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On the modelling of seizure dynamics

This scientific commentary refers to ‘On the nature of seizure

dynamics’, by Jirsa et al. (doi:10.1093/brain/awu133).

In this issue of Brain, Jirsa and colleagues offer a masterful

account of epilepsy that discloses the universal and invariant prop-

erties of seizure dynamics (Jirsa et al., 2014). They derive a formal

taxonomy of seizure activity from the basic principles of coupled

dynamical systems. In brief, they show that a minimal model—

comprising just five states or variables—is sufficient to describe the

onset, time-course and offset of seizure activity. This may sound

implausible; however, the repertoire of dynamics that coupled sys-

tems can generate may be much smaller than people imagine. In

effect, Jirsa et al. use their understanding of dynamical systems to

‘diagnose’ the mathematical aetiology of the ‘signs and symptoms’

expressed in the statistics of seizure activity. Put simply, the exist-

ence of dissociable fast discharges and spike-wave events imme-

diately tells them that the dynamics must be generated by two

pairs of (hidden) coupled states generating fast and spike-wave

oscillations, respectively. The fact that seizure activity waxes and

wanes over a slower timescale then calls for a further slow per-

mittivity variable that controls the expression of fast dynamics.

Within this model, the onset and offset of seizure activity

become well-defined mathematical objects: a saddle node and

homoclinic bifurcation, respectively. The tell-tale signatures of

these bifurcations were subsequently confirmed using in vitro ex-

periments and focal seizures recorded in humans and zebrafish. So

why is this important?

Without recourse to Wikipedia, I confess that I could not ex-

plain the difference between a saddle node and homoclinic bifur-

cation. However, this is not important: the authors have done all

the mathematical heavy lifting for us and bring three things to the

table: first, the notion that seizure onset (and offset) can be cast in

terms of bifurcations (qualitative changes in dynamics) that are

induced by changing the parameters of a coupled dynamical

system—such as synaptic efficacy in neuronal microcircuits.

Second, the attending qualitative changes rest upon a separation

of temporal scales. For example, slow fluctuations in synaptic ef-

ficacy induce qualitative changes in fast dynamics. Finally, there is

an inherent circular causality in epileptogenesis; whereby slow

fluctuations in synaptic efficacy cause changes in fast neuronal

activity—that couple back to the slow variables through processes

such as activity-dependent plasticity. This circular causality is a

necessary aspect of coupling variables that fluctuate over separ-

able timescales. It is interesting to note that these fundaments of

dynamical systems are formally articulated in synergetics—an ap-

proach to self-organization pioneered by the first author’s mentor

Herman Haken (Haken, 1983). In short, what is on offer here is a

canonical description of seizure activity that has all the necessary

ingredients for a formal taxonomy of seizure dynamics. But how

does a mathematical taxonomy reach beyond phenomenology?

At this point, we have to consider why the modelling of seizure

dynamics is potentially important. In previous years, there have

been substantial advances in the use of models of neuronal micro-

circuits as forward or generative models of observed electro-

physiological responses. This is most evident in the advent of

dynamic causal modelling, which is now used routinely to address

questions about functional brain architectures—and their synaptic

underpinnings—in cognitive and systems neuroscience. The key

thing here is that dynamic causal models are not just used to

reproduce the phenomenology of electrophysiological measure-

ments: they explain empirical data through Bayesian model inver-

sion and subsequent selection. A formal understanding of how

seizure dynamics are generated could therefore provide vital con-

straints on dynamic causal models of seizure activity. In principle,

this means that one could identify the biophysical substrates of

slow and fast variables in phenomenological models.

A brief history of epilepsy models
The generative mechanisms underlying seizure activity have been

modelled extensively; particularly in neocortical and hippocampal

systems. A recurring theme in these studies is the interaction

between excitatory pyramidal cells and inhibitory interneurons.

This speaks to the central role of intrinsic connectivity in main-

taining excitation-inhibition balance. The intracellular and extra-

cellular mechanisms underlying slow changes in synaptic efficacy

have been the subject of much study. For example, Wendling

et al. (2005) model seizure onset in terms of slow ensemble

dynamics involving pyramidal cells and local interneurons, high-

lighting the increases in excitability and decreases in slow dendri-

tic and fast synaptic inhibition that peak at seizure onset. The

emerging picture from these studies points to slow changes in the

excitability of cortical and subcortical microcircuits mediated by

interactions between pyramidal cells and inhibitory interneurons.

Slow fluctuations—and associated extracellular increases in potas-

sium and decreases in calcium ion concentration—cause, and are
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caused by, the fast fluctuations in synaptic activity that announce

seizure onset. Indeed, Nevado-Holgado et al. (2012) have char-

acterized the evolution of seizure activity as a path through the

parameter space of a neural mass model, whereas Hocepied

et al. (2013) consider a similar formulation for seizure detection.

But how can we test these hypotheses—or indeed quantify

synaptic variables in a given patient at a given point in time?

