image characteristics of the lesions and determined the BI-RADS classification (class 3/4a/4b/4c/5). According to the study 
by Elverici et al. malignant characteristics of the lesions included spiculated margin, irregular shape, nonparallel orientation, pe
ripheral hyperechoic halo, posterior acoustic pattern attenuation, and microcalcifications. Additionally, one malignant characteristic 
was classified as class 4a, two as class 4b, three as class 4c, and more than three as class 5 [29]. 

2.3. Basic clinical information 

Basic clinical information of possible clinical significance was collected, including gender, age, body mass index (BMI), history of 
alcohol use, smoking and cancer, family history of cancer, drug use, and comorbidities. BMI was calculated based on the patient’s self- 
reported height and weight, while the remaining information was obtained from the patient’s medical records. 

2.4. Image segmentation and feature extraction 

A junior ultrasound physician with 3 years of experience in breast ultrasound examination, who was unaware of the pathological 
information, used the annotation tool “ITK-SNAP” (www.itksnap.org) to manually delineate the entire tumor region of interest (ROI) 
along the edge of the lesion on axial, sagittal, and coronal ABVS images. The ROI included the breast lesion but not the area sur
rounding the lesion (Fig. 2a–c). In cases where the lesion boundaries were indeterminate, a consensus decision was made in discussion 
with an experienced senior ultrasound physician. Lesions were labeled with different values for patients with multiple nodules. Before 
feature extraction, the images were preprocessed using the morphological operation to obtain the clean lesion region with the sur
rounding region set as zero. Feature extraction was performed for the lesion region using the Pyradiomics package, version 3.0 
(https://pyradiomics.readthedocs.io/en/latest/changes.html#pyradiomics-3-0) [30], and the extracted features included First Order 
Statistics (18 features), Shape-based (3D) (14 features), Gray-Level Co-occurrence Matrix (24 features), Gray-Level Run-Length Matrix 
(16 features), Gray-Level Size Zone Matrix (16 features), Neighbouring Gray Tone Difference Matrix (5 features), and Gray-Level 

Fig. 1. Flowcharts of (a) participant recruitment and (b) multi-omics feature selection.  
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Dependence Matrix (14 features). 

2.5. Breath sample collection and analysis 

We set standard sampling demands and protocols to minimize the possible effects of daily diet, smoking, alcohol, and environment 
on exhaled gas VOC. Firstly, the participants were required to prepare for sampling in advance under the following conditions: no 
smoking, alcohol, or food within an hour before sampling. Secondly, participants were required to clean their mouths with purified 
water just before sampling. Thirdly, all samples were collected at the same site to minimize the effect of any environmental factors. 
Lastly, deep inhalation and exhalation training were executed for each participant, to homogenize the collection of gases contained in a 
complete deep breath. With a deep nasal inhalation, participants completely exhaled the breath into a 1.2-L volume sampling bag 
made of polyether-ether-ketone (PEEK) via a disposable gas nipple. At the same time as the exhaled gas sampling, we collected the 
ambient gas. A novel online high-pressure photon ionization time-of-flight mass spectrometry (HPPI-TOF-MS) was used for breath 
sample detection and analysis, as employed and evaluated for breath sample detection in multiple studies [24–26]. In simple terms, 
after the gas is introduced into the sample introduction system, gas-phase ions are generated through high-pressure photon ionization 
(HPPI). These gas-phase ions are then separated based on their mass-to-charge ratio using a time-of-flight mass analyzer (TOF). 
Subsequently, an ion transmission system transfers the separated gas-phase ions to a microchannel plate (MCP) detector to measure the 
content of volatile organic compounds (VOCS) in each sample. This system does not require any preprocessing before gas analysis. For 
more details about HPPI-TOF-MS, please refer to our previous article [23]. In HPPI-TOF-MS, soft ionization is achieved by a com
mercial VUV-Kr lamp with a photon energy of 10.6 eV to predominantly produce radical cations (M+) which are formed as M + hγ → 
M+ + e, which can ionize most VOCs in the breath gas. With the HPPI-TOF-MS detection, the VOCs with m/z in the range of [20, 320] 
were detected. In this study, the area of the strongest peak in the range of [x-0.5, x+0.5] was calculated and regarded as the feature of 
VOC with m/z of x. Thus, 300 breath-omics features were extracted via breath detection for further study. In HPPI-TOF-MS. The 
standard sample with nitrogen as the carrier gas, with a mixed combination of nine compounds (Acetone, furan, Benzene, Aniline, 
Styrene, n-propylbenzene, Cinene, Perchloroethylene, Hexachloro-1,3-butadiene) at 1 ppm concentration was used for the equipment 
calibration before daily testing for quality control. 