Here, we turn to dynamic causal modelling.

Dynamic causal modelling of seizure
dynamics
Dynamic causal modelling (DCM) is a biophysically informed fra-

mework for comparing hypotheses or network models of (neuro-

physiological) time series. It is an established procedure in the

analysis of functional magnetic resonance time series and is now

used increasingly in electrophysiology. DCM rests upon the fact

that there is a straightforward mapping between the synaptic con-

nectivity of neuronal circuits and their responses to exogenous or

endogenous neuronal input. In some cases, this mapping can be

remarkably direct and intuitive (see Fig. 1 for an example).

There is an extensive literature on DCM ranging from face vali-

dation studies (David et al., 2006) to construct validation in terms

of multimodal measurements and pharmacological manipulations

(Moran et al., 2011). Crucially, DCM is now finding a role in

understanding pathophysiology in terms of extrinsic (long range)

disconnections (Boly et al., 2011) and aberrant intrinsic (local)

connectivity that may underlie pathological (beta) oscillations in

Parkinson’s disease (Marreiros et al., 2012). The hope here is

that DCM can be used to quantify slow fluctuations in synaptic

efficacy in epilepsy—and perhaps to predict seizure onset. The

promise for modelling seizure dynamics is illustrated in Fig. 2.

This figure shows the spectral responses of a canonical microcircuit

as a function of intrinsic connectivity; namely, the recurrent self-

inhibition of superficial pyramidal cells. This simple manipulation

leads to fast epileptiform activity as the system approaches a

(transcritical) bifurcation—and is motivated easily by the conver-

gent evidence implicating fast synaptic inhibition in the context of

recurrent coupling between pyramidal cells and inhibitory inter-

neurons (see above).

The power of DCM lies in its ability to adjudicate among dif-

ferent mechanistic hypotheses using Bayesian model selection. For

example, David et al. (2008) analysed seizure activity elicited

during electrical stimulation. Bayesian model comparison sug-

gested that seizure onset could be modelled in terms of changes

in intrinsic connectivity (as opposed to extrinsic connectivity).

Furthermore, DCM identified fluctuations in synaptic efficacy in

the ictal zone; suggesting that the mesial temporal lobe epilepsy

studied by David et al. (2008) could be explained in terms of a

pre-ictal increase in sensitivity to hippocampal afferents from the

temporal pole.

Conclusion
This sort of study provides proof-of-principle that the functional

anatomy of epilepsy can be characterized in single subjects. If Jirsa

et al. are correct; the universal anatomy of seizure dynamics—and

associated neural mass models—suggests that we are in a position

to create universal models of seizure activity. However, there is

one outstanding challenge: a key insight afforded by Jirsa et al. is

the circular causality of seizure dynamics. Currently, dynamic

causal models only consider the enslaving of fast variables by

slow variables but not vice versa. The approach of Jirsa et al.

may provide formal constraints on how fast synaptic activity
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Figure 1 This schematic illustrates the mapping between the (synaptic efficacy) parameters of a dynamic causal model and their spectral

signatures. Left: A simple dynamic causal model of recurrently and reciprocally coupled excitatory (black) and inhibitory (red) neuronal

populations. Middle: The corresponding spectral responses under linear coupling. The equation (based on standard dynamical systems

theory) shows that the (Lorentzian) spectral density function of frequency (!) is centred on the connection strength of reciprocal

connections (�), while the dispersion (full width at half maximum) of the spectral peak is determined by recurrent connection strengths (�).

Connection strengths are naturally converted into frequencies because (in dynamical models) connections are measured in hertz—and

therefore play the role of rate constants. Right: Time-dependent changes in the spectral peak therefore reflect changes in the strength of

intrinsic (reciprocal) connectivity.
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couples back to slow changes in synaptic efficacy; in other words,

the induction of activity-dependent plasticity by fast dynamics.

One hopes that modelling this key link will attract further atten-

tion over the years to come.
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Figure 2 (A) A simple two source architecture with the (four) populations of a single source highlighted. The intrinsic connectivity (dotted

lines) and extrinsic connectivity (solid lines) conform to a canonical microcircuit and the known laminar specificity of extrinsic connections.

Excitatory connections are in red and inhibitory connections are in black. Endogenous fluctuations drive the input cells and measurements

are based on the depolarization of superficial pyramidal cells. (B) These summarize the response characteristics of a single source in terms

of the impulse response in frequency space, shown graphically (left) and in image format (right). These are (modulation) transfer functions

of (the log scaling of) recurrent inhibitory connectivity (solid red line in the microcircuit). (C) These panels illustrate changes in neuronal

activity when increasing recurrent inhibition. The top panel shows the strength of recurrent inhibition as a function of time, while the

second panel shows a simulated response obtained by integrating the neural mass model on the left with random fluctuating inputs. The

empirical time frequency is shown below in terms of the spectral power over 1 to 128 Hz. The lower panel shows the predicted response

based upon the transfer functions in B. LFP = local field potential.
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Calcium currents regulate dopamine autoreceptors

This scientific commentary refers to ‘Cav1.3 channels control D2

autoreceptor responses via NCS1 in substantia nigra dopamine

neurons’ by Dragicevic et al. (doi:10.1093/brain/awu131).