2.6. Model development 

To select valuable multiple omics features and avoid model over-fitting, different feature selection strategies were executed for 
different omics features. As shown in Fig. 1b, all clinic-omics features with possible significance were included directly. The breath- 
omics features with no significant differences (p > 0.05) between malignant and benign groups were excluded first. Then, the VOC ions 
with low intensity but highly correlated with other selected VOC ions (correlation coefficient >0.9) among all samples were excluded. 
Finally, a random forest (RF) model was constructed on the whole data set, and the ten most important VOC ions were selected based 
on the feature importance or coefficient. For the ultrasound radiomics features, a similar feature selection procedure was also executed 

Fig. 2. Diagram of the region of interest (ROI) outline of breast lesions. (a) Invasive ductal carcinoma ABVS coronal plane images; (b) fibroadenoma 
ABVS transversal plane images; (c) intraductal papilloma ABVS sagittal plane images. 
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as that for breath-omics with the correlation analysis-based feature selection was removed. Therefore, 29 multi-omics features(10 
breath-omics, 10 ultrasound raidomics, and 9 clinic-omics) were used for the breast cancer diagnosis mode construction. In this study, 
the ensemble method of three classical machine learning methods including RF, logistic regression, and eXtreme Gradient Boosting 
(XGB) was employed as the classifier for breast cancer diagnosis model construction based on single- and multi-omics. Considering that 
the data set was small, five-fold cross-validation was adopted for more adequate model evaluation. Specifically, the data set was evenly 
divided into five parts, one of which was taken as the validation set, and the rest as the training set each time, until all data was 
validated. 

2.7. Statistical analysis 

To evaluate the diagnostic performance of the multi-omics model to differentiate between benign and malignant breast lesions, the 
model results were compared with the pathological diagnosis results. We calculated the sensitivity, specificity, accuracy, AUC, and the 
relative 95 % confidence interval (CI). All statistical analyses were performed using SAS version 9.4 (SAS Institute Inc., Cary, NC, USA) 
and Origin software (version 2018). Descriptive statistics were reported as frequencies (percentages) for categorical variables or 
median (interquartile range [IQR]) for continuous variables. We compared the basic clinical features among different patient groups 
using the Mann–Whitney U test and Chi-square test. A p-value <0.05 was considered statistically significant for all the analyses. The 
DeLong test was used for the ROC comparison among single- and multi-omics models. All the tests were two-tailed. 

3. Results 

3.1. Basic clinical features 

The basic clinical features of all patients are illustrated in Table 1. A total of 238 cases were finally included for the single- and 
multi-omic method evaluation in the study, with 161 cases being classified as benign and 77 as malignant. The age, BMI, family history 
of cancer, history of cancer, comorbidities, and drug use were significantly different between participants with malignant and benign 
nodules (p-value <0.05). There was no bias in gender, history of alcohol use, or smoking. Based on the pathological results of 250 
breast nodules, 168 nodules were benign, and 82 nodules were malignant, as shown in Table 2. 

3.2. Breast cancer diagnosis performance 

Fig. 3 shows the classification performance of the breast cancer diagnosis model in each fold of cross-validation. The ultrasound 
radiomics model achieved the worst performance, with AUC <0.8 in each cross-validation fold (Fig. 3b). In comparison, the clinic- 
omics and breath-omics models achieved better performances, with AUCs >0.8 in three and four cross-validation folds, respec
tively (Fig. 3a and c). By combining the clinic- and breath-omics, the performance of the model was further improved, with AUC >0.85 
in each cross-validation fold (Fig. 3d). Furthermore, the multi-omics involving ultrasound radiomics features achieved better per
formance than the double-omics model (clinic & breath), with AUC >0.90 in each cross-validation fold (Fig. 3e). As illustrated in Fig. 3, 
the models were robust on different cross-validation folds. 