Appropriate activity of substantia nigra dopamine neurons is

required for proper motor function, habit formation and motiv-

ation, and degeneration of these neurons in Parkinson’s disease

leads to disrupted control of voluntary movement. In this issue of

Brain, Dragicevic et al. unite two previously separate lines of re-

search on the regulation of substantia nigra dopamine neuron

activity—one based on L-type calcium channels and the other

on D2 autoreceptors—and suggest that these mechanisms con-

verge in a previously unsuspected way in Parkinson’s disease

(Dragicevic et al., 2014).

One of the two lines of research stems from decades of work

to define how the activity of midbrain dopamine neurons is con-

trolled. These neurons alternate between a relatively slow, base-

line, pacemaking activity (�4 Hz) that presumably supplies the

striatum with tonic low levels of extracellular dopamine, and

bursts of activity of variable duration and only slightly higher

frequency (�15 Hz) (Grace et al., 2007). The resulting ‘band-

width’ is not large: in contrast, activities of cortical output neu-

rons can range from silent states to firing at frequencies of 20 Hz

or more. While questions such as how salient sensory stimuli

cause bursting are active areas of research, the pacemaking ac-

tivity—which is autonomous, occurring even in cultured substan-

tia nigra neurons—is fairly well elucidated, albeit subject to

continuing elaboration in papers such as the one being discussed

here.

In contrast to most other tonically active CNS neurons, which

depend on monovalent cation channels to generate spontaneous

action potentials, depolarization of mature pacemaking substantia

nigra dopamine neurons may involve the opening of L-type cal-

cium Cav1.3 channels, together with hyperpolarization-activated,

cyclic nucleotide-gated (HCN) sodium channels (Puopolo et al.,

2013). The large calcium conductance through Cav1.3 channels

has been suggested to underlie the specific vulnerability of sub-

stantia nigra (as well as locus coeruleus and dorsal motor nucleus

of the vagus) neurons to cell death in Parkinson’s disease

(Surmeier and Schumacker, 2013). These neurons, moreover, ex-

hibit wide action potentials (42 ms), giving rise to further calcium

entry via voltage-activated channels in the interspike interval

(Puopolo et al., 2013). Substantia nigra dopamine neurons also

lack significant calcium buffering by proteins such as parvalbumin

and calbindin—the latter of which is more highly expressed in

ventral tegmental area dopamine neurons, which are relatively

spared in Parkinson’s disease.

Studies by James Surmeier and collaborators demonstrate that

the high intracellular calcium load in substantia nigra dopamine

neurons causes mitochondrial and oxidative stress, and others

have provided evidence that high calcium can exacerbate neuro-

degeneration through the accumulation of neurotoxic levels of

cytosolic catecholamines (Mosharov et al., 2009). Inhibition of

L-type calcium channels with dihydropyridines protects substantia

nigra pars compacta neurons against neurotoxins associated with

Parkinson’s disease in a variety of animal studies (Surmeier and

Schumacker, 2013). These data suggest that inhibition of Cav1.3

channel activity may be neuroprotective for the remaining sub-

stantia nigra pars compacta neurons in patients with Parkinson’s

disease, and isradipine, a dihydropyridine L-type calcium channel

blocker shown to be effective in mouse models of the disorder, is

currently in a clinical trial as a Parkinson’s disease therapy

(Parkinson Study Group, 2013).

The second line of research extends from the study of dopamine

receptor-mediated auto-inhibition of neuronal activity. In substan-

tia nigra neurons, this is mediated by D2-type receptors, which

activate G protein coupled potassium channels (GIRKs) that hyper-

polarize neurons and block cell firing (Lacey et al., 1987). The

response of substantia nigra neurons to dopamine is highly regu-

lated, with chronic loss of dopamine leading to receptor sensitiza-

tion (Schultz and Ungerstedt, 1978), a phenomenon strongly

implicated in Parkinson’s disease and its animal models. Work by

John Williams and collaborators has shown that somatodendritic

dopamine release drives rapid D2 receptor-mediated hyperpolari-

zation of neighbouring dopaminergic neurons (Beckstead et al.,

2004). It may be, therefore, that dopamine autoreceptor activa-

tion inhibits the voltage and activity-dependent calcium-mediated

stress associated with Parkinson’s disease, and it is further possible

that this is another advantage of clinical treatment with L-DOPA

and dopamine agonists, although this has not been directly

addressed.

In their new study, Dragicevic et al. connect these two lines

of research by demonstrating that L-type calcium channels can

promote D2 receptor function in juvenile substantia nigra pars

compacta dopamine neurons (in contrast to the above D2
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