As illustrated in Table 3 and Fig. 4, the overall performance and qualitative metrics also show the diagnostic power ranking as 
multi-omics > double-omics > breath-omics > clinic-omics > ultrasound radiomics. The overall AUC of the multi-omics model was 

Table 1 
The basic clinical features of 238 patients.   

All (n = 238) Malignant (n = 77) Benign (n = 161) p-values 

Age Median (IQR) 42 (33, 51) 51 (45, 55) 37 (30, 46) <0.001a 

Gender (%) Male 1 (0.4 %) 0 (0 %) 1 (0.6 %) 1.000b 

Female 237 (99.6 %) 77 (100 %) 160 (99.4 %) 
BMI Median (IQR) 21.4 (20.2, 23.2) 22.6 (20.3, 25.1) 21.1 (20.0, 22.6) 0.001a 

Smoke (%) Smoker 1 (0.4 %) 0 (0 %) 1 (0.6 %) 0.705b 

Non-smoker 237 (99.6 %) 77 (100 %) 160 (99.4 %) 
Alcohol (%) Drinker 1 (0.4 %) 1 (1.3 %) 0 (0 %) 1.000b 

Non-drinker 237 (99.6 %) 76 (98.7 %) 161 (100 %) 
Family history of cancer (%) Presence 8 (3.4 %) 6 (7.8 %) 2 (1.2 %) 0.025b 

Absence 230 (96.6 %) 71 (92.2 %) 159 (98.8 %) 
History of cancer (%) Presence 8 (3.4 %) 6 (7.8 %) 2 (1.2 %) 0.025b 

Absence 230 (96.6 %) 71 (92.2 %) 159 (98.8 %) 
Comorbidity* (%) Presence 36 (15.1 %) 26 (33.8 %) 10 (6.2 %) <0.001b 

Absence 202 (84.9 %) 51 (66.2 %) 151 (93.8 %) 
Drug use* (%) Presence 11 (4.6 %) 11 (14.3 %) 0 (0.0 %) <0.001b 

Absence 227 (95.3 %) 66 (85.7 %) 161 (100 %) 

Notes: P-value <0.05 was considered statistically significant. a: Mann-Whitney U test. b: Chi-square test. IQR: Interquartile Range. *Comorbidity 
includes pulmonary nodules, fatty liver, hepatic cyst, cardiovascular disease, hypertension, diabetes, renal cyst, and kidney stones. Drugs include 
antihypertensive or diabetes drugs. 
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Table 2 
Pathology of 250 breast lesions.  

Benign Lesion Number (168) Malignant Lesion Number (82) 

Fibroadenoma 110 Invasive ductal carcinoma 65 
Adenosis 29 Ductal carcinoma in situ 12 
Papilloma 17 Mucinous carcinoma 2 
Cyst 5 Metaplastic carcinoma 2 
Granulomatous inflammation 4 Invasive lobular carcinoma 1 
Sclerosing adenosis 2 / / 
Suppurative inflammation 1 / /  

Fig. 3. The ROC curves of clinic-omics (a), radiomics (b), breath-omics (c), clinic & breath-omics (d), and multi-omics (e) methods in each fold of 
the five-fold cross-validation. ROC, receiver operating characteristic. 
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0.938 (95 % CI, 0.908–0.968). By setting the cut-off value as 0.5, the multi-omics model could achieve a sensitivity, specificity, and 
accuracy of 84.1 % (95 % CI, 75.1–93.2 %), 89.9 % (95 % CI: 85.3–94.4 %), and 88.0 % (95 % CI: 84.0–92.0 %), respectively (Table 3). 
In comparison, a higher AUC of 0.973 (95 % CI, 0.953–0.994) was achieved via manual BI-RADS scores. Based on clinical decision 
principles, BI-RADS 4b and above lesions are generally considered malignant. However, if we set the malignant threshold at BI-RADS 
4a, the corresponding sensitivity, specificity, and accuracy of the BI-RADS scores were 98.7 % (95 % CI, 96.2–100 %), 70.2 % (95 % CI: 
63.1–77.3 %), and 79.4 % (95 % CI: 74.3–84.5 %), respectively. If the malignant threshold was set as BI-RADS 4b, the sensitivity, 
specificity, and accuracy were 87.0 % (95 % CI, 79.0–95.1 %), 99.4 % (95 % CI: 98.2–100 %), and 95.4 % (95 % CI: 92.7–98.0 %), 
respectively. Moreover, we employed the DeLong test to analyze the significance of the differences in AUC curves. As illustrated in 
Table 4, there are significant differences between any two omics methods, except for breath-omics vs clinic-omics, and multi-omics vs 
clinic& breath omics. There is no significant difference between BI-RADS, clinic & breath omics, and multi-omics. 

3.3. Potential VOC markers 

There were 31 VOC ions with significant differences between the malignant and benign groups. Considering that part VOCs would 
produce protonated ions, we excluded those with low intensity but highly correlated with other selected VOC ions. Finally, we 
analyzed the top 10 VOC ions involved in breast cancer diagnosis. As illustrated in Fig. 5, compared to the benign participants, nine 
VOCs (m/z = 105, 119, 116, 45, 104, 77, 58, 90, 133) showed significantly depressed concentration in participants with malignant 
lesions, and one VOC with m/z of 138 showed significantly elevated concentration. 

Since the qualitative ability of the HPPI-TOF-MS is limited, we can infer the possible chemicals of these key VOC ions based on their 
m/z (105, 119, 116, 45, 104, 138, 77, 58, 90, 133), correlation, intensity distribution, other published potential biomarkers, and the 
human breath-omics database. As illustrated in Table 5, these VOCs would be potential biomarkers of breast cancer. The chemical of 
VOC ions with m/z of 104 and 105 would be pentanethiol; 119, 116, and 138, 2-butoxyethanol, isobutyl acetate, and creosol, 
respectively; 45, the fragment of carboxylic acids or esters; 77, 1-propanethiol or methylthioethane; and 58, 90, and 133, acetone, 
diethyl sulfide, and 2-methylbenzoxazole, respectively. Due to inconsistencies in sample collection and analysis and participant status, 
the 10 key VOCs identified above are heterogeneous with those found in previous studies to be associated with breast cancer [31]. We 
made a preliminary comparison with previous studies according to the category to which the organics found belonged, as shown in 
Supplementary Fig. 1. 

Similarly, we analyzed the top 10 ultrasound radiomics features between the malignant and benign groups. As illustrated in 
Table 6, five Shape, 2 Gy-Level Run-Length Matrix (GLRLM), 2 Gy-Level Dependence Matrix (GLDM), and 1 Gy-Level Size Zone Matrix 
(GLSZM) based features were finally selected to determine the malignant and benign breast nodules. These shape-based features 
represent the basic geometric parameters of breast nodules. These GLRLM, GLDM, and GLSZM based features represent the texture 
information of breast nodules, mainly related to the inhomogeneous breast nodules. These key ultrasound radiomics features are 
consistent with the ultrasound physician’s view of the breast lesions. 

4. Discussion 

In this study, we validated our machine learning model for exhaled gas VOC detection based on HPPI-TOF-MS has potential 
diagnostic capability in differentiating benign and malignant breast lesions. By integrating clinical features, the diagnosis performance 
was further enhanced, proposing a new, convenient, rapid, and accurate method to diagnose breast cancer. Furthermore, the multi- 
omics model combining breath-omics, ultrasound radiomics, and clinic-omics demonstrated superior diagnostic performance 
compared to single-omics models. 

We employed the HPPI-TOF-MS technique for the online analysis of exhaled VOCS, presenting significant advantages in non- 
invasiveness, ease of operation, and high sensitivity, as evidenced by the high acceptance rate among patients (99.2 %) and the 
strong classification efficacy of the breath-omics model (AUC = 0.855) in our study. When compared to ultrasound radiomics(68.4 %) 
or clinic-omics(78.2 %), breath-omics(80.3 %) had higher accuracy. It implies exhaled VOCs, being the final manifestation of body 
metabolism, can better express whether the subject has breast cancer. After integrating multiple omics information, the diagnostic 
performance of the model was further enhanced, this signifies the value of multi-dimensionally integrating patient information to 
improve the accuracy of breast cancer diagnosis as previous studies, The specific VOCs found in this study were different to those 
reported in previous studies [16,20,24,32], although the categories of these VOCs were similar. This may be attributed to various 
factors, including differences in sample sizes, study methods, population heterogeneity, sample processing, and statistical analysis 

Table 3 
Quantitative evaluation metrics and the corresponding 95 % confidence intervals of the BC diagnosis model in five-fold cross-validation.  

Method Cut-off Sensitivity (%) Specificity (%) Accuracy (%) AUC 

Clinic-omics 0.5 67.5 (55.3, 79.8) 83.2 (77.5, 89.0) 78.2 (72.9, 83.4) 0.832 (0.785, 0.880) 
Ultrasound radiomics 46.3 (32.2, 60.4) 79.2 (73.0, 85.3) 68.4 (62.6, 74.2) 0.673 (0.614, 0.731) 
Breath-omics 62.3 (49.0, 75.6) 88.8 (84.0, 93.7) 80.3 (75.2, 85.3) 0.855 (0.810, 0.899) 
Clinic & Breath-omics 76.6 (65.7, 87.5) 93.2 (89.3, 97.1) 87.8 (83.7, 92.0) 0.929 (0.896, 0.962) 
Multi-omics 84.1 (75.1, 93.2) 89.9 (85.3, 94.4) 88.0 (84.0, 92.0) 0.946 (0.918, 0.974) 
BI-RADS 4a 98.7 (96.2, 100) 70.2 (63.1, 77.3) 79.4 (74.3, 84.5) 0.973 (0.953, 0.994) 
BI-RADS 4b 87.0 (79.0, 95.1) 99.4 (98.2, 100) 95.4(92.7, 98.0)  
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Fig. 4. The overall ROC curves of the clinic-omics, ultrasound radiomics, breath-omics, clinic & breath-omics, and multi-omics methods in the five- 
fold cross-validation and the BI-RADS classification on ultrasound image by senior ultrasound physician. ROC, receiver operating characteristic. 

Table 4 
ROC curve comparison results of different combined omics approaches using the DeLong test.  

DeLong test radiomics Clinic-omics Breath-omics Clinic & breath omics Multi-omics BI-RADS 

Radiomics 1.000 <0.001 <0.001 <0.001 <0.001 <0.001 
Clinic-omics <0.001 1.000 0.310 <0.001 <0.001 <0.001 
Breath-omics <0.001 0.310 1.000 0.001 0.004 <0.001 
Clinic & breath omics <0.001 <0.001 0.001 1.000 0.624 0.073 
Multi-omics <0.001 <0.001 0.004 0.624 1.000 0.109 
BI-RADS <0.001 <0.001 <0.001 0.073 0.109 1.000 

Notes: The values in the table represent p-values obtained from the DeLong test, used to compare the statistical significance differences among various 
omics approaches in ROC curve analysis. 

Fig. 5. Comparison of the 10 most important VOC ions for differentiating between malignant and benign groups.  
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approaches, as well as variations in environmental and specific conditions. Future studies should further explore the impact of breast 
cancer subtypes, disease stages, sample sources, and environmental factors on VOC profiles to better understand the metabolic 
characteristics of breast cancer and improve diagnostic accuracy [17,33]. Taking these factors into account, our study provides new 
insights into the field of VOC analysis in breast cancer and offers directions and inspirations for further research. 

In terms of ultrasound radiomics characterization,We found that the values of texture features (GLRLM, GLSZM, GLDM) were 
significantly increased in breast cancer. This finding is consistent with previous research [34,35], indicating that the internal 
composition of malignant tumors are typically more complex and heterogeneous than benign tumors. Additionally, the values of 
morphological features in breast cancer were also significantly higher compared to benign breast lesions [29], which implies that 
breast cancers have larger dimensions, more irregular shapes, and internal structures compared to benign breast nodules. Therefore, 
these radiomic features may serve as useful tools for the diagnosis of breast cancer. 

The diagnostic performance of the ABVS-based BI-RADS classification in this study was similar to the results of previous studies 
[36,37], particularly with a sensitivity of up to 98.7 % when using BI-RADS 4a as the benign-malignant cut-off value. However, a flaw 
is still apparent, heavily dependent on the ultrasound physician performing the BI-RADS classification, hence the performance fluc
tuation. Although the multi-omics model has a slightly lower sensitivity than the BI-RADS classification, its specificity is better, it also 
has the advantage of objectivity, easy access to information and a high degree of automation, making it a complementary technology to 
BI-RADS. 

Our study also has some limitations. Firstly, there are significant biases in several clinic characteristics, although they are risk 
factors of breast cancer. Future prospective studies still need to be designed to control confounding factors. Secondly, this study was 
conducted in a single center and had a limited number of included cases. Further external validation with a larger sample size and 
multiple-center studies is needed to evaluate the reliability of the breath-omics and multi-omics models. Thirdly, all radiomics features 
of breast lesions were extracted from stored images, which may result in information omission or misjudgment, leading to suboptimal 
performance of the individual ultrasound radiomics model. At last, only one junior ultrasound physician (with 3 years of experience in 
breast ultrasound) manually delineated the ROIs used to extract the radiomics features, which may introduce intra- or inter-observer 
biases. In future studies, we will incorporate a step of senior physician review of the ROI or use semi-automatic or fully automatic 
segmentation methods based on deep learning networks to further improve the diagnostic performance and automation level of the 
model. 

Table 5 
The key VOCs associated with BC diagnosis.  

m/z Potential VOCs CAS number Molecular weight Molecular formula 

105 Pentanethiol 110-66-7 104.214 C5H12S(+H) 
119 2-Butoxyethanol 111-76-2 118.174 C6H14O2(+H) 
116 Isobutyl acetate 110-19-0 116.158 C6H12O2 

45 Fragment of carboxylic acids or esters / ~45 COOH+

104 Pentanethiol 110-66-7 104.214 C5H12S 
138 Creosol 93-51-6 138.164 C8H10O2 

77 1-Propanethiol/methylthioethane 107-03-9/624-89-5 76.161 C3H8S(+H) 
58 Acetone 67-64-1 58.079 C3H6O 
90 Diethyl sulfide 352-93-2 90.187 C4H10S 
133 2-Methylbenzoxazole 95-21-6 133.147 C8H7NO 

Notes: VOCs: Volatile Organic Compounds. CAS: Chemical Abstracts Service Number, CAS number is a unique numerical identifier used to distinguish 
chemical substances. 

Table 6 
The key ultrasound radiomics features associated with BC diagnosis.  

Radiomics groups Descriptions Malignant Benign P-value 

GLRLM Run-length non-uniformity 6652.4 ± 7364.4 3521.2 ± 6952.5 0.002 
GLRLM Gray-level non-uniformity 23327.6 ± 24799.5 14021.2 ± 22901.0 0.004 
GLDM Dependence entropy 3.8 ± 1.1 3.4 ± 1.1 0.016 
Shape Surface area 55305.4 ± 60098.8 33307.3 ± 50570.7 0.003 
Shape Maximum 3D diameter 185.4 ± 87.0 140.5 ± 90.4 <0.001 
Shape Maximum 2D diameter row 175.9 ± 84.0 128.9 ± 82.8 <0.001 
Shape Minor axis length 78.3 ± 36.9 62.4 ± 43.1 0.005 
GLDM Dependence variance 35.1 ± 8.3 32.4 ± 8.6 0.021 
GLSZM Size zone non-uniformity 92.6 ± 133.4 51.4 ± 126.0 0.019 
Shape Maximum 2D diameter slice 177.9 ± 84.7 135.0 ± 86.8 <0.001 

Notes: All p-values were calculated using independent samples t-tests. GLRLM: Gray-Level Run-Length Matrix. GLDM: Gray-Level Dependence Matrix. 
GLSZM: Gray-Level Size Zone Matrix. 
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5. Conclusions 

Our findings indicate that breath-omics has significant potential value in breast cancer diagnosis and should receive more attention. 
The diagnostic performance of multi-omics machine learning model is superior to that of single-omics models and comparable to the 
diagnostic ability of experienced ultrasound physicians. This indicates that integrating breath-omics, ultrasound radiomics, and clinic- 
omics can provide a more comprehensive reflection of the characteristics of breast cancer patients. Therefore, the multi-omics 
approach is a promising tool for automated and reliable diagnosis of breast cancer. However, further validation studies are needed 
before clinical application can be realized. 
